Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental...

55
Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016

Transcript of Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental...

Page 1: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Aeroelasticity & Experimental Aerodynamics (AERO0032-1)

Lecture 7 Galloping

T. Andrianne

2015-2016

Page 2: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Motion of a linear structure in a subsonic, steady flow Described by :

Dimensional analysis (from L6)

1

AD

Ur

mr

Re

ηS

Source FIV1977

VIV (Lecture 6) Galloping

→ AD = F Ur, Re,mr,ηS( ) → UC

r,AD( ) = F Re,mr,ηS( )

•  Reduced velocity

•  Dimensionless amplitude

•  Mass ratio

•  Reynolds number

•  Damping factor

Page 3: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Today’s lecture

2

Galloping : definition and examples Transverse galloping

Mechanism of galloping Non-linear aspects Flow analysis

Torsional galloping Conjoint galloping and VIV

Page 4: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Today’s lecture

3

Galloping : definition and examples Transverse galloping

Mechanism of galloping Non-linear aspects Flow analysis

Torsional galloping Conjoint galloping and VIV

Page 5: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

U∞ !y

U∞ − !y

Vrel

On the fluid side U∞ Force

Vrel Force !y

Fy

Non-symmetric geometry (e.g. iced conductor)

à Velocity and Force in the same direction à Energy transfer from the flow to the structure

Circular Cylinder

à Velocity and Force in OPPOSITE directions

Galloping vs. VIV

4

U∞ !y

U∞ − !y

Vrel

On the fluid side U∞

Force

Vrel

Force

!y Fy

Page 6: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Galloping

5

GALLOPING = velocity-depend, damping controlled instability à transverse or torsional motions

Davison (1930) : “dancing vibrations” Parkinson (1971): “galloping horse”

•  Transverse galloping

•  Torsional galloping (Torsional Flutter)

•  Quartering wind

•  Stall Flutter

U∞ !y

U∞

Longjiang Bridge

α

α

U∞

!y

Page 7: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Galloping examples

6

Page 8: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Galloping examples

7

Page 9: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Today’s lecture

8

Galloping : definition and examples Transverse galloping

Mechanism of galloping Non-linear aspects Flow analysis

Torsional galloping Conjoint galloping and VIV

Page 10: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

DRAG  

LIFT  

Body free to oscillate around its static equilibrium

Mechanism of galloping

9

!yVrel  

α  Fx  

-­‐Fy  

y  x  

U∞  

U∞  

y  x  

Page 11: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

At a particular instant, the body velocity is à  Effective velocity Vrel at

Mechanism of galloping

10

!yVrel  

α  Fx  

-­‐Fy  

y  x  

U∞  

!y

α = tan−1 !yU∞

#

$%

&

'(

Quasi-steady assumption Meaning : The motion of the structure is slow compared to the motion of the fluid à Flow has time to adapted to the motion of the structure

à Lift and Drag in the course of oscillation are the same at each α as the value measured statically during wind tunnel experiments

Criterion: Large reduced velocity

Ur =U∞

fD

Page 12: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Quasi-steady assumption

11

Quasi-steady assumption à The motion of the structure is slow compared to the motion of the fluid

Criterion: Large reduced velocity

Ur =U∞

fD

Ur  =  10     Ur  =  3.3    

Page 13: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Quasi-steady assumption

12

Quasi-steady assumption à The motion of the structure is slow compared to the motion of the fluid

Criterion: Large reduced velocity

Ur =U∞

fD

What is the meaning of “Large” ?

Fung (1955) : “any disturbance experienced by the oscillating body at a certain point of its motion must be swept downstream sufficiently far, by the time the body comes back to that same point (one period later), of the disturbance to no longer affect the flow around the body”

U∞

D U∞

fn

Fung proposed : U∞/fn > 10 D à Ur =U∞

fnD>10

Page 14: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Quasi-steady assumption

13

Blevins (1977) : “the frequency of the shed vortices (= fVS from the Strouhal relation) must be at least twice as large as the oscillating frequency fn” à  fVS > 2 fn From Lecture 6 about VIV : fVS = St U∞ / D à St U∞ / D > 2 fn Ur = U∞/(fn D) > 2/St Assuming a Strouhal number St = 0.2 à Ur > 10 = idem Fung’s criterion

