Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental...
Embed Size (px)
Transcript of Aeroelasticity & Experimental Aerodynamics - ULiege€¦ · Aeroelasticity & Experimental...

Aeroelasticity & Experimental Aerodynamics (AERO0032-1)
Lecture 7 Galloping
T. Andrianne
2015-2016

Motion of a linear structure in a subsonic, steady flow Described by :
Dimensional analysis (from L6)
1
AD
Ur
mr
Re
ηS
Source FIV1977
VIV (Lecture 6) Galloping
→ AD = F Ur, Re,mr,ηS( ) → UC
r,AD( ) = F Re,mr,ηS( )
• Reduced velocity
• Dimensionless amplitude
• Mass ratio
• Reynolds number
• Damping factor

Today’s lecture
2
Galloping : definition and examples Transverse galloping
Mechanism of galloping Non-linear aspects Flow analysis
Torsional galloping Conjoint galloping and VIV

Today’s lecture
3
Galloping : definition and examples Transverse galloping
Mechanism of galloping Non-linear aspects Flow analysis
Torsional galloping Conjoint galloping and VIV

U∞ !y
U∞ − !y
Vrel
On the fluid side U∞ Force
Vrel Force !y
Fy
Non-symmetric geometry (e.g. iced conductor)
à Velocity and Force in the same direction à Energy transfer from the flow to the structure
Circular Cylinder
à Velocity and Force in OPPOSITE directions
Galloping vs. VIV
4
U∞ !y
U∞ − !y
Vrel
On the fluid side U∞
Force
Vrel
Force
!y Fy

Galloping
5
GALLOPING = velocity-depend, damping controlled instability à transverse or torsional motions
Davison (1930) : “dancing vibrations” Parkinson (1971): “galloping horse”
• Transverse galloping
• Torsional galloping (Torsional Flutter)
• Quartering wind
• Stall Flutter
U∞ !y
U∞
Longjiang Bridge
α
α
U∞
!y

Galloping examples
6

Galloping examples
7

Today’s lecture
8
Galloping : definition and examples Transverse galloping
Mechanism of galloping Non-linear aspects Flow analysis
Torsional galloping Conjoint galloping and VIV

DRAG
LIFT
Body free to oscillate around its static equilibrium
Mechanism of galloping
9
!yVrel
α Fx
-‐Fy
y x
U∞
U∞
y x

At a particular instant, the body velocity is à Effective velocity Vrel at
Mechanism of galloping
10
!yVrel
α Fx
-‐Fy
y x
U∞
!y
α = tan−1 !yU∞
#
$%
&
'(
Quasi-steady assumption Meaning : The motion of the structure is slow compared to the motion of the fluid à Flow has time to adapted to the motion of the structure
à Lift and Drag in the course of oscillation are the same at each α as the value measured statically during wind tunnel experiments
Criterion: Large reduced velocity
Ur =U∞
fD

Quasi-steady assumption
11
Quasi-steady assumption à The motion of the structure is slow compared to the motion of the fluid
Criterion: Large reduced velocity
Ur =U∞
fD
Ur = 10 Ur = 3.3

Quasi-steady assumption
12
Quasi-steady assumption à The motion of the structure is slow compared to the motion of the fluid
Criterion: Large reduced velocity
Ur =U∞
fD
What is the meaning of “Large” ?
Fung (1955) : “any disturbance experienced by the oscillating body at a certain point of its motion must be swept downstream sufficiently far, by the time the body comes back to that same point (one period later), of the disturbance to no longer affect the flow around the body”
U∞
D U∞
fn
Fung proposed : U∞/fn > 10 D à Ur =U∞
fnD>10

Quasi-steady assumption
13
Blevins (1977) : “the frequency of the shed vortices (= fVS from the Strouhal relation) must be at least twice as large as the oscillating frequency fn” à fVS > 2 fn From Lecture 6 about VIV : fVS = St U∞ / D à St U∞ / D > 2 fn Ur = U∞/(fn D) > 2/St Assuming a Strouhal number St = 0.2 à Ur > 10 = idem Fung’s criterion
(despite different physical reasoning) Nakamura & Mizota (1975) : (for a square prism)
if not respected, interaction between VIV and galloping
Ur =U∞
fnD> 2 U∞
fnD( )cr
= critical reduced airspeed for VIV

