Angular Momentum - Texas A&M...
Embed Size (px)
Transcript of Angular Momentum - Texas A&M...

1
Rotational Motion
1. Remember how Newton’s Laws for translationalmotion were studied:
1. Kinematics (x = x0 + v0 t + ½ a t2 )2. Dynamics (F = m a)3. Momentum Conservation
2. Now, we repeat them
again, but for rotationalmotion:
1. Kinematics (θθθθ, ωωωω, αααα)2. Dynamics (ττττ = I αααα)3. Angular Momentum
Part I I IPar t I I I
����������� �
Today Later
Translational Motion and Rotational Motion
àààà àààà
àààààààà
Rotational Motion
Angular MomentumAngular Momentum
pprL
FFr
v m pIL
v
mI
����
����
����
��
↔↔↔↔××××====↔↔↔↔××××====
≡≡≡≡↔↔↔↔≡≡≡≡↔↔↔↔↔↔↔↔
ττττωωωω
ωωωω

2
Rotational Motion
Rotational DynamicsRotational Dynamics
dtpd
amF�
��==
dtLd
I
��� ======== ααααττττ (torque)
mI
ααααax
No external force ààààMomentum conservation
No external torque ààààL conservation
F�
F�
r�
Rotational MotionAngular Momentum
Change in Change in Angular Momentum (I )Angular Momentum (I )
x
y
z
R.-H. Rule
x
y
z
R.-H. Rule
ωωωωfΙΙΙΙωωωωi àààà ΙΙΙΙωωωωfωωωωi
dtLd
I
��� ======== ααααττττ (torque)
F�

3
Rotational Motion
Example 1Example 1(a) What is the angular momentum of a 3.00-kg uniform
cylindr ical gr inding wheel of radius 20 cm and height 40 cm when rotating at 1500 rpm?
(b) How much torque is required to stop it in 10 s?
H0.4H
ωωωωif
if
tt
LL
tdLd
b
ILa
−−−−−−−−
========
====���
�
��
ττττ
ωωωω
)(
)(
Hints:
Rotational Motion
Rolling Motion w/o SlippingRolling Motion w/o Slipping
FasterFaster
Instantaneously restInstantaneously restàààà Instantaneous axisInstantaneous axis
ωωωω
ωωωω
Rolling Motion w/o SlippingRolling Motion w/o Slipping
FasterFaster
Instantaneously restInstantaneously restàààà Instantaneous axisInstantaneous axis
ωωωω
ωωωω
NewtonNewton’’ s 2s 2ndnd Law of MotionLaw of Motion
Translational Motion
Rotational Motion
)(integralnet tI
ωωωωτττταααα ��
� →→→→====
)(integralnet tvm
Fa
��
� →→→→====
Quick Question: All shapes have the same mass,but the speeds are different. Why?
Unlike a = F/m, even if F and m are given,we have to calculate ττττ and I.

4
Rotational Motion
Rotational Motion
ττττ = r � Fàààà àààààààà
θθθθ
àààà
F�
r�
ττττ�z
y
xF�
r�
z
Rotational Motion
Torque due to Gravity?Torque due to Gravity?
)(sin2
⊗⊗⊗⊗��������
������������
���� −−−−====
××××====
θθθθ
ττττ
mg xl
F r ���
ràààà
�
Fàààà
lCM
mass m
?====××××==== F r ���ττττ Rotational Motion
Vector Nature of Vector Nature of Angular QuantitiesAngular Quantities
Kinematical var iables to descr ibe the rotational motion:àààà Angular position, velocity and accelerationàààà c.w. or c.c.w. rotation (like +x or –x direction in 1D)àààà Vector natures!
)(
)(
)(
2rad/s k dtd
k
rad/s k dtd
k
rad Rl
ˆˆ
ˆˆ
ωα
θω
θ
=
=
=
x
y
z
R.-H. Rule
>0 or <0
Rotational Motion
ParallelParallel--axis Theoremaxis Theorem
Icm = ½ MR02
d
2 MdII cm ++++====
Idisk = Icylinder
NewtonNewton’’ s 2s 2ndnd Law for RigidLaw for Rigid--body Rotationbody Rotation
ααααττττ ��I====net
Rotational Motion
2cm
2
2
1
2
1 ωIMMgH += v
Icm = Large àààà v = Small
Krot = (1/2) I ωωωω2 (àààà Ktrans = (1/2) m v2)
θθθθττττττττ sin Fr ====≡≡≡≡�
Rotational Motion
Ffr
1. F.B.D.1. F.B.D.
[x] Mg sinθθθθ – Ffr = M ax[y] FN – Mg cosθθθθ = 0
[⊗⊗⊗⊗] Ffr R0 = (2/5)MR02 (ax/R0)
We treat the box as a par ticle. Solid sphere (mass M, radius R0)
P is:(a) the point of contact with the
ground;(b) instantaneously rest relative
to the ground.
Thus:The motion of the wheel is a purerotation about the instantaneousaxis through P at the instant.
P is:(a) the point of contact with the
ground;(b) instantaneously rest relative
to the ground.
Thus:The motion of the wheel is a purerotation about the instantaneousaxis through P at the instant.
Ffr ≤≤≤≤ µµµµs FNFfr = µµµµk FN
Ffr
FNFN
Static fr iction: 0 < Ffr ≤≤≤≤ µµµµs FN
Ffr (static fr iction!)
2. Newton’s 2nd Law2. Newton’s 2nd Law
[x] mg sinθθθθ – µµµµk FN = m ax[y] FN −−−− mg cosθθθθ = 0