(despite different physical reasoning) Nakamura & Mizota (1975) : (for a square prism)

if not respected, interaction between VIV and galloping

Ur =U∞

fnD> 2 U∞

fnD( )cr

= critical reduced airspeed for VIV

Page 15: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

D

L

At a particular instant, the body velocity is à  Effective velocity Vrel at

Interested in the transverse force : Fy

Stability problem à interested in the variation of Fy with α

Mechanism of galloping

14

!yVrel

α Fx

-Fy

y x

U∞

!y

α = tan−1 !yU∞

#

$%

&

'(

Fy = −Lcosα −Dsinα

α

α

dFydα

< 0 Meaning : dα > 0 à dFy < 0, i.e. increasing motion leads to decreasing force à STABLE system

> 0 Meaning : dα > 0 à dFy > 0, i.e. increasing motion leads to increasing force à UNSTABLE system

Page 16: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Using From wind tunnel testing : measurement of Lift and Drag vs α

Mechanism of galloping

15

dFydα

=ddα

−Lcosα −Dsinα( ) = − dLdα

cosα + Lsinα − dDdα

sinα −Dcosα

= 12ρU∞

2S CL −dCD

dα#

$%

&

'(sinα + −

dCL

dα−CD

#

$%

&

'(cosα

)

*+

,

-.

Fy = −Lcosα −Dsinα

Around 0° CL = 0 dCL/dα ~ -5 CD ~ 2.2 dCD/dα ~ 0

dFydα

≈ −12ρU∞

2S dCL

dα+CD

$

%&

'

()cosα

≈ − 12ρU∞

2S dCL

dα+CD

$

%&

'

()

~ 1 for small α, i.e. !y

à Instability criterion (Den Hartog’s criterion) : dFydα

> 0→ dCL

dα+CD < 0

L = 12ρU∞

2SCL

D =12ρU∞

2SCD

Source : NAKAMURA1975

Page 17: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Back to the single degree of freedom system :

Mechanism of galloping

16

U∞

y

-Fy m!!y+ c!y+ ky = Fy = −Lcosα −Dsinα ≈ −L −Dα

≈ − L0 +dLdα

α#

$%

&

'(− D0 +

dDdα

α#

$%

&

'(α

≈ −L0 −dLdα

+D0#

$%

&

'(α

≈ −L − dLdα

+D#

$%

&

'(!yU∞

m!!y+ c+ dLdα

+D!

"#

$

%&1U∞

(

)*

+

,- !y+ ky = −L

= Total damping

= Aerodynamic damping

= Structural damping

= 0 around the equilibrium position

Taylor expansion

α <<

Neglecting α2 terms

m

k c

Page 18: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

In terms of aerodynamic force coefficients :

Mechanism of galloping

17

m!!y+ c+ dLdα

+D!

"#

$

%&1U∞

(

)*

+

,- !y+ ky = 0

L = 12ρU∞

2SCL

D =12ρU∞

2SCD

m!!y+ c+ dCL

dα+CD

!

"#

$

%&12ρU∞S

(

)*

+

,- !y+ ky = 0

Galloping occurs when total damping vanishes at the critical galloping velocity : à Den Hartog criterion is a sufficient condition (but not necessary, see later)

Galloping = velocity-depend, damping controlled instability

U∞C

c+ dCL

dα+CD

!

"#

$

%&12ρU∞

CS = 0→U∞C = −

2cdCL

dα+CD

!

"#

$

%&ρS

Page 19: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

In terms of non-dimensional quantities :

Mechanism of galloping

18

m!!y+ c+ dCL

dα+CD

!

"#

$

%&12ρU∞S

(

)*

+

,- !y+ ky = 0

Assuming lightly damped system : δ= 2 πζ (δ = log decrement)

→UrC =

U∞C

fnh= −

4dCL

dα+CD

$

%&

'

()

mρh2

δ

ωn =km

ζ =c

2mωn

!!y+ 2ωn ζ +dCL

dα+CD

!

"#

$

%&ρU∞h4mωn

(

)*

+

,- !y+ω 2

ny = 0

→U∞C = −

4mζωn

ρh dCL

dα+CD

$

%&

'

()

Mass ratio

mρh2

δ = mass-damping parameter

→ UCr,AD( ) = F Re,mr,ηS( ) (similarly to VIV phenomenon)

Page 20: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Today’s lecture

19

Galloping : definition and examples Transverse galloping

Mechanism of galloping Non-linear aspects Flow analysis

Torsional galloping Conjoint galloping and VIV

Page 21: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Until here : critical airspeed based on a linear approach

à  How to obtain the galloping amplitude ?

