Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT...

16
Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1 / 16

Transcript of Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT...

Page 1: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Anomalous Hydrodynamics andNon-Equilibrium EFT

Paolo Glorioso

July 19, 2018

PG, H. Liu, S. Rajagopal [1710.03768]

1 / 16

Page 2: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Hydrodynamics is the universal low-energy description of quantum systemsin a local thermal state.

Thermodynamic quantities are well-defined in mesoscopic regions

∂µTµν = 0, Tµν = (ε+ p)uµuν + pgµν + · · ·

2 / 16

Page 3: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Two fundamental limitations:

Does not capture hydrodynamic fluctuations. E.g. long-time tails,etc. Current methods (e.g. stochastic hydro) are not systematic.

Too phenomenological. Constitutive relations satisfy constraints suchas the second law of thermodynamics. Lack of a general derivation ofthese constraints.

Recently, an effective field theory (EFT) for systems in local thermalequilibrium was formulated. The formalism provides a Lagrangian forhydrodynamics, and addresses these two issues.

It is then of primary importance to generalize this EFT to includeanomalies.

3 / 16

Page 4: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Goal of this talk: provide a general effective field theory which capturesthe low-energy physics of a system with anomalies in local thermalequilibrium.

∂µTµν = F νµJµ, ∂µJ

µ = cF ∧ F

Lagrangian with “pions,” symmetries, constraints fromunitarity/causality

derivation of constraints on transport from symmetry principles

J i = ξBBi + ξωω

i + · · ·

systematic treatment of hydrodynamic fluctuations.

4 / 16

Page 5: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Outline

1 Non-equilibrium EFT

2 EFT for hydrodynamics with chiral anomaly

3 Additional remarks

4 Conclusions & Outlook

5 / 16

Page 6: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Non-equilibrium EFTConsider QFT in a state ρ0. Evolution of ρ0:

ρ(t) = U(t)ρ0U†(t) Tr(ρ0 · · · )

Closed time path or Schwinger-Keldysh contour.

Correlators of an operator O conjugated to background A are encoded inthe Schwinger-Keldysh generating functional:

e iW [A1,A2] =

∫ρ0

Dψ1Dψ2eiS[ψ1,A1]−iS[ψ2,A2] =

∫Dχ1Dχ2e

i Ieff[χ1,A1;χ2,A2;ρ0]

Ieff[χ1, χ2; ρ0]: effective action for the slow modes χ1, χ2. Local, includesdissipation and fluctuation effects caused by fast modes.

6 / 16

Page 7: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Example: Brownian motion

Heavy particle coupled to thermal bath, integrate out bath:

Leff = mxr xa − νxrxa +i

2σx2

a

xr =1

2(x1 + x2), xa = x1 − x2

This is the functional representation of the Langevin equation.

mxr + νxr = ξ, 〈ξ(t)ξ(0)〉 = σδ(t)

Unitarity: σ ≥ 0

Thermal equilibrium: σ = 2νβ

7 / 16

Page 8: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

EFT for hydrodynamics with chiral anomaly

We want low-energy theory for the correlation functions of Tµν and Jµ.

Background fields conjugated to Tµν and Jµ

=⇒ g1µν , g2µν , A1µ,A2µ

Conservation of Tµν1,2 and Jµ1,2 implied by invariance under diffeomorphisms

and gauge transformations.Degrees of freedom are then the parameters of these transformations:

=⇒ Xµ1,2(σa) : diffeomorphisms, ϕ1,2(σa) : gauge transformations

8 / 16

Page 9: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

EFT for hydrodynamics with chiral anomalyXµ

1,2(σ0, σi ): trajectory of fluid element σi in physical spacetime.

ϕ1,2(σ0, σi ): U(1) phase of fluid element σi .

Generating functional:

e iW [g1,A1;g2,A2] =

∫DXµ

1 Dϕ1DXµ2 Dϕ2 e

i Ieff[X1,ϕ1,g1,A1;X2,ϕ2,g2,A2]

Ieff: effective action for anomalous hydrodynamics9 / 16

Page 10: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

EFT for hydrodynamics with chiral anomaly

Symmetries

Time shift:σ0 → σ0 + f (σi )

Relabeling of fluid elements:

σi → σ′i (σj)

Diagonal shiftϕ1 → ϕ1 + χ(σi )

ϕ2 → ϕ2 + χ(σi )

These symmetries express that degrees of freedom can be redefined at agiven time slice σ0 =const.

