Accretion in Protoplanetary Disks (conventional and...

49
EC Daniel Perez-Becker (Berkeley) Accretion in Protoplanetary Disks (conventional and transitional)

Transcript of Accretion in Protoplanetary Disks (conventional and...

  • EC Daniel Perez-Becker

    (Berkeley)

    Accretionin Protoplanetary

    Disks(conventional

    and transitional)

  • pre-shock flow

    heated interior

    Calvet & Gullbring 98Muzerolle et al. 05Hartmann et al. 06

    Herczeg & Hillenbrand 08

    Pre-main-sequence stars accrete

    Blue excess powered by accretion

  • Calvet et al. 05

    Transitional Disks

    τ10µm ∼ 20 − 200

    τ10µm

    = 0.05

    TW Hyd

    Calvet et al. 02

    Brown et al. 08

    LkHa 330

  • Holes are not empty

    • Mild near-IR excesses in some sourcesτ10µm ∼ 0.002 − 0.05

    • Many accreteṀ ∼ 0.1 × median T Tauri rate

    • Inner molecular gas disksΣ(H2) > 0.1 g cm

    −2 at ∼ 0.2AU

    Najita et al. 07 Salyk et al. 07

  • Theories:

    • Grain growth

    • Clearing by companion

    Puzzle:

    Not mutually exclusive

    1000 × smaller τ but comparable Ṁ

  • Clearing by companion (Transitional = Circumbinary)

    Ireland & Kraus 08 (Keck AO)Artymowicz & Lubow 94

    CoKu Tau/4Binary separationabinary ≈ 8 AU

    ≈ Hole radiusarim ≈ 10 AU

    Ṁ∗ < 10−10M#/yr

    D’Alessio et al. 05Najita et al. 07

    Blake, Salyk, personal comm.

    τ10µm < 0.002

    No CO gas out to 2 AU

  • Mass can still accrete onto star(viscosity / pressure / eccentricity /

    mass ratio)

    Fast flow (up to radial free-fall)implies low surface density

    Resolves the puzzle ofsimilar M but

    1000x lower optical depth

    .

    Hanawa et al. 06

    Clearing by companion (Transitional = Circumbinary)

  • Clearing by multiple planets

    Simulation of 4-planet system in viscous disk

    Right sign, too small magnitude‒ unless dust is also depleted

    Zhu et al. 11 2D FARGO

  • Planets inside the hole do not explain disk accretion

    Outer disk must stillbe viscous

  • Magneto-rotational instability (MRI)= linear instability

    which drives turbulencein weakly magnetized,

    outwardly shearing flows

    1. Magnetic flux freezing (defeat Ohmic dissipation) (Fleming, Stone, & Hawley 00)

    2. Good neutral-ion coupling (defeat ambipolar diffusion) (Blaes & Balbus 94; Hawley & Stone 98; Bai & Stone 11)

    ReM ≡csh

    η∝

    nen

    Requirements

    > Re∗

    M ≈ 102− 10

    4

    Am ≡ni〈σv〉in

    Ω> Am

    ∗ ≈ 100

    Disk accretion

    Hawley 2000

    1-100

  • Sideways

    N, h

    N, �

    X− rays

    h ≈ N/nH2Σ = Nµ

    cosmic rays

    1

    Surface Layer Accretion by the MRI

    Sources of ionization

    1. Cosmic rays2. Stellar X-rays3. Stellar UV

    Gammie 96

    Glassgold et al. 97Sano et al. 00

    Ilgner & Nelson 06 Bai & Goodman 09

    Turner et al. 10Perez-Becker & EC 11aPerez-Becker & EC 11b

  • Galactic cosmic raysblocked by stellar wind

    sunspot number

    cosmic ray flux

    interstellar

    solar min

    Svensmark 98Reedy 87

  • Pre-main sequence stars are X-ray luminous

    Preibisch et al. 05Chandra COUP Orion survey

  • H+2 + H2 → H

    +3 + H

    H+3 + CO → HCO

    ++ H2

    e−

    dissociativerecombination

    H + CO

    chargetransfer

    Mg+

    Mg

    βt ∼ 10−9

    cm3s−1

    e−

    Mg

    Mg

    radiativerecombination

    grain−

    freemetal

    Oppenheimer & Dalgarno 74Umebayashi & Nakano 83Glassgold et al. 86

    βdiss ∼ 3 × 10−7

    cm3s−1

    βrec ∼ 4 × 10−12

    cm3s−1

    PAH-

    neutralization onto charged particles

    Mg

  • Polycyclic Aromatic Hydrocarbons (PAHs)