à  Need for an expression of the full aerodynamic forces (not only α<< )

Non-linear aspects

20

→ UCr,AD( ) = F Re,mr,ηS( )`

Fy = −Lcosα −Dsinα→CFy = −CL cosα −CD sinα

CL and CD both α dependent

Source : NAKAMURA1975 Source : Parkinson1964

CFy ≈dCFy

dαα +O(α 2 )

→CFy =CFy α,α2,α 3,α 4,α 5,...( )

Page 22: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Equation of motion : Using appropriate non-dimensional variables :

Non-linear aspects

21

m!!y+ c!y+ ky = Fy =12ρU∞

2hCFy

→Y ''+ 2ζY '+Y = Fy = nU2CFy

Source : Parkinson1964

CFy = AY 'U!

"#

$

%&−B

Y 'U!

"#

$

%&3

+C Y 'U!

"#

$

%&5

−D Y 'U!

"#

$

%&7

o : Measured, statically in wind tunnel ----- : Polynomial fit

y =Yh, τ=ωt, U∞ =Uωh, n= ρh2

2m, ω 2 = k

ml, 2ζω= c

ml

Where A,B,C,D are fitting parameters A=2,69 B=168 C=6270 D=59900

Page 23: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Non linear equation of motion:

Non-linear aspects

22

Y ''+ 2ζY '+Y = Fy = nU2 A Y '

U!

"#

$

%&−B

Y 'U!

"#

$

%&3

+C Y 'U!

"#

$

%&5

−D Y 'U!

"#

$

%&7(

)**

+

,--

Source : Parkinson1964

Y ''+Y = nA U −2ζnA

"

#$

%

&'Y '−

BAU"

#$

%

&'Y '3+

CAU 3

"

#$

%

&'Y '5−

DAU 5

"

#$

%

&'Y '7

(

)*

+

,-

U0 =2ζnA

“A” must be positive

= Den Hartog’s criterion

CFy = AY 'U!

"#

$

%&−B

Y 'U!

"#

$

%&3

+C Y 'U!

"#

$

%&5

−D Y 'U!

"#

$

%&7

A =dCFy

d Y '/U( ) Y '/U=0=dCFy

dα α=0

A > 0→dCFy

dα> 0→ dCL

dα+CD < 0

Page 24: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Non linear equation of motion:

Non-linear aspects

23

Y ''+ 2ζY '+Y = Fy = nU2 A Y '

U!

"#

$

%&−B

Y 'U!

"#

$

%&3

+C Y 'U!

"#

$

%&5

−D Y 'U!

"#

$

%&7(

)**

+

,--

Source : Parkinson1964

Y ''+Y = nA U −2ζnA

"

#$

%

&'Y '−

BAU"

#$

%

&'Y '3+

CAU 3

"

#$

%

&'Y '5−

DAU 5

"

#$

%

&'Y '7

(

)*

+

,-

U < Uc = U0 à  Stable system U0 < U < U1 à One stable and one unstable limit cycles

Page 25: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Non linear equation of motion:

Non-linear aspects

24

Y ''+ 2ζY '+Y = Fy = nU2 A Y '

U!

"#

$

%&−B

Y 'U!

"#

$

%&3

+C Y 'U!

"#

$

%&5

−D Y 'U!

"#

$

%&7(

)**

+

,--

Source : Parkinson1964

Y ''+Y = nA U −2ζnA

"

#$

%

&'Y '−

BAU"

#$

%

&'Y '3+

CAU 3

"

#$

%

&'Y '5−

DAU 5

"

#$

%

&'Y '7

(

)*

+

,-

U1 < U < U2 à  2 stable branches and 2

unstable branches à  Hysteresis loop

U > U2 à One stable and one unstable limit cycles

Page 26: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Non-linear aspects

25

Source : Parkinson1964

Wind speed for VIV resonance nA2β

U =nA2β

12πSt

Comparison with experiments : four different damping values (β) à Universal galloping curve (Parkinson & Smith (1964))

Discrepancies for low damping (β=0.00107) x symbols

Reason : QS fails

NL QS model : à Critical airspeed ✔ à Amplitude ✔ à Hysteresis ✔

Page 27: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Non-linear aspects

26

Source : Parkinson1964

Universal galloping curve (Parkinson & Smith (1964)) Remember : the multiplicative factor can be

written :

nA2β

δ = 2πβ

mr =mρh2

n = ρh2

2m

"

#

$$$

%

$$$

β =δ2π

n = 1mr

"

#

$$

%

$$

nA2β

=πA2mrδ

=πASc

Sc = Scruton number à  Galloping is driven by :

•  Aerodynamic characteristics : A •  Scruton number

Page 28: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Today’s lecture

Galloping : definition and examples Transverse galloping

Mechanism of galloping Non-linear aspects Flow analysis

Torsional galloping Conjoint galloping and VIV

27

Page 29: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Flow analysis

28

Effect of afterbody on galloping = part of the body downstream of the points of separation

dCFy

dα> 0

Den Hartog

Source : FSI2011

h

d

Turbulence changes everything !