D
L
At a particular instant, the body velocity is à Effective velocity Vrel at
Interested in the transverse force : Fy
Stability problem à interested in the variation of Fy with α
Mechanism of galloping
14
!yVrel
α Fx
-Fy
y x
U∞
!y
α = tan−1 !yU∞
#
$%
&
'(
Fy = −Lcosα −Dsinα
α
α
dFydα
< 0 Meaning : dα > 0 à dFy < 0, i.e. increasing motion leads to decreasing force à STABLE system
> 0 Meaning : dα > 0 à dFy > 0, i.e. increasing motion leads to increasing force à UNSTABLE system

Using From wind tunnel testing : measurement of Lift and Drag vs α
Mechanism of galloping
15
dFydα
=ddα
−Lcosα −Dsinα( ) = − dLdα
cosα + Lsinα − dDdα
sinα −Dcosα
= 12ρU∞
2S CL −dCD
dα#
$%
&
'(sinα + −
dCL
dα−CD
#
$%
&
'(cosα
)
*+
,
-.
Fy = −Lcosα −Dsinα
Around 0° CL = 0 dCL/dα ~ -5 CD ~ 2.2 dCD/dα ~ 0
dFydα
≈ −12ρU∞
2S dCL
dα+CD
$
%&
'
()cosα
≈ − 12ρU∞
2S dCL
dα+CD
$
%&
'
()
~ 1 for small α, i.e. !y
à Instability criterion (Den Hartog’s criterion) : dFydα
> 0→ dCL
dα+CD < 0
L = 12ρU∞
2SCL
D =12ρU∞
2SCD
Source : NAKAMURA1975

Back to the single degree of freedom system :
Mechanism of galloping
16
U∞
y
-Fy m!!y+ c!y+ ky = Fy = −Lcosα −Dsinα ≈ −L −Dα
≈ − L0 +dLdα
α#
$%
&
'(− D0 +
dDdα
α#
$%
&
'(α
≈ −L0 −dLdα
+D0#
$%
&
'(α
≈ −L − dLdα
+D#
$%
&
'(!yU∞
m!!y+ c+ dLdα
+D!
"#
$
%&1U∞
(
)*
+
,- !y+ ky = −L
= Total damping
= Aerodynamic damping
= Structural damping
= 0 around the equilibrium position
Taylor expansion
α <<
Neglecting α2 terms
m
k c

In terms of aerodynamic force coefficients :
Mechanism of galloping
17
m!!y+ c+ dLdα
+D!
"#
$
%&1U∞
(
)*
+
,- !y+ ky = 0
L = 12ρU∞
2SCL
D =12ρU∞
2SCD
m!!y+ c+ dCL
dα+CD
!
"#
$
%&12ρU∞S
(
)*
+
,- !y+ ky = 0
Galloping occurs when total damping vanishes at the critical galloping velocity : à Den Hartog criterion is a sufficient condition (but not necessary, see later)
Galloping = velocity-depend, damping controlled instability
U∞C
c+ dCL
dα+CD
!
"#
$
%&12ρU∞
CS = 0→U∞C = −
2cdCL
dα+CD
!
"#
$
%&ρS

In terms of non-dimensional quantities :
Mechanism of galloping
18
m!!y+ c+ dCL
dα+CD
!
"#
$
%&12ρU∞S
(
)*
+
,- !y+ ky = 0
Assuming lightly damped system : δ= 2 πζ (δ = log decrement)
→UrC =
U∞C
fnh= −
4dCL
dα+CD
$
%&
'
()
mρh2
δ
ωn =km
ζ =c
2mωn
!!y+ 2ωn ζ +dCL
dα+CD
!
"#
$
%&ρU∞h4mωn
(
)*
+
,- !y+ω 2
ny = 0
→U∞C = −
4mζωn
ρh dCL
dα+CD
$
%&
'
()
Mass ratio
mρh2
δ = mass-damping parameter
→ UCr,AD( ) = F Re,mr,ηS( ) (similarly to VIV phenomenon)

Today’s lecture
19
Galloping : definition and examples Transverse galloping
Mechanism of galloping Non-linear aspects Flow analysis
Torsional galloping Conjoint galloping and VIV

