An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen...

21
An Introduction to Model Categories Brooke Shipley (UIC) Young Topologists Meeting, Stockholm July 4, 2017

Transcript of An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen...

Page 1: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

An Introduction to Model Categories

Brooke Shipley (UIC)

Young Topologists Meeting, Stockholm

July 4, 2017

Page 2: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Examples of Model Categories (C,W )

I Topological Spaces with weak equivalences f : X'−→ Y if

π∗(X )∼=−→ π∗(Y ).

I Chain complexes with quasi-isomorphisms f : C'−→ D if

H∗(C )∼=−→ H∗(D).

I Simplicial abelian groups with weak equivalences f : A'−→ B

if H∗(NA)∼=−→ H∗(NB).

Page 3: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Examples of Model Categories (C,W )

I Topological Spaces with weak equivalences f : X'−→ Y if

π∗(X )∼=−→ π∗(Y ).

I Chain complexes with quasi-isomorphisms f : C'−→ D if

H∗(C )∼=−→ H∗(D).

I Simplicial abelian groups with weak equivalences f : A'−→ B

if H∗(NA)∼=−→ H∗(NB).

Page 4: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Examples of Model Categories (C,W )

I Topological Spaces with weak equivalences f : X'−→ Y if

π∗(X )∼=−→ π∗(Y ).

I Chain complexes with quasi-isomorphisms f : C'−→ D if

H∗(C )∼=−→ H∗(D).

I Simplicial abelian groups with weak equivalences f : A'−→ B

if H∗(NA)∼=−→ H∗(NB).

Page 5: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Definition of Model Categories

Definition: A model category is a category C with 3 classes ofmaps W, C, and F, satisfying 5 axioms as below.

I Weak equivalences, denoted'−→,

I Cofibrations, denoted ↪→, and

I Fibrations, denoted � .

• closed under composition

• acyclic cofibrations A �� ' // B

• acyclic fibrations X' // // Y

Page 6: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Definition of Model Categories

Definition: A model category is a category C with 3 classes ofmaps W, C, and F, satisfying 5 axioms as below.

I Weak equivalences, denoted'−→,

I Cofibrations, denoted ↪→, and

I Fibrations, denoted � .

• closed under composition

• acyclic cofibrations A �� ' // B

• acyclic fibrations X' // // Y

Page 7: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Definition of Model Categories

Definition: A model category is a category C with 3 classes ofmaps W, C, and F, satisfying 5 axioms as below.

I Weak equivalences, denoted'−→,

I Cofibrations, denoted ↪→, and

I Fibrations, denoted � .

• closed under composition

• acyclic cofibrations A �� ' // B

• acyclic fibrations X' // // Y

Page 8: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Axioms for Model Categories

I C has all finite colimits and limits.

I (2 of 3) If two of f , g , gf are weak equivalences, then so is thethird.

I W, C, F are closed under retracts.

I Lifting: Lifts exist in the following squares:

A� _

��

// X

'����

A� _

'��

// X

����B

??

// Y B

??

// Y

I Factorization: Any map f : X → Y factors in two ways

X �� ' // Z // // Y X �

� //W' // // Y .

Page 9: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Axioms for Model Categories

I C has all finite colimits and limits.

I (2 of 3) If two of f , g , gf are weak equivalences, then so is thethird.

I W, C, F are closed under retracts.

I Lifting: Lifts exist in the following squares:

A� _

��

// X

'����

A� _

'��

// X

����B

??

// Y B

??

// Y

I Factorization: Any map f : X → Y factors in two ways

X �� ' // Z // // Y X �

� //W' // // Y .

Page 10: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Axioms for Model Categories

I C has all finite colimits and limits.

I (2 of 3) If two of f , g , gf are weak equivalences, then so is thethird.

I W, C, F are closed under retracts.

I Lifting: Lifts exist in the following squares:

A� _

��

// X

'����

A� _

'��

// X

����B

??

// Y B

??

// Y

I Factorization: Any map f : X → Y factors in two ways

X �� ' // Z // // Y X �

� //W' // // Y .

Page 11: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Axioms for Model Categories

I C has all finite colimits and limits.

I (2 of 3) If two of f , g , gf are weak equivalences, then so is thethird.

I W, C, F are closed under retracts.

I Lifting: Lifts exist in the following squares:

A� _

��

// X

'����

A� _

'��

// X

����B

??

// Y B

??

// Y

I Factorization: Any map f : X → Y factors in two ways

X �� ' // Z // // Y X �

� //W' // // Y .

Page 12: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Axioms for Model Categories

I C has all finite colimits and limits.

I (2 of 3) If two of f , g , gf are weak equivalences, then so is thethird.

I W, C, F are closed under retracts.

I Lifting: Lifts exist in the following squares:

A� _

��

// X

'����

A� _

'��

// X

����B

??

// Y B

??

// Y

I Factorization: Any map f : X → Y factors in two ways

X �� ' // Z // // Y X �

� //W' // // Y .