Page 30: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Flow analysis

29

dCFy

dα> 0

Den  Hartog  

Source  :  FSI2011    

h  

d  

Effect of afterbody on galloping = part of the body downstream of the points of separation

Page 31: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Source  :  FSI2011    

Flow analysis

30

In the absence of after-body à No galloping Long after body à No galloping

h  

d  

104  <  Re  <105  

Page 32: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Flow analysis

31

Effect of turbulence

Increasing Tu Interference with TE cornerì Earlier re-attachment (d/h)max î

Page 33: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Flow analysis

32

Source : PARKINSON1971

Static Small Oscill.

Large Oscill.

High suction peak Low suction peak

Source : Parkinson1964

6° 13° 0°

Inflection Points in the CFy curve : flow re-attachment

Page 34: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Flow analysis

33

Den Hartog criterion is a sufficient condition (not necessary)

Inflection Points in the Cfy curve à  Responsible for the hysteresis behaviour

Page 35: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Today’s lecture

Galloping : definition and examples Transverse galloping

Mechanism of galloping Non-linear aspects Flow analysis

Torsional galloping Conjoint galloping and VIV

34

Page 36: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping or Torsional flutter, around an hinge point (rotation center)

Torsional galloping

35

Bridge deck section in the Ulg’s wind tunnel

Page 37: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Much more difficult than transverse galloping ! •  Fluid forces depend on both the angle and angular velocity •  Phasing between fluid forces and motion depends on the flow

velocity •  The relative flow velocity, Vrel(x) varies from point to point

à  No equivalent static configuration

Torsional galloping

36

Vrel  

α  U∞  

Vrel(x)  

α   U∞  

!y

x  

!θ!y(x) = x !θ

Transverse galloping Torsional galloping

Page 38: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Define a reference radius rr à  Unique transverse velocity, representative of motion of the whole

body

à  Reference angle of attack α and relative velocity Vrel

Torsional galloping

37

U∞  

θ

M  

Rotation center

rr  

rr !θ

γ r

Page 39: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Reference angle of attack α Relative velocity Vrel

Torsional galloping

38

θ −α = tan−1 rr !θ sinγ rU∞ − rr !θ cosγ r

#

$%

&

'( Vrel

2 = rr !θ sinγ r( )2+ U∞ − rr !θ cosγ r( )

2

α ≈θ −rr !θ sinγ rU∞

≡θ −R !θU∞

R = rr sinγ r Vrel ≈U∞

for α <<

Source:FSI2011

Page 40: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Reference angle of attack α Relative velocity Vrel

The choice of rr is not obvious and γr is a function of θ à R=R(θ) à  α is a non-linear function of θ Origin of rr

¾ chord point in airfoil flutter analysis à Ok for attached flows … but not really for bluff body flows

Example of choice : - Rectangular section around the geometric center : R = d/2 à  α corresponds to the instantaneous angle at the leading edge

Torsional galloping

39

α ≡θ −R !θU∞

R = rr sinγ r

Vrel ≈U∞

U∞  

θ

Page 41: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

40

The equation of the torsional motion : J = mass moment of inertia c = torsional damping coefficient k = torsional stiffness coefficient

Similarly to the transverse galloping, Taylor expansion of CM

J !!θ + c !θ + kθ =M =12ρU∞

2h2CM

CM =CM α=0+dCM

dα α=0

α +...

!!θ + 2ζω + 12ρU∞Rh

2

JdCM

dα"

#$

%

&' !θ + ω 2 −

12ρU 2

∞Rh2

JdCM

dα"

#$

%

&'θ = 0

c = 2ζωJ

ω 2 = k / J

α ≡θ −R !θU∞

CM ≈dCM

dαθ −

R !θU∞

$

%&

'

()

Page 42: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

41

The equation of the torsional motion :

!!θ + 2ζω + 12ρU∞Rh

2

JdCM

dα"

#$

%

&' !θ + ω 2 −

12ρU 2

∞Rh2

JdCM

dα"