Until here : critical airspeed based on a linear approach
à How to obtain the galloping amplitude ?
à Need for an expression of the full aerodynamic forces (not only α<< )
Non-linear aspects
20
→ UCr,AD( ) = F Re,mr,ηS( )`
Fy = −Lcosα −Dsinα→CFy = −CL cosα −CD sinα
CL and CD both α dependent
Source : NAKAMURA1975 Source : Parkinson1964
CFy ≈dCFy
dαα +O(α 2 )
→CFy =CFy α,α2,α 3,α 4,α 5,...( )

Equation of motion : Using appropriate non-dimensional variables :
Non-linear aspects
21
m!!y+ c!y+ ky = Fy =12ρU∞
2hCFy
→Y ''+ 2ζY '+Y = Fy = nU2CFy
Source : Parkinson1964
CFy = AY 'U!
"#
$
%&−B
Y 'U!
"#
$
%&3
+C Y 'U!
"#
$
%&5
−D Y 'U!
"#
$
%&7
o : Measured, statically in wind tunnel ----- : Polynomial fit
y =Yh, τ=ωt, U∞ =Uωh, n= ρh2
2m, ω 2 = k
ml, 2ζω= c
ml
Where A,B,C,D are fitting parameters A=2,69 B=168 C=6270 D=59900

Non linear equation of motion:
Non-linear aspects
22
Y ''+ 2ζY '+Y = Fy = nU2 A Y '
U!
"#
$
%&−B
Y 'U!
"#
$
%&3
+C Y 'U!
"#
$
%&5
−D Y 'U!
"#
$
%&7(
)**
+
,--
Source : Parkinson1964
Y ''+Y = nA U −2ζnA
"
#$
%
&'Y '−
BAU"
#$
%
&'Y '3+
CAU 3
"
#$
%
&'Y '5−
DAU 5
"
#$
%
&'Y '7
(
)*
+
,-
U0 =2ζnA
“A” must be positive
= Den Hartog’s criterion
CFy = AY 'U!
"#
$
%&−B
Y 'U!
"#
$
%&3
+C Y 'U!
"#
$
%&5
−D Y 'U!
"#
$
%&7
A =dCFy
d Y '/U( ) Y '/U=0=dCFy
dα α=0
A > 0→dCFy
dα> 0→ dCL
dα+CD < 0

Non linear equation of motion:
Non-linear aspects
23
Y ''+ 2ζY '+Y = Fy = nU2 A Y '
U!
"#
$
%&−B
Y 'U!
"#
$
%&3
+C Y 'U!
"#
$
%&5
−D Y 'U!
"#
$
%&7(
)**
+
,--
Source : Parkinson1964
Y ''+Y = nA U −2ζnA
"
#$
%
&'Y '−
BAU"
#$
%
&'Y '3+
CAU 3
"
#$
%
&'Y '5−
DAU 5
"
#$
%
&'Y '7
(
)*
+
,-
U < Uc = U0 à Stable system U0 < U < U1 à One stable and one unstable limit cycles

Non linear equation of motion:
Non-linear aspects
24
Y ''+ 2ζY '+Y = Fy = nU2 A Y '
U!
"#
$
%&−B
Y 'U!
"#
$
%&3
+C Y 'U!
"#
$
%&5
−D Y 'U!
"#
$
%&7(
)**
+
,--
Source : Parkinson1964
Y ''+Y = nA U −2ζnA
"
#$
%
&'Y '−
BAU"
#$
%
&'Y '3+
CAU 3
"
#$
%
&'Y '5−
DAU 5
"
#$
%
&'Y '7
(
)*
+
,-
U1 < U < U2 à 2 stable branches and 2
unstable branches à Hysteresis loop
U > U2 à One stable and one unstable limit cycles

Non-linear aspects
25
Source : Parkinson1964
Wind speed for VIV resonance nA2β
U =nA2β
12πSt
Comparison with experiments : four different damping values (β) à Universal galloping curve (Parkinson & Smith (1964))
Discrepancies for low damping (β=0.00107) x symbols
Reason : QS fails
NL QS model : à Critical airspeed ✔ à Amplitude ✔ à Hysteresis ✔

Non-linear aspects
26
Source : Parkinson1964
Universal galloping curve (Parkinson & Smith (1964)) Remember : the multiplicative factor can be
written :
nA2β
δ = 2πβ
mr =mρh2
n = ρh2
2m
→
"
#
$$$
%
$$$
β =δ2π
n = 1mr
"
#
$$
%
$$
nA2β
=πA2mrδ
=πASc
Sc = Scruton number à Galloping is driven by :
• Aerodynamic characteristics : A • Scruton number

Today’s lecture
Galloping : definition and examples Transverse galloping
Mechanism of galloping Non-linear aspects Flow analysis
Torsional galloping Conjoint galloping and VIV
27

Flow analysis
28
Effect of afterbody on galloping = part of the body downstream of the points of separation
dCFy
dα> 0
Den Hartog
Source : FSI2011
h
d
Turbulence changes everything !

