All-optical fiber-optics networks

25
All-optical fiber-optics networks

Transcript of All-optical fiber-optics networks

All-optical fiber-optics networks

(c) Sergiusz Patela 2001 All-optical networks 2

A passive star based local optical WDM network

Passive star coupler

Unicast

Multicast

Workstation

(c) Sergiusz Patela 2001 All-optical networks 3

A wavelength routed wide-area WDM network

B

E

G

1

2

34

5

67

8

9

10

λ1

λ1

λ1

λ1

λ2

λ2

Photonics switching fabric

C

A

D

H

FAccess Station: contains tunable transmitters and receivers

Switch: contains photonics switch, amplifier, λ converter

(c) Sergiusz Patela 2001 All-optical networks 4

Diagram of passive optical network

λ2

λN

λ1, λ2,..., λNλ1

sources receivers

Available installation topologies:• star• bus• tree

(c) Sergiusz Patela 2001 All-optical networks 5

Real installation topologies

Star coupler

Tx

Rx

Tx

Rx star

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rxbus

tree

(c) Sergiusz Patela 2001 All-optical networks 6

Classification of single hop optical networks

• FT - FR, fixed transmitter - fixed receiver• TT - FR, tunable transmitter - fixed receiver• FT - TR, fixed transmitter - fixed receiver• TT - TR, tunable transmitter, tunable receiver

Example description of network node:• FTiTTj - RFiTRj

• CC - FTiTTj - FRmTRn

{F - fixed | T - tunable, T - transmitter | R - receiver}CC - control-channel, information about planed connectioni - index indicates number of node transmitters/receivers

(c) Sergiusz Patela 2001 All-optical networks 7

Time-slot assignment (time multiplexing)

•3 workstations•1 channel

time is divided into 3 slots repeated in a cycle

channel no. t t+1 t+20 (1, 2) (1, 3) (2, 1)

1 (2, 3) (3, 1) (3, 2)

(c) Sergiusz Patela 2001 All-optical networks 8

Channel assignment, time and wavelength multiplexing (without control channel)

•3 workstations•2 channels

time is divided into 3 slots repeated in a cycle

channel no. t t+1 t+20 (1, 2) (1, 3) (2, 1)

1 (2, 3) (3, 1) (3, 2)

(c) Sergiusz Patela 2001 All-optical networks 9

Optical-signal distribution elements - classification

• Passive star

• Passive router

• Active switch

(c) Sergiusz Patela 2001 All-optical networks 10

Passive star4 x 4

λ1λ1

λ1λ1

λ4 λ4 λ4λ4

λ3

λ1, ..., λ4

Input fiber 1 Output fiber 1λ1, ..., λ4λ1

Input fiber 2 Output fiber 2λ2 λ1, ..., λ4

Input fiber 3 Output fiber 3λ1, ..., λ4

Input fiber 4 Output fiber 4λ4

N connections

(c) Sergiusz Patela 2001 All-optical networks 11

Passive router

Input Output

λ2λ3λ4

λ2λ3

λ4λ1

λ1

λ1

λ2

λ3λ4λ2

λ3λ4

λ2λ3

λ4

λ1 11

22

33

44

Demux Mux

N2 connections

(c) Sergiusz Patela 2001 All-optical networks 12

Router - location in OSI model

7 Application 6 Presentation 5 Sesion 4 Transport 3 Network Router working area

2 Data link Logical Link Control Media Access Control

________________ Bridge working area

1 Physical

(c) Sergiusz Patela 2001 All-optical networks 13

Active switch4 x 4

λ3

λ4 λ1, ..., λ4

switchλ1

switchλ2

switchλ3

switchλ4

Input fib. 1 Output fib. 1

λ1, ..., λ4λ1

Input fib. 2 Output fib. 2λ2 λ1, ..., λ4

Input fib. 3 Output fib. 3λ1, ..., λ4

Input fib. 4 Output fib. 4

MuxDemux

WRS =Wavelength Routing Switch (or Wavelenght Selecting Crosconnect - WSXC)

(c) Sergiusz Patela 2001 All-optical networks 14

Examples of all optical LAN networks and protocols (1)

1. LAMBDANET - M. S. Goodman i in., „The LAMBDANET multiwavelength

network: Architecture, applications, and demonstrations” IEEE Journ. on Selected Areas

in Communicatrions, vol. 8, pp. 995-1004, 1990

2. Rainbow - N. R. Dono i in. „A wavelength division multiple access network for

computer communication” IEEE Journ. on Selected Areas in Communications, vol. 8, pp.

983-993

3. Fiber-Optic Crossconnect (FOX) - E. Arthurs i in. „Multiwavelength optical

crossconnect for parallel-processing computers” Electronic Letters, vol. 24, pp. 119-120,

1986

4. STARNET - T. K. Chiang i in. „”Implementation of STARNET: A WDM computer

connumications network”, IEEE Journ. on Selected Areas in Communications, vol. 14,

pp. 824-839, 1996

5. HYPASS - E. Arthurs i in. „Hypass: An optoelectronic hybrid packet-switching

system” IEEE Journ. on Selected Areas in Communications, vo. 6, pp. 1500-1510, Dec.