#$

%

&'θ = 0

Torsional galloping Static divergence

ω 2 −12ρU 2

∞Rh2

JdCM

dα= 0

→U∞ =ω 2

12ρRh2

JdCM

Condition : dCM

dα> 0

2ζω + 12ρU∞Rh

2

JdCM

dα= 0

→U∞ =−2ζω

12ρRh2

JdCM

Condition : dCM

dα< 0

Page 43: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

42

Slope of the torsional moment coefficient More elongated bodies à Higher and negative values of the slope

à More sensitive to torsional flutter

Source:FSI2011  

Page 44: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

43

Because of the flow complexity, QS is not adapted to model Torsional Flutter à  Need for more advanced Fluid-Structure analysis

Example : Tr-PIV on the upper surface of a rectangular cylinder (h/d=4)

Page 45: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

44

Example : DVM simulations of a rectangular cylinder (h/d=4) free to oscillate Stable response (i.e. below critical airspeed)

Page 46: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

45

Example : DVM simulations of a rectangular cylinder (h/d=4) free to oscillate Unstable response (i.e. above critical airspeed) : TORSIONAL GALLOPING

Page 47: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

46

Example : Torsional galloping around the vertical axis of a bridge deck

Page 48: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping

47

Example : Torsional galloping around the vertical axis of a bridge deck

Page 49: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Today’s lecture

Galloping : definition and examples Transverse galloping

Mechanism of galloping Non-linear aspects Flow analysis

Torsional galloping Conjoint galloping and VIV

48

Page 50: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Threshold for galloping : typically UG > 10 (quasi-steady assumption) Threshold for VIV : typically Uv ~ 1

But for low damping (ζ<<) and/or low-density structures (n>>) UG can decrease up to unity or even below à  Interaction between VIV and galloping

If Uv=UG à resulting oscillation amplitude higher than a single phenomenon prediction

Conjoint galloping and VIV

49

UG =2ζnA

UV =1

2πSt

Page 51: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Conjoint galloping and VIV

50

Famous example of conjoint galloping (torsional) and VIV (heaving) Tacoma Narrow bridge failure

Source:  Larsen2000  

Page 52: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Transversal (vertical) galloping = velocity dependent, damping controlled instability

à Can be modeled using Quasi-Steady theory (condition : Ur > 10) à Motion becomes an equivalent AOA :

LINEAR APPROACH

à Den Hartog criterion (pay attention to turbulence effects !)

à Estimate of the critical galloping velocity : NON LINEAR APPROACH à To complete the linear analysis

à Higher order polynomials for CFy

à Amplitude of the galloping oscillations

Summary

51

!y α = tan−1 !yU∞

#

$%

&

'(

U0 =2ζnA

Page 53: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Transversal (vertical) galloping NON LINEAR APPROACH à  Different types of galloping behaviour

à  Importance of after-body length (d/h) à  Den Hartog is sufficient for galloping

to occur but not necessary

Summary

52

Page 54: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

Torsional galloping à  Much more difficult than transversal galloping

–  Fluid forces depend on both the angle and angular velocity –  The relative flow velocity, Vrel(x) varies from point to point

à  No equivalent static configuration

à  Tentative to apply the QS theory = not efficient (flow separation) à Elongated bodies are more prone to torsional flutter Conjoint transverse galloping and VIV à  Potential combination of the two phenomena à Difficult to model / understand

Summary

53

Page 55: Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 . Motion of a linear

References

54

•  FIV1977 ‘Flow-induced vibration’, R.D. Blevins •  FSI2011 ‘Fluid-structure Interactions : cross-flow induced instabilities’, M.P. Paidoussis,

S. J. Price, E. de Langre. Cambridge University Press •  NAKAMURA1975 Nakamura, Y. and T. Mizota (1975). "Torsional flutter of rectangular

prisms." Journal of the engineering mechanics division, ASCE 101(EM2): 125-142. •  WASHIZU1978 Washizu, K. and A. Ohya (1978). "Aeroelastic instability of rectangular

cylinders in a heaving mode." Journal of Sound and Vibration 59(2): 195-210. •  PARKINSON1964 Parkinson, G. V. and J. D. Smith (1964). "The square prism as an

aeroelastic non-linear oscillator." The Quaterly Journal of Mechanics and Applied Mathematics 17: 225-239.

•  PARKINSON1971 Parkinson, G. V. 1971 Wind-induced instability of structures. Philosophical Transactions of the Royal Society (London) 269, 395–409.

•  LARSEN2000 A. Larsen, Aerodynamics of the Tacoma Narrows Bridge : 60 years later, Structural Engineering International. 10/2000; 10(4):243-248