5
Rotational Motion
2cm
2
2
1
2
1 ωIMMgH += v
Icm = Large àààà v = SmallIcm = Large àààà v = Small
bbaa
ba
I I
L L
ωω =∴=
0ˆ )( Ng
�� ====++++====���� k���
i
Ia: big Ib: small
z
)(aωωωω� )(bωωωω�
Angular momentum conservationEnergy conservation
Rotational Motion
Recap: Example 1Recap: Example 1Calculate the torque on the 2.00-m longbeam due to a 50.0 N force (top) about (a) point C (= c.m.)(b) point P
Calculate the torque on the 2.00-m longbeam due to a 60.0 N force about (a) point C (= c.m.)(b) point P
Calculate the torque on the 2.00-m longbeam due to a 50.0 N force (bottom) about (a) point C (= c.m.)(b) point P
θθθθττττττττ sin Fr ====≡≡≡≡�
àààà
àààà
0ˆ )( ?]Why[ Ng
�� ====++++====���� k���
i

6
Rotational Motion
P.10-38, 10-65, 10-102 …
Assume the pulley bear ing
is fr ictionless …
à We can use conservation
of mechanical energy.
Avera
ge fr
iction
al toq
ue …
àW
e can
not use
conser
vatio
n
of mech
anica
l energ
y
because
F fris
non-co
nserva
tive
force.
Fr iction on the pulley (disk)by the bear ing (axis)Fr iction on the pulley (disk)by the bear ing (axis)
[⊗] FT2 R0 – FT1 R0 – ττττfr = (1/2)MR02 (ax/R0)
FT2FT1
Ffr
ax
α α α α [⊗]
x
Rotational Motion

7
Rotational Motion
Angular Momentum ConservationAngular Momentum Conservation
x
y
)()( 21 tF tF xx −−−−====
fx,fx,x,ix,i p ppp 2121 ++++====++++
bbaa
ba
I I
L L
ωω =∴=
Ia: big Ib: small
0ˆ )( Ng
�� ====++++====���� k���
i
z
)(aωωωω� )(bωωωω�
Rotational Motion
Application of Angular Momentum ConservationApplication of Angular Momentum Conservation

8
Rotational Motion
Example 2Example 2A person stands, hands at the side, on a platform that is rotating at a rate of 1.60 rev/s. I f the person now raises his arms to a hor izontal position, the speed of rotationdecreases to 0.800 rev/s.(a) Why does the speed of
rotation decrease? Explain using the twokey words;
external torqueangular momentum
(b) By what factor has the moment of iner tia of theperson changed?
(c) Compare Ki and KfΙΙΙΙiωωωωi ==== ΙΙΙΙfωωωωf
Rotational Motion
m2
m1
m1
ωωωωi
ωωωωf
Ii=MR2
If=MRf2
Rf

9
Rotational Motion
Cross Product: General
Rotational Motion
Cross Product: Cross Product: ττττττττ = = rr �� FF
x
z θθθθ
Direction and magnitude of torque?
Magnitude: ττττ = r F sinθθθθ
àààà àààà àààà
F�
ττττ�
r�
F�
r�

10
Rotational Motion
Cross Product: Cross Product: LL = = rr �� pp
θθθθ
Direction and magnitude of angular momentum?
Magnitude: L = r p sinθθθθ
x
z
àààà àààà àààà
r�
p�
vmp��
====prL���
××××====
r�
[General definition for any motion]
Rotational Motion
LL = = rr p p sinsinθθθθθθθθDirection and magnitude of angular momentum?à Magnitude: L = r p sinθθθθ
Lm = r (mv) sinθθθθ = R0 m v Lm = REarth m v sinθθθθ
θθθθ
ωωωωr�
v�
EarthRr ====�
r�
θθθθv�
m

11
Rotational Motion
Example 3Example 3
Suppose a meteor (m = 7.0 � 1010 kg) struck the Earth atthe equator with a speed v = 1.0 � 104 m/s and remained stuck. By what factor would this affect the rotationalfrequency of the Earth?
Basic concept: Lm + LE = Lm+E
“ By what factor ..”àààà R = ωωωω(after)/ωωωω(before)
Rotational Motion
Practice Problem 1Practice Problem 1
A uniform disk turns at 7.00 rev/s a r o u n d a f r i c t i o n l e s sspi ndl e. A non-r ot at i ng r od,of the same mass (m) as the disk and length (l) equal to the disk’s diameter , is dropped onto the disk. They then both turnaround the sp i n d l e w i t h t h ei r cen t er s superposed. There is no slipping between the rod and the disk. What is the moment of iner tia of the disk+rod system about the axis?

12
Rotational Motion
Example 4Example 4
A uniform disk turns at 7.00 rev/s around a fr ictionless spindle. A non-rotating rod, of the same mass (m) as the disk and length (l) equal to the disk’s diameter , is dropped onto the disk. They then both turnaround the spindle with their centers superposed. There is no slipping between the rod and the disk. What is the angular velocity (in rev/s) of the disk+rod system about the axis?
Rotational MotionAngular Momentum
Change in Change in Angular Momentum (I I )Angular Momentum (I I )
Only the direction of L changes;The magnitude of L does not change.
Out of page (+x axis)
F�
iL�
fL�
if LLL���
−−−−====∆∆∆∆
dtLd
I
��� ======== ααααττττ (torque)

13
Rotational MotionAngular Momentum and Torque
dtLd
I
��� == ατ (torque)
Rotational MotionAngular Momentum and Torque
z
y
x
Spinning
LSpinning Axisàààà
Ropeàààà
x
z
Rotation (in Rotation (in xyxy plane) ofplane) ofSpinning Bicycle WheelSpinning Bicycle Wheel