They are the very definition of a fluid.

10 / 16

Page 11: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

EFT for hydrodynamics with chiral anomaly

Three steps to implement anomaly.

1. Anomalous Ward identity:

δA1,2µ = −∂µλ1,2, δϕ1,2 = λ1,2

δIeff = c

∫(λ1F1 ∧ F1 − λ2F2 ∧ F2)

Decompose into gauge-invariant and anomalous parts:

Ieff = Iinv + Ianom, δIinv = 0

All the actions are local. Choose:

Ianom = c

∫(ϕ1F1 ∧ F1 − ϕ2F2 ∧ F2)

11 / 16

Page 12: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

EFT for hydrodynamics with chiral anomaly

2. Diagonal shift symmetry:

δϕ1 = χ(σi ), δϕ2 = χ(σi ) =⇒ δχIeff = 0

Satisfied even in the presence of anomalies. However:

Ianom = c

∫(ϕ1F1 ∧ F1 − ϕ2F2 ∧ F2)

=⇒ δχIanom = c

∫χ(F1 ∧ F1 − F2 ∧ F2) 6= 0

Anomaly cancellation condition for diagonal shifts:

δχIinv = −c∫χ (F1 ∧ F1 − F2 ∧ F2)

This partially determines parity-odd terms in Iinv in terms of the anomalycoefficient c.

12 / 16

Page 13: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

EFT for hydrodynamics with chiral anomaly3. Dynamical KMS invariance:

together with time-reversal invariance (or a generalization of it) gives

Ieff[KMS(χ1),KMS(χ2)] = Ieff[χ1, χ2], KMS2 = Id

This completely determines parity odd terms in Ieff, in terms of c , up tothree constants a1, a2, a3.

From Ieff one recoversJ iodd = ξBB

i + ξωωi

CME and CVE coefficients ξB(T , µ), ξω(T , µ) are determined by c , andthe constants a1, a2, a3.

CPT invariance ⇒ a1, a3 = 0. Only c , a2 are left.13 / 16

Page 14: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Relation to global anomaliesFor stationary background configurations, and setting to zero dynamicalfields, the effective action factorizes:

e iIeff[g1,A1;g2,A2] = e iW [g1,A1]e−iW [g2,A2] + · · ·

Continuing W to Euclidean time, gives the thermal partition function

e iW [g ,A] → e−β0F [g ,A] = Z

Placing the system on a background with nontrivial topology, andperforming a suitable “large” diffeomorphism gives a global anomaly:

Z → e−ixa2Z

where x is a constant related to the topology.a2 is then related to a global anomaly. [Golkar,Sethi ’15]

14 / 16

Page 15: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

Hydrodynamic fluctuations

Traditional method of computing hydrodynamic fluctuations: stochastichydrodynamics

∂µTµν = ξµ, ∂µJ

µ = ξ, ξµ, ξ: thermal noise

Successful predictions (long time tails, scale dependence of transport, ...)E.g. shear viscosity in 3 + 1d : η = η0 + c1|ω/T |1/2

However, approximations are not controlled. Lack of a systematic method.

Non-equilibrium EFT allow to evaluate hydrodynamic fluctuations usingstandard QFT methods. [Gao, PG, Liu ’18]

This provides a systematic framework to study the interplay betweenanomaly and hydrodynamic fluctuations.

15 / 16

Page 16: Anomalous Hydrodynamics and Non-Equilibrium EFT · Anomalous Hydrodynamics and Non-Equilibrium EFT Paolo Glorioso July 19, 2018 PG, H. Liu, S. Rajagopal [1710.03768] 1/16

ConclusionsNon-equilibrium EFT of anomalous fluids

Anomalous transport completely determined by symmetries

Systematic approach to compute fluctuations (generalizes stochastichydro)

Future directionsQuantum and thermal fluctuations with anomalies

Turbulence?

Dynamical electromagnetic field, MHD, ...

16 / 16