    Allamandola et al. 99Geers et al. 06

    PAH abundance ~0.01-10 ppb H2

    (in diffuse ISM~1 ppm H)

  • 10−32

    10−26

    10−20

    10−14

    10−8

    10−2

    αPA

    H,e

    or

    αPA

    H,M

    +[c

    m3s−

    1]

    10−5

    10−4

    10−3

    10−2

    10−1

    1

    Norm

    alize

    dch

    arg

    edis

    trib

    ution

    −3 −2 −1 0 1 2 3Z

    PAHs

    Charg

    edis

    trib

    ution

    αPAH,eαPAH,M+

    10−3

    10−2

    10−1

    100

    αgra

    in,e

    or

    αgra

    in,M

    +[c

    m3s−

    1]

    10−5

    10−4

    10−3

    10−2

    10−1

    1

    Norm

    alize

    dch

    arg

    edis

    trib

    ution

    −40 −30 −20 −10 0Z

    grains

    Chargedistribution

    α grain

    ,e

    αgrain,M+

    10−15

    10−13

    10−11

    10−9

    10−7

    10−5

    xe

    or

    (xM

    ++

    xH

    CO

    +)

    10−13 10−11 10−9 10−7 10−5

    x�PAH

    Possible PAHabundances

    limxPA

    H�x �PA

    H xHCO +

    limxPA

    H�x �PA

    H xe

    limxPAH→0

    xe, xHCO+

    xM = 10−8

    �PAH

    xPAH

    10−110−7 10−5 10−3 101

    xM+ + xHCO+

    xe

    X-rays ⇒ HCO+, Mg+ egrain (1 μm)PAH (6 Å)

    ---

    Charge Balance

  • 0.01

    0.1

    1

    10

    100

    Am

    =(x

    M++

    xH

    CO

    +)β

    inn

    H2/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    a = 3 AUxM = 10−8

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    1

    102

    104

    106

    108

    1010

    Re

    =c s

    h/D

    Re∗

    a = 3 AUxM = 10−8

    0.01 0.1 1 10

    Σ [g cm−2]

    a = 30 AUxM = 10−8

    Am∗

    No PAH

    Low PAH

    High

    PAH

    Possible PAH

    abundances

    108 109 1010 1011nH2 [cm

    −3]

    Re∗

    a = 30 AUxM = 10−8

    Perez-Becker & EC 11asee also Mohanty, Ercolano, and Turner 11, in prep.

    Ohm

    ic d

    issi

    patio

    nA

    mbi

    pola

    r di

    ffusi

    on

    region allowedby PAHs

    Re

    Am

    0.01

    0.1

    1

    10

    100

    Am

    =(x

    M++

    xH

    CO

    +)β

    inn

    H2/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    a = 3 AUxM = 10−8

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    1

    102

    104

    106

    108

    1010R

    e=

    c sh

    /D

    Re∗

    a = 3 AUxM = 10−8

    0.01 0.1 1 10

    Σ [g cm−2]

    a = 30 AUxM = 10−8

    Am∗

    No PAH

    Low PAH

    High

    PAH

    Possible PAH

    abundances

    108 109 1010 1011nH2 [cm

    −3]

    Re∗

    a = 30 AUxM = 10−8

    (0.01-10 ppb H2)

    X-ray ionization only

    Field may be frozen to plasma ✔

    But ions decoupled from neutrals ✗

  • = 0.1

    = 0.01

    = 10 3

    = 10 4

    MRI Prohibited

    MRI Permitted

    Am

    <>

    10 2 10 1 100 101 102 103 104100

    101

    102

    103

    104

    10−11

    10−10

    10−9

    10−8

    10−7

    10−6

    Ṁ[M

    ⊙/yr]

    1 10 100

    a [AU]

    Conventional Disk

    Observed Rates

    X-ray

    α ≈1/(2β) and βmin(Am)

    ⇒ αmax (Am)

    Bai & Stone 11

    Kunz & Balbus 94 Hawley et al. 95

    Desch 04Pessah 10

    Bai & Stone 11

    MRI with ambipolar diffusion

    αmax (Am) and Am(Σ)

    ⇒ M.