Flow analysis
29
dCFy
dα> 0
Den Hartog
Source : FSI2011
h
d
Effect of afterbody on galloping = part of the body downstream of the points of separation

Source : FSI2011
Flow analysis
30
In the absence of after-body à No galloping Long after body à No galloping
h
d
104 < Re <105

Flow analysis
31
Effect of turbulence
Increasing Tu Interference with TE cornerì Earlier re-attachment (d/h)max î

Flow analysis
32
Source : PARKINSON1971
Static Small Oscill.
Large Oscill.
High suction peak Low suction peak
Source : Parkinson1964
6° 13° 0°
Inflection Points in the CFy curve : flow re-attachment

Flow analysis
33
Den Hartog criterion is a sufficient condition (not necessary)
Inflection Points in the Cfy curve à Responsible for the hysteresis behaviour

Today’s lecture
Galloping : definition and examples Transverse galloping
Mechanism of galloping Non-linear aspects Flow analysis
Torsional galloping Conjoint galloping and VIV
34

Torsional galloping or Torsional flutter, around an hinge point (rotation center)
Torsional galloping
35
Bridge deck section in the Ulg’s wind tunnel

Much more difficult than transverse galloping ! • Fluid forces depend on both the angle and angular velocity • Phasing between fluid forces and motion depends on the flow
velocity • The relative flow velocity, Vrel(x) varies from point to point
à No equivalent static configuration
Torsional galloping
36
Vrel
α U∞
Vrel(x)
α U∞
!y
x
!θ!y(x) = x !θ
Transverse galloping Torsional galloping

Define a reference radius rr à Unique transverse velocity, representative of motion of the whole
body
à Reference angle of attack α and relative velocity Vrel
Torsional galloping
37
U∞
θ
M
Rotation center
rr
rr !θ
γ r

Reference angle of attack α Relative velocity Vrel
Torsional galloping
38
θ −α = tan−1 rr !θ sinγ rU∞ − rr !θ cosγ r
#
$%
&
'( Vrel
2 = rr !θ sinγ r( )2+ U∞ − rr !θ cosγ r( )
2
α ≈θ −rr !θ sinγ rU∞
≡θ −R !θU∞
R = rr sinγ r Vrel ≈U∞
for α <<
Source:FSI2011

Reference angle of attack α Relative velocity Vrel
The choice of rr is not obvious and γr is a function of θ à R=R(θ) à α is a non-linear function of θ Origin of rr
¾ chord point in airfoil flutter analysis à Ok for attached flows … but not really for bluff body flows
Example of choice : - Rectangular section around the geometric center : R = d/2 à α corresponds to the instantaneous angle at the leading edge
Torsional galloping
39
α ≡θ −R !θU∞
R = rr sinγ r
Vrel ≈U∞
U∞
θ

Torsional galloping
40
The equation of the torsional motion : J = mass moment of inertia c = torsional damping coefficient k = torsional stiffness coefficient
Similarly to the transverse galloping, Taylor expansion of CM
J !!θ + c !θ + kθ =M =12ρU∞
2h2CM
CM =CM α=0+dCM
dα α=0
α +...
!!θ + 2ζω + 12ρU∞Rh
2
JdCM
dα"
#$
%
&' !θ + ω 2 −
12ρU 2
∞Rh2
JdCM
dα"
#$
%
&'θ = 0
c = 2ζωJ
ω 2 = k / J
α ≡θ −R !θU∞
CM ≈dCM
dαθ −
R !θU∞
$
%&
'
()

Torsional galloping
41
The equation of the torsional motion :
!!θ + 2ζω + 12ρU∞Rh
2
JdCM
dα"
#$
%
&' !θ + ω 2 −
12ρU 2
∞Rh2
JdCM
dα"
#$
%
&'θ = 0
Torsional galloping Static divergence
ω 2 −12ρU 2
∞Rh2
JdCM
dα= 0
→U∞ =ω 2
12ρRh2
JdCM
dα
Condition : dCM
dα> 0
2ζω + 12ρU∞Rh
2
JdCM
dα= 0
→U∞ =−2ζω
12ρRh2
JdCM
dα
Condition : dCM
dα< 0

Torsional galloping
42
Slope of the torsional moment coefficient More elongated bodies à Higher and negative values of the slope
à More sensitive to torsional flutter
Source:FSI2011

Torsional galloping
43
Because of the flow complexity, QS is not adapted to model Torsional Flutter à Need for more advanced Fluid-Structure analysis
Example : Tr-PIV on the upper surface of a rectangular cylinder (h/d=4)

Torsional galloping
44
Example : DVM simulations of a rectangular cylinder (h/d=4) free to oscillate Stable response (i.e. below critical airspeed)

Torsional galloping
45
Example : DVM simulations of a rectangular cylinder (h/d=4) free to oscillate Unstable response (i.e. above critical airspeed) : TORSIONAL GALLOPING

Torsional galloping
46
Example : Torsional galloping around the vertical axis of a bridge deck

Torsional galloping
47
Example : Torsional galloping around the vertical axis of a bridge deck

Today’s lecture
Galloping : definition and examples Transverse galloping
Mechanism of galloping Non-linear aspects Flow analysis
Torsional galloping Conjoint galloping and VIV
48

Threshold for galloping : typically UG > 10 (quasi-steady assumption) Threshold for VIV : typically Uv ~ 1
But for low damping (ζ<<) and/or low-density structures (n>>) UG can decrease up to unity or even below à Interaction between VIV and galloping
If Uv=UG à resulting oscillation amplitude higher than a single phenomenon prediction
Conjoint galloping and VIV
49
UG =2ζnA
UV =1
2πSt

Conjoint galloping and VIV
50
Famous example of conjoint galloping (torsional) and VIV (heaving) Tacoma Narrow bridge failure
Source: Larsen2000

Transversal (vertical) galloping = velocity dependent, damping controlled instability
à Can be modeled using Quasi-Steady theory (condition : Ur > 10) à Motion becomes an equivalent AOA :
LINEAR APPROACH
à Den Hartog criterion (pay attention to turbulence effects !)
à Estimate of the critical galloping velocity : NON LINEAR APPROACH à To complete the linear analysis
à Higher order polynomials for CFy
à Amplitude of the galloping oscillations
Summary
51
!y α = tan−1 !yU∞
#
$%
&
'(
U0 =2ζnA

Transversal (vertical) galloping NON LINEAR APPROACH à Different types of galloping behaviour
à Importance of after-body length (d/h) à Den Hartog is sufficient for galloping
to occur but not necessary
Summary
52

Torsional galloping à Much more difficult than transversal galloping
– Fluid forces depend on both the angle and angular velocity – The relative flow velocity, Vrel(x) varies from point to point
à No equivalent static configuration
à Tentative to apply the QS theory = not efficient (flow separation) à Elongated bodies are more prone to torsional flutter Conjoint transverse galloping and VIV à Potential combination of the two phenomena à Difficult to model / understand
Summary
53

References
54
• FIV1977 ‘Flow-induced vibration’, R.D. Blevins • FSI2011 ‘Fluid-structure Interactions : cross-flow induced instabilities’, M.P. Paidoussis,
S. J. Price, E. de Langre. Cambridge University Press • NAKAMURA1975 Nakamura, Y. and T. Mizota (1975). "Torsional flutter of rectangular
prisms." Journal of the engineering mechanics division, ASCE 101(EM2): 125-142. • WASHIZU1978 Washizu, K. and A. Ohya (1978). "Aeroelastic instability of rectangular
cylinders in a heaving mode." Journal of Sound and Vibration 59(2): 195-210. • PARKINSON1964 Parkinson, G. V. and J. D. Smith (1964). "The square prism as an
aeroelastic non-linear oscillator." The Quaterly Journal of Mechanics and Applied Mathematics 17: 225-239.
• PARKINSON1971 Parkinson, G. V. 1971 Wind-induced instability of structures. Philosophical Transactions of the Royal Society (London) 269, 395–409.
• LARSEN2000 A. Larsen, Aerodynamics of the Tacoma Narrows Bridge : 60 years later, Structural Engineering International. 10/2000; 10(4):243-248