An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%)...

36
An Analysis of the Maximum Drawdown Risk Measure Malik Magdon-Ismail (RPI) May 6, 2004. Joint work with: Amir Atiya (Cairo University) Amrit Pratap(Caltech) Yaser Abu-Mostafa(Caltech)

Transcript of An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%)...

Page 1: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

An Analysis of the Maximum Drawdown

Risk Measure

Malik Magdon-Ismail (RPI)

May 6, 2004.

Joint work with:

Amir Atiya (Cairo University)

Amrit Pratap(Caltech)

Yaser Abu-Mostafa(Caltech)

Page 2: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Motivation

1

Page 3: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Example

Fund µ(%) σ(%) max. DD(%) T (yrs)

Π1 25 10 −5 1

Π2 30 10 −712 1.5

Π3 25 12.5 −813 2

Calmar Ratio =Return over [0, T ]

max. DD over [0, T ]

Sterling Ratio =Return over [0, T ]

max. DD over [0, T ] − 10%

Which fund is best?

2

Page 4: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

The Complication

• µ and σ are annualized. The max. drawdown is computed over a

given time period.

• Problem: funds have statistics over different length time intervals.

How do we annualize MDD?

Why?

3

Page 5: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Common Practice

Compare funds over T = 3 yrs.

Artificial:

– Wasteful of useful data.

– 3 years data may not be available.

– Easily available data does not generally quote the MDD for 3 years.

4

Page 6: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

√T -Rule for Sharpe Ratio

Sharpe Ratio =µ(annualized)

σ(annualized)

µτ

στ

}

over time periods of size τ

µ(annualized) = µτ · 1τ

σ(annualized) = στ ·√

1

τ

Sharpe Ratio =µτ

στ√

τ

5

Page 7: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Similar scaling laws for Sterling-type Ratios?

Part I:Analysis of the Maximum Drawdown.

Part II:Application to Scaling Laws.

6

Page 8: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Part I:

Analysis of Maximum Drawdown

7

Page 9: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

The Drawdown (DD)

The DD (current loss) is the loss from the peak to the current value.

X(t) is the cumulative return curve.

DD(T)

X(t)

Tt

DD(T) = sups∈[0,T ]

X(s) − X(T)

8

Page 10: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Distribution of DD(T )

• Since DD(T) = max over [0, T ]−X(T), the full distribution of DD(T)

can be obtained from the joint distribution of the max and the close.

• Joint distribution can be obtained in closed form for various stochastic

processes (see for example [Karatzas and Shreve, 1997])

9

Page 11: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

The Maximum Drawdown (MDD)

The MDD is the maximum loss incurred from a peak to a bottom.

t

X(t)

MDD(T)

T

MDD(T) = supt∈[0,T ]

DD(t)

– DD is an extremum.

– MDD is an extremum of an extremum.

10

Page 12: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Sampling of Prior Work

– Previous work on the the MDD is mostly empirical or Monte-Carlo.

• [Acar and James; 1997]

• [Sornette; 2002]

• [Burghardt, Duncan and Liu; 2003]

• [Harding, Nakou and Nejjar; 2003]

• [Chekhlov, Uryasev and Zabarankin; 2003]

– The only analytical approach is for a Brownian motion with zero drift,

[Douady, Shiryaev and Yor; 2000].

11

Page 13: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Setup

X(t) is an (arithmetic) Brownian motion:

dX(t) = µdt + σdW (t) 0 ≤ t ≤ T

µ = average return per unit time (drift)

σ = std. dev. of the returns per unit time (volatility)

dW (t) = Wiener increment (shocks)

Note: If the fund S(t) follows a geometric Brownian motion, then the

cumulative return sequence follows a Brownian motion.

We would like to study MDD(µ, σ, T).

12

Page 14: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

DD(t) is a Reflected Brownian Motion

Drawdown at time t is a stochastic process.

X(t)

t t + ∆

DD(t)

t t + ∆

DD(t) is reflecting at 0, i.e., DD(t) is a reflected Brownian motion.

dDD(t) =

−dX(t) DD(t) > 0

max{

0,−dX(t)}

DD(t) = 0.

13

Page 15: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Maximum of a Reflected Brownian Motion

MDD(T) = supt∈[0,T ]

DD(t)

Reflecting Barrier

Absorbing Barrierh

tT

DD(t) τ=stopping time

fτ(t, h|µ, σ)=stopping time density

[Domine; 1996]

GH(h|µ, σ, T) = P [MDD(µ, σ, T) ≥ h] =T∫

0dt fτ(t, h| − µ, σ)

[Magdon-Ismail, Atiya, Pratap and Abu-Mostafa; 2004]

14

Page 16: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Moments of GH

E[MDD(µ, σ, T)] =

∫ ∞

0dh GH(h|µ, σ, T)

15

Page 17: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Expected MDD(µ, σ, T )

Theorem: E[MDD(µ, σ, T)] =

2σ2

µQp

(

µ2T2σ2

)

µ > 0

√π2σ

√T µ = 0

2σ2

µQn

(

µ2T2σ2

)

µ < 0

Qp and Qn are “universal” functions.

– Only need to be computed once!

16

Page 18: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

The Universal Qp and Qn

Bad news: Qp and Qn are integral series:

Qp(x) =

∞∫

0

du

e−u

∞∑

n=1

sin3(θn)

(

1 − e− x

cos2(θn)

)

θn − cos(θn)sin(θn)+ e

− u

tanh(u)sinh(u)

(

1 − e− x

cosh2(u)

)

θn are positive eigen solutions of tan(θn) = θnu.

Qn(x) = −∞∫

0

du eu∞∑

n=1

sin3(θn)

(

1−e− x

cos2(θn)

)

θn−cos(θn)sin(θn)

θn are positive eigen solutions of tan(θn) = −θnu.

Good news: Only have to be computed once.

17

Page 19: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

More Good News: Asymptotic Behavior

Most trading desks are interested in the long term.

Theorem:

E[MDD]T→∞−→

σ2

µ

(

0.63519 + 12 logT + log µ

σ

)

µ > 0

√π2σ

√T µ = 0

µT + σ2

µµ < 0

Phase Transitions: Three different types of behavior:

logT,√

T , T

depending on the regime of µ.

18

Page 20: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Behavior of QMDD(x)

0 1 2 3 4 50

1

2

3

4

5

6

Comparison of QMDD

(x) for Different µ

x

Q(x

)

µ<0

µ=0

µ>0

http://www.cs.rpi.edu/∼magdon/data/Qfunctions.html

19

Page 21: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Some Useful Statistics

E[MDD]σ

Expected maximum drawdown per unit volatility

Shrp = µσ

Sharpe ratio of expected performance

Clmr = µTE[MDD]

Calmar ratio of expected performance

From now on, µ > 0.

20

Page 22: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

MDD vs. Shrp

0 1 2 3 40.5

0.75

1

1.25

1.5

1.75

2

E(MDD) Per Unit σ Versus Sharpe Ratio (µ/σ)

Sharpe Ratio (µ/σ)

E(M

DD

)/σ

T=1

T=2

T=3

E[MDD]

σ=

2Qp

(T2Shrp2

)

Shrp

T→∞−→ 0.63519 + 0.5 logT + log Shrp

Shrp

21

Page 23: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Calmar vs. Sharpe

0 2 4 6 8 100

1

2

3

4

5

6

7

8Scaling of Calmar Ratio with Time

Time (Years)

Cal

mar

Rat

io

Shrp=0.5

Shrp=1

Shrp=1.5

0 1 2 3 40

2

4

6

8

10

12

14

Calmar Ratio Versus the Sharpe Ratio

Sharpe Ratio

Cal

mar

Rat

io

T=1

T=2

T=3

Clmr =T2Shrp2

Qp

(T2Shrp2

)T→∞−→ TShrp2

0.63519 + 0.5 logT + log Shrp

Note: Clmr is monotonic in Shrp.

22

Page 24: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Part II:

Scaling Laws

23

Page 25: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Recap

Calmar(T) =Return over [0, T ]

MDD over [0, T ]≈ µT

E[MDD]= Clmr

Given two funds,

Π1 : µ1, σ1, T1, MDD1, Clmr1 = µ1T1MDD1

.

Π2 : µ2, σ2, T2, MDD2, Clmr2 = µ2T2MDD2

.

How to compare Clmr1 and Clmr2?

24

Page 26: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Normalized Calmar Ratio I

Normalize the ratios to a reference time τ , for example τ = 1 yr.

We know how to scale return over [0, T1],

µ1T1 −→ µ1τ = µ1T1 · τ

T1

We can scale MDD([0, T1]) → MDD([0, τ ]) using proportion,

E[MDD([0, τ ])]

E[MDD([0, T1])]=

MDD([0, τ ])

MDD([0, T1])

25

Page 27: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Normalized Calmar Ratio II

Calmar1(τ) =return([0, τ ])

MDD([0, τ ])

=µ1T1

MDD([0, T1])︸ ︷︷ ︸

Calmar1(T1)

· τ

T1· E[MDD([0, T1])]

E[MDD([0, τ ])]︸ ︷︷ ︸

γτ

Calmar1(τ) = γτ(T1, Shrp1)×Calmar1(T1),

γτ(T1, Shrp1) =

1T1

Qp(T12 Shrp21)

1τQp(

τ2Shrp21)

26

Page 28: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Example – Revisited

Fund µ(%) σ(%) max. DD(%) T (yrs) Calmar Calmar

Π1 25 10 −5 1 5 5

Π2 30 10 −712 1.5 6 4.41

Π3 25 12.5 −813 2 6 3.62

(normalized to τ = 1 yr.)

Π1 > Π2 > Π3

27

Page 29: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

τ-Relative Strength

Fix a reference time τ .

βτ(Π1|Π2) =Calmar1(τ)

Calmar2(τ).

– Relative normalized Calmar ratio of Π1 with respect to Π2.

– May depend on τ .

28

Page 30: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Relative Strength

Consider the long horizon, τ → ∞,

β(Π1|Π2) = limτ→∞βτ(Π1|Π2)

– The limit exists.

relative strength = β(Π1|Π2) =Calmar1(T1)

Calmar2(T2)×

1T1

Qp(T12 Shrp21)

1T2

Qp(T22 Shrp22)

Π1 � Π2 ⇐⇒ β(Π1|Π2) ≥ 1

29

Page 31: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Example – Re-Revisited

Fund µ(%) σ(%) max. DD(%) T (yrs) β

Π1 25 10 −5 1 1.00

Π2 30 10 −712 1.5 0.97

Π3 25 12.5 −813 2 0.64

(relative strengths w.r.t Π1.)

Π1 > Π2 > Π3

30

Page 32: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Properties of Relative Strength

Complete: β(Π1|Π2) = 1β(Π2|Π1)

Π1 � Π2 or Π2 � Π1

Transitivity: β(Π1|Π3) = β(Π1|Π2)β(Π2|Π3)

Π1 � Π2 and Π2 � Π3 =⇒ Π1 � Π3

Independent of Reference instrument: β(Π1|Π2) =β(Π1|Π3)β(Π2|Π3)

β(Π1|Π3) ≥ β(Π2|Π3) =⇒ Π1 � Π2

i.e., the relative strength defines a total order.

31

Page 33: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Real Data∗

Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β

S&P500 10.04 15.48 24.25 46.28 5.261 44.56 0.6104 1FTSE100 7.01 16.66 19.83 48.52 2.865 55.54 0.4395 0.5003NASDAQ 11.20 24.38 19.42 75.04 2.899 77.87 0.4402 0.5407

DCM 15.65 5.78 3.08 3.11 15.50 4.770 6.541 27.76NLT 3.35 16.03 3.08 25.40 0.4062 31.35 0.2202 0.1331OIC 17.19 4.52 1.16 0.42 47.48 2.493 42.31 212.0TGF 8.48 9.83 4.58 8.11 4.789 15.84 1.752 3.589

DCM=Diamond Capital Management;NLT=Non-Linear Technologies;OIC=Olsen Investment Corporation;TGF=Tradewinds Global Fund.

– Normalized Calmar ratio is to τ = 1 yr.

– Relative strength index β is computed w.r.t. S&P500.

∗International Advisory Services Group http://iasg.pertrac2000.com/mainframe.asp

32

Page 34: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Discussion

1. Studied MDD for a Brownian motion.

– geometric Brownian?

2. We now have scaling laws for MDD and Sterling-type ratios.

3. Portfolio opt. to maximize Calmar?

Since Clmr is monotonic in Shrp, optimization of

Shrp implies optimization of Clmr.

Advertisement:

[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004]

[Magdon-Ismail, Atiya; 2004 submitted]

http://www.cs.rpi.edu/∼magdon

33

Page 35: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

Thank You!

Advertisement:

[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004]

[Magdon-Ismail, Atiya; 2004 submitted]

http://www.cs.rpi.edu/∼magdon

34

Page 36: An Analysis of the Maximum Drawdown Risk Measuremagdon/talks/mdd_NYU04.pdfReal Data∗ Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β S&P500 10.04 15.48 24.25 46.28 5.261 44.56

References

[1] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1997.

[2] E. Acar and S. James, Maximum loss and maximum drawdown in financial markets. Int.Conference on Forecasting Financial Markets, London, UK, 1997.

[3] D. Sornette, Why Do Stock Markets Crash: Critical Events in Complex Financial Systems.Princeton University Press, 2002.

[4] Burghardt, G., Duncan, R. and L. Liu, Deciphering drawdown. Risk magazine, Risk man-agement for investors, September, S16-S20, 2003.

[5] D. Harding, G. Nakou, and A. Nejjar, The pros and cons of drawdown as a statisticalmeasure for risk in investments. AIMA Journal, pp. 16-17, April 2003.

[6] Chekhlov, A., Uryasev, S., and M. Zabarankin, Drawdown Measure in Portfolio Optimiza-tion. Research Report 2003-15. ISE Dept., University of Florida, September 2003.

[7] R. Douady, A. Shiryaev, and M. Yor, On the probability characteristics of downfalls in astandard Brownian motion. SIAM, Theory Probability Appl., Vol 44, pp. 29-38, 2000.

[8] M. Domine First passage time distribution of a Wiener process with drift concerning twoelastic barries. Journal of Applied Probability, DD:164–175, 1996.

[9] M. Magdon-Ismail, A. Atiya, A. Pratap and Y. Abu-Mostafa, On the Maximum Drawdownof a Brownian Motion. Journal of Applied Probability, Volume 41, Number 1, 2004.

35