    X-rays + PAHs =weak accretion

    Perez-Becker & EC 11ab

  • Far-Ultraviolet (FUV) Ionization

    912 Å 1109 Å 1198 ÅH H2, C S

    HST + FUSE(Bergin et al. 03; Herczeg et al. 02)

    LFUV ~ 1030-1032

    erg/s

  • FUV Ionization

    912 Å 1109 Å 1198 ÅH H2, C S

    Strömgren slab

    }LFUVhν 4πa2 · ha ∼ nineαrec · hphotoionizations recombinations(cosmic abundance)Perez-Becker & EC 11ab

    ∼ 0.1

    (

    LFUV1030 erg/s

    )1/2 (10−5

    f

    )

    g/cm2

    ⇒ ΣMRI ∼ nH2µh

    nH2

    ni = ne = fnH2

  • 1

    10

    102

    103

    104

    Am

    =(x

    CII

    +x

    SII)β

    inn

    tot/

    10−5 10−3 10−1

    Σ [g cm−2]

    Am∗

    a = 3 AU

    107 108 109 1010 1011ntot [cm−3]

    1

    102

    104

    106

    108

    1010

    1012R

    e=

    c sh

    /D

    Re∗

    Σ∗ Σ∗

    LX = 1031 erg s−1

    Re

    Am

    FUV ionization only

    Field is frozen to plasma ✔Good ion-neutral coupling ✔

    robust against PAHs(PAHs included at

    maximum abundance)

    sensitive to dust-to-gas ratio(vertical settling of dust)

    Perez-Becker & EC 11b

    Nτ=1 =1024 cm-2

    [S/H] = -1

    Nτ=1 =1022 cm-2

    [S/H] = 0

  • 102

    103

    104

    105

    χ

    1 10 100

    a [AU]

    Nτ=1

    VSG= 10

    24 cm−2 � = 1/30

    FUV

    Wardle & Salmeron 11

    Hall effect not important

  • FUV-ionizedsurface layerscan reproduceaccretion ratesat large radius

    but not small radius

    Perez-Becker & EC 11b

    Ṁ ∼ 2 × 3πΣ∗ν

    ∼ 6πΣ∗αkT

    µΩ

    10−11

    10−10

    10−9

    10−8

    10−7

    10−6Ṁ

    [M⊙/yr]

    1 10 100

    a [AU]

    ConventionalDisk

    ObservedRates

    FUV

    max

    βplas

    ma<

    1

    X-ray

  • 0.1

    1

    10

    t rec

    /t d

    yn

    1 10 100

    a [AU]

    FUV

    Turbulent mixingof plasma to

    greater depthscan extend

    MRI-active layer

    Ion recombinationtime vs.

    dynamical time

    Ilgner & Nelson 06b

  • 10−12

    10−11

    10−10

    10−9

    10−8

    10−7

    10−6

    Ṁtr

    ans[M

    ⊙/yr]

    1 10 100

    arim [AU]

    TransitionalDisk

    FUV

    X-ray

    maxβ

    plasm

    a<

    1

    Murray-Clay & EC 07Kim et al. 09

    Perez-Becker & EC 11abZhu et al. 11

    FUV-driven MRI in Transitional Disks

    Rim accretion ratereproduces

    observations

    Transport problemat small radii

    could be solved bycompanions

  • Extra Slides

  • Is the required field super-equipartition?

    Ṁ ∼ 〈BrBφ〉h/Ω

    ⇒ minB > 1G

    (

    10−8M"/yr

    )1/2( r

    AU

    )−5/4

    Possible for r > 1 AU

    e.g., Bai & Goodman 09

    β ≡PgasPmag

    =8πnkT

    B2< 1

    (

    Σ

    0.1 g/ cm2

    ) (

    10−8M"/yr

    )

    ( r

    1 AU

    )

    On the other hand the field cannot be too strong: β > 1

    On the one hand, the field must be strong enough:

  • Inside-Out Accretion of Transitional Disks

  • • Dust thickness h/r ≤ R/r ̃ 10-2

    • Inclination Ι ̃ 10-1• Warp Δ Ι / Ι < 10-1 (self-gravity) Δ Ι / Ι ̃ ‒10-1 (gas pressure)

    Measuring dust layer thicknesses

    (e.g., occulting circumbinary diskof KH 15D)

  • EC & Murray-Clay 07

    Ṁ ∼12παN∗a2

    rim(kT ∗)3/2

    GM∗µ1/2

    Rim controlsaccretion rate

    X-ray driven MRI

    @ 1 AU

    • 10-100 x lower density than MMSN• