• date post

09-Sep-2018
• Category

## Documents

• view

226

0

Embed Size (px)

### Transcript of ADVANCED SUBSIDIARY GENERAL CERTIFICATE · PDF fileadvanced subsidiary general certificate of...

• ADVANCED SUBSIDIARY GENERAL CERTIFICATE OF EDUCATION

MATHEMATICS

LIST OF FORMULAE

AND

STATISTICAL TABLES

(List MF1)

MF1CST252

January 2007

• Pure Mathematics

Mensuration

Surface area of sphere = 4r2Area of curved surface of cone = r slant height

Trigonometry

a2 = b2 + c2 2bc cos AArithmetic Series

un = a + (n 1)dSn = 12n(a + l) = 12n{2a + (n 1)d}

Geometric Series

un = arn1Sn = a(1 r

n)1 r

S = a1 r for |r | < 1Summations

n

r=1

r2 = 16n(n + 1)(2n + 1)

n

r=1

r3 = 14n2(n + 1)2

Binomial Series

(nr) + ( n

r + 1) = (n + 1r + 1 )(a + b)n = an + (n

1)an1b + (n

2)an2b2 + . . . + (n

r)anrbr + . . . + bn (n ),

where (nr) = nCr = n!r!(n r)!

(1 + x)n = 1 + nx + n(n 1)1.2

x2 + . . . + n(n 1) . . . (n r + 1)1.2.3 . . . r

xr + . . . (|x| < 1, n )Logarithms and exponentials

ex ln a = axComplex Numbers

{r(cos + i sin )}n = rn(cos n + i sin n)ei = cos + i sin The roots of n = 1 are given by = e 2kin , for k = 0, 1, 2, . . . , n 1

2

• Maclaurins Series

f(x) = f(0) + xf (0) + x22!

f (0) + . . . + xrr!

f (r)(0) + . . .ex = exp(x) = 1 + x + x2

2!+ . . . + xr

r!+ . . . for all x

ln(1 + x) = x x22+ x3

3 . . . + (1)r+1 xr

r+ . . . (1 < x 1)

sin x = x x33!

+ x55!

. . . + (1)r x2r+1(2r + 1)! + . . . for all xcos x = 1 x2

2!+ x4

4! . . . + (1)r x2r(2r)! + . . . for all x

tan1 x = x x33+ x5

5 . . . + (1)r x2r+1

2r + 1 + . . . (1 x 1)sinh x = x + x3

3!+ x5

5!+ . . . + x2r+1(2r + 1)! + . . . for all x

cosh x = 1 + x22!

+ x44!

+ . . . + x2r(2r)! + . . . for all xtanh1 x = x + x3

3+ x5

5+ . . . + x2r+1

2r + 1 + . . . (1 < x < 1)Hyperbolic Functions

cosh2 x sinh2 x = 1sinh 2x = 2 sinh x cosh xcosh 2x = cosh2 x + sinh2 xcosh1 x = ln{x + (x2 1)} (x 1)sinh1 x = ln{x + (x2 + 1)}tanh1 x = 1

2ln(1 + x

1 x) (|x| < 1)Coordinate Geometry

The perpendicular distance from (h, k) to ax + by + c = 0 is |ah + bk + c|(a2 + b2)The acute angle between lines with gradients m1 and m2 is tan

1 m1 m21 +m1m2 Trigonometric Identities

sin(A B) = sin A cos B cos A sin Bcos(A B) = cos A cos B sin A sin Btan(A B) = tan A tan B

1 tan A tan B (A B (k + 12))For t = tan 1

2A: sin A = 2t

1 + t2 , cos A = 1 t2

1 + t2sin A + sin B = 2 sin A + B

2cos

A B2

sin A sin B = 2 cos A + B2

sinA B

2

cos A + cos B = 2 cos A + B2

cosA B

2

cos A cos B = 2 sin A + B2

sinA B

2

3

• Vectors

The resolved part of a in the direction of b isa.b|b|

The point dividing AB in the ratio : isa + b

+ Vector product: a b = |a| |b| sin n =

i a1 b1j a2 b2k a

3b

3

= (a2b3 a3b2a3b1 a1b3a

1b

2 a

2b

1

)If A is the point with position vector a = a1i + a2j + a3k and the direction vector b is given by

b = b1i + b

2j + b

3k, then the straight line through A with direction vector b has cartesian equation

x a1b1

= y a2b2

= a3b3

(= )The plane through A with normal vector n = n1i + n2j + n3k has cartesian equation

n1x + n2y + n3 + d = 0, where d = a.nThe plane through non-collinear points A, B and C has vector equation

r = a + (b a) + (c a) = (1 )a + b + cThe plane through the point with position vector a and parallel to b and c has equation r = a + sb + tcThe perpendicular distance of (, , ) from n1x + n2y + n3 + d = 0 is

n1 + n2 + n3 + d (n21 + n22 + n23)Matrix transformations

Anticlockwise rotation through about O: ( cos sin sin cos )

Reflection in the line y = (tan )x: ( cos 2 sin 2sin 2 cos 2 )

Differentiation

f(x) f (x)tan kx k sec2 kx

sin1 x 1(1 x2)cos1 x 1(1 x2)tan1 x 1

1 + x2sec x sec x tan xcot x cosec2 x

cosec x cosec x cot xsinh x cosh xcosh x sinh xtanh x sech2 x

sinh1 x 1(1 + x2)cosh1 x 1(x2 1)tanh1 x 1

1 x2If y = f(x)

g(x) then dydx = f(x)g(x) f(x)g(x){g(x)}2

4

• Integration ( + constant; a > 0 where relevant)f(x) f(x) dx

sec2 kx1k

tan kx

tan x ln |sec x|cot x ln |sin x|

cosec x ln |cosec x + cot x| = ln tan 12xsec x ln |sec x + tan x| = ln tan(12x + 14)sinh x cosh xcosh x sinh xtanh x ln cosh x

1(a2 x2) sin1(xa) (|x| < a)1

a2 + x2 1a tan1(xa)1(x2 a2) cosh1(xa) or ln{x + (x2 a2)} (x > a)1(a2 + x2) sinh1(xa) or ln{x + (x2 + a2)}1

a2 x2 12a ln a + xa x = 1a tanh1(xa) (|x| < a)1

x2 a2 12a ln x ax + a udv

dxdx = uv vdu

dxdx

Area of a sector

A = 12 r2 d (polar coordinates)

A = 12 (x dy

dt y dx

dt) dt (parametric form)

Numerical Mathematics

Numerical integration

The trapezium rule: ba

y dx 12h{(y0 + yn) + 2(y1 + y2 + . . . + yn1)}, where h = b an

Simpsons Rule: ba

y dx 13h{(y0 + yn) + 4(y1 + y3 + . . . + yn1) + 2(y2 + y4 + . . . + yn2)},

where h = b an

and n is even

Numerical Solution of Equations

The Newton-Raphson iteration for solving f(x) = 0: xn+1 = xn f(xn)f(xn)

5

• Mechanics

Motion in a circle

Transverse velocity: v = rTransverse acceleration: v = rRadial acceleration: r2 = v2

r

Centres of Mass (for uniform bodies)

Triangular lamina: 23

along median from vertex

Solid hemisphere, radius r: 38r from centre

Hemispherical shell, radius r: 12r from centre

Circular arc, radius r, angle at centre 2:r sin

from centre

Sector of circle, radius r, angle at centre 2:2r sin

3from centre

Solid cone or pyramid of height h: 14h above the base on the line from centre of base to vertex

Conical shell of height h: 13h above the base on the line from centre of base to vertex

Moments of Inertia (for uniform bodies of mass m)

Thin rod, length 2l, about perpendicular axis through centre: 13ml2

Rectangular lamina about axis in plane bisecting edges of length 2l: 13ml2

Thin rod, length 2l, about perpendicular axis through end: 43ml2

Rectangular lamina about edge perpendicular to edges of length 2l: 43ml2

Rectangular lamina, sides 2a and 2b, about perpendicular axis through centre: 13m(a2 + b2)

Parallel axes theorem: IA = IG +m(AG)2Perpendicular axes theorem: I = Ix + Iy (for a lamina in the x-y plane)

6

• Probability & Statistics

Probability

P(A B) = P(A) + P(B) P(A B)P(A B) = P(A)P(B | A)P(A | B) = P(B | A)P(A)

P(B | A)P(A) + P(B | A)P(A)Bayes Theorem: P(Aj | B) = P(Aj)P(B | Aj)P(Ai)P(B | Ai)

Discrete distributions

For a discrete random variable X taking values xi with probabilities piExpectation (mean): E(X) = = x

ip

i

Variance: Var(X) = 2 = (xi )2pi = x2i pi 2For a function g(X): E(g(X)) = g(xi)pi

The probability generating function of X is GX(t) = E(tX), andE(X) = GX(1)Var(X) = GX(1) + GX(1) {GX(1)}2

For Z = X + Y , where X and Y are independent: GZ(t) = GX(t)GY(t)Standard discrete distributions

Distribution of X P(X = x) Mean Variance P.G.F.Binomial B(n, p) (n

x)px(1 p)nx np np(1 p) (1 p + pt)n

Poisson Po( ) e xx!

e (t1)

Geometric Geo(p) on 1, 2, p(1 p)x1 1p

1 pp2

pt1 (1 p)t

Continuous distributions

For a continuous random variable X having probability density function f

Expectation (mean): E(X) = = xf(x) dxVariance: Var(X) = 2 = (x )2f(x) dx = x2f(x) dx 2For a function g(X): E(g(X)) = g(x)f(x) dxCumulative distribution function: F(x) = P(X x) = xf(t) dt

The moment generating function of X is MX(t) = E(etX) andE(X) = MX(0)E(Xn) = M(n)X (0)Var(X) = MX(0) {MX(0)}2

For Z = X + Y , where X and Y are independent: MZ(t) = MX(t)MY(t)

7

• Standard continuous distributions

Distribution of X P.D.F. Mean Variance M.G.F.

Uniform (Rectangular) on [a, b] 1b a 12(a + b) 112(b a)2 e

bt eat(b a)tExponential ex 1

1

2

tNormal N(, 2) 1

(2)e

12( x )2 2 et+122t2

Expectation algebra

Covariance: Cov(X, Y) = E((X X)(Y Y)) = E(XY) XYVar(aX bY) = a2 Var(X) + b2 Var(Y) 2ab Cov(X, Y)Product moment correlation coefficient: = Cov(X, Y)

X

Y

If X = aX + b and Y = cY + d, then Cov(X, Y) = ac Cov(X, Y )For independent random variables X and Y

E(XY) = E(X)E(Y)Var(aX bY) = a2 Var(X) + b2 Var(Y)

Sampling distributions

For a random sample X1, X2, . . . , Xn of n independent observations from a distribution having mean and variance 2

X is an unbiased estimator of , with Var(X) = 2n

S2 is an unbiased estimator of 2, where S2 = (Xi X)2n 1

For a random sample of n observations from N(, 2)X /n N(0, 1)X S/n tn1 (also valid in matched-pairs situations)

If X is the observed number of successes in n independent Bernoulli trials in each of which the

probability of success is p, and Y = Xn

, then

E(Y) = p and Var(Y) = p(1 p)n

For a random sample of nx observations from N(x, 2x ) and, independently, a random sample ofny observations from N(y, 2y )(X Y) (x y)(2x

nx+ 2y

ny) N