1988

(c) Sergiusz Patela 2001 All-optical networks 15

Examples of all optical LAN networks and protocols(2)

6. Assignment protocols - I. Chlamtac i in. „Channel allocation protocols in frequency-

time controlled high speed networks, ” IEEE Transactions on Communications, vol. 36,

pp. 430-440, 1988

7. Two slotted ALOHA protocol - P. W. Dowd „Random access protocols for high

speed interprocessor communication based on and optical passive star topology,

IEEE/OSA Journ. of Lightwave Technology, vol 9, pp. 799-808

8. Partial Random Access Protocol - I. M. I. Habbab i in „Protocols for very high speed

optical fiber local area networks using a passive star topology” IEEE/OSA Journ. of

Lightwave Technol., vol. LT-5, pp. 1782-1794, 1987

9. AMTRAC - I. Chlamtac i in. „Towards alternative high speed network concepts: the

swift architecture” IEEE transactions on Communications, vo. 38, pp. 431-439, 1990

(c) Sergiusz Patela 2001 All-optical networks 16

LAMBDANET

Network name: LAMBDANETCompany: BellcoreNetwork type: FT - FRM

Every workstation equipped with a laser of fixed wavelength and M receivers. Realized network parameters:• number of nodes - 18• transmission speed - 2 Gb/s• range - 57,5 km

Advantages - simplicityDisadvantages - every node has to be equipped with N sources (integrated optoelectronics technology can solve the problem)

M. S. Goodman i in., „The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations” IEEE Journ. on Selected Areas in Communicatrions, vol. 8, pp. 995-1004, 1990

(c) Sergiusz Patela 2001 All-optical networks 17

Lambdanet - network diagram

Node 1TX

Node NTX

λ1

λ1

λ1 ...N

λ1 ...N Node N

Node 1

WDM

DEMUX

RX1

RX2Star Coupler

(c) Sergiusz Patela 2001 All-optical networks 18

Rainbow

Network name: Rainbow I (1990), Rainbow II (1996)Company: IBMNetwork type : FT - TRNetwork type: MAN

Every workstation is equipped in one laser of fixed wavelength and a tunable receiver. Network parameters:• Number of nodes - 32 IBM PS/2• Transmission speed - 200 Mb/s• Range - 10 - 20 km

Rainbow I: N. R. Dono i in. „A wavelength division multiple access network for computer communication” IEEE Journ. on Selected Areas in Communications, vol. 8, pp. 983-993, Aug. 1990

Rainbow II: E. Hall i in. „The Rainbow-II gabit optical network” IEEE Journ. on Selected Areas in Communications, vol. 14, pp. 814-823, June 1996

(c) Sergiusz Patela 2001 All-optical networks 19

Rainbow network - topology

Node 2

PCS

λ1

λNλ2

λ3Node 1 Node 3

Node N

transmitter (Tx)

receiver (Rx)

fixed

tunable

NIU

processor E OPSC - Passive Star CouplerNIU - Network Interface UnitE - Electronic interfaceO - Optical interface

(c) Sergiusz Patela 2001 All-optical networks 20

FOX

Network name: FOX (Fiber Optic Crossconnect), 1986Network type: TT - FR Designation: Computers with parallel data processing

Tunable lasers are used as a sources. (tuning time below a few ns – packet switching)

Configuration: two passive stars, one for the data send from the processors into memory blocks, other for the data flowing in the opposite direction.

(c) Sergiusz Patela 2001 All-optical networks 21

STARNET

Network name: STARNETNetwork type:, FT - FR Designation: WDM LANNotes: contains two virtual subnets

Every node contains one transmitter and two receivers (working on the same wavelengths, but with different speeds) STARNET networks is composed of two virtual subnets:• fast (2,5 GB/s) network with packet switching• slower control subnet ( 125 MB/s FDDI compatible)Transmitters in every node generate data for both subnets. „Slow“ detector in each node is tuned to listen the previous node transmitter - this way a logical ring is created (FDDI type)

(c) Sergiusz Patela 2001 All-optical networks 22

Single-hop network classification (1)

WDM local lightwave networks

Multihop

Arbitrary topology

Single-hop

Linear structures (attempt-and-defer)

No control signal

Built systems Proposals

With control signal

AMTRAC (TT-FR)

MultichannelProbabilistic Scheduling (TT-FR)

...

...

...

...

...

...

LAMBDANET

RAINBOW

FOX

HYPASS, BHYPASS, STAR-TRACK, PLL i inne

...

...

...

...

...

(c) Sergiusz Patela 2001 All-optical networks 23

Single-hop network classification (2)Experimental systems Proposals Nets with control channel

Partial Random Access (CC-TT-TR)

Improved Random Access (CC-TT-TR)

Binominal Throughput, Nonmonotonic Delay

Extended Slotted ALOHA and Reservation ALOHA (CC-TT-TR)

(RCA) Receiver Collision Avoidance Protocol (CC-TT-TR)

Dynamic Time-Wavelength Division Multiple Access (DTWDMA) (CC-FT2-FRTR)

TDMA/N-Server (CC-TT-FRTR)

LAMBDANET (receiver array: FT-FRM)

RAINBOW (in-bandrceiver polling: FT-TR)

FOX (TT-FR)

HYPASS, BHYPASS, STAR-TRACK, PLL and others

Fixed Assignment (TT-TR)

Partial Fixed Assignment (TT-TR)

Random Access Protocols I (TT-FR)

Random Access Protocols II (TT-FRx)

PAC nets (TT-FR)

PAC - Protection Against Collision

(c) Sergiusz Patela 2001 All-optical networks 24

Summary

• The optimal solution for building an all-optical „local“ area network is a passive star topology, with single-hop connection.

• WDM technology renders possible full utilization of fiber optic bandwidth.

(c) Sergiusz Patela 2001 All-optical networks 26

Literature

B. Mukherjee, Optical Communication Networks, McGraw-Hill 1997