Page 13: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Homotopy Category, Quillen Pair, Quillen Equivalence

I The homotopy category of a model category (C,W ) is definedby inverting the weak equivalences.

Ho(C) = C[W−1]

I Given C, D model categories and an adjunction: CF�GD, then

(F ,G ) is a Quillen pair if F preserves cofibrations and Gpreserves fibrations. Then there is an induced adjunction:

Ho(C)LF�RG

Ho(D)

I If (LF ,RG ) induces an equivalence on the homotopycategories, then (F ,G ) is a Quillen equivalence.

C 'QE D and Ho(C) ∼= Ho(D).

Page 14: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Homotopy Category, Quillen Pair, Quillen Equivalence

I The homotopy category of a model category (C,W ) is definedby inverting the weak equivalences.

Ho(C) = C[W−1]

I Given C, D model categories and an adjunction: CF�GD, then

(F ,G ) is a Quillen pair if F preserves cofibrations and Gpreserves fibrations. Then there is an induced adjunction:

Ho(C)LF�RG

Ho(D)

I If (LF ,RG ) induces an equivalence on the homotopycategories, then (F ,G ) is a Quillen equivalence.

C 'QE D and Ho(C) ∼= Ho(D).

Page 15: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Homotopy Category, Quillen Pair, Quillen Equivalence

I The homotopy category of a model category (C,W ) is definedby inverting the weak equivalences.

Ho(C) = C[W−1]

I Given C, D model categories and an adjunction: CF�GD, then

(F ,G ) is a Quillen pair if F preserves cofibrations and Gpreserves fibrations. Then there is an induced adjunction:

Ho(C)LF�RG

Ho(D)

I If (LF ,RG ) induces an equivalence on the homotopycategories, then (F ,G ) is a Quillen equivalence.

C 'QE D and Ho(C) ∼= Ho(D).

Page 16: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Examples

I The projective model structure on ch+:W = quasi-isomoprhismsF = epimorphisms in positive degreeC = monomorphisms with projective cokernel.

I The injective model structure on ch−:W = quasi-isomoprhismsC = monomorphisms in negative degreeF = epimorphisms with injective kernel.

I Both extend to model structures on Ch:

ChProj 'QE ChInj and Ho(ChProj)∼= Ho(ChInj)

Page 17: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Examples

I The projective model structure on ch+:W = quasi-isomoprhismsF = epimorphisms in positive degreeC = monomorphisms with projective cokernel.

I The injective model structure on ch−:W = quasi-isomoprhismsC = monomorphisms in negative degreeF = epimorphisms with injective kernel.

I Both extend to model structures on Ch:

ChProj 'QE ChInj and Ho(ChProj)∼= Ho(ChInj)

Page 18: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Examples

I The projective model structure on ch+:W = quasi-isomoprhismsF = epimorphisms in positive degreeC = monomorphisms with projective cokernel.

I The injective model structure on ch−:W = quasi-isomoprhismsC = monomorphisms in negative degreeF = epimorphisms with injective kernel.

I Both extend to model structures on Ch:

ChProj 'QE ChInj and Ho(ChProj)∼= Ho(ChInj)

Page 19: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Counter-examples and Examples

I There are examples of model categories C,D withHo(C) ∼= Ho(D), but there is no Quillen pair inducing thisequivalence. So,

C 6'QE D.

I (N, Γ) form a Quillen pair and a Quillen equivalence

sAb 'QE ch+ and Ho(sAb) ∼= Ho(ch+)

I (Schwede-S. 2003) N induces a functor on simplicial rings,and is part of a Quillen equivalence,

s Rings 'QE DGA+ and Ho(s Rings) ∼= Ho(DGA+)

Page 20: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Counter-examples and Examples

I There are examples of model categories C,D withHo(C) ∼= Ho(D), but there is no Quillen pair inducing thisequivalence. So,

C 6'QE D.

I (N, Γ) form a Quillen pair and a Quillen equivalence

sAb 'QE ch+ and Ho(sAb) ∼= Ho(ch+)

I (Schwede-S. 2003) N induces a functor on simplicial rings,and is part of a Quillen equivalence,

s Rings 'QE DGA+ and Ho(s Rings) ∼= Ho(DGA+)

Page 21: An Introduction to Model Categoriesbshipley/Intro.Model.Cat.Talk2.pdfHomotopy Category, Quillen Pair, Quillen Equivalence IThe homotopy category of a model category (C;W) is de ned

Counter-examples and Examples

I There are examples of model categories C,D withHo(C) ∼= Ho(D), but there is no Quillen pair inducing thisequivalence. So,

C 6'QE D.

I (N, Γ) form a Quillen pair and a Quillen equivalence

sAb 'QE ch+ and Ho(sAb) ∼= Ho(ch+)

I (Schwede-S. 2003) N induces a functor on simplicial rings,and is part of a Quillen equivalence,

s Rings 'QE DGA+ and Ho(s Rings) ∼= Ho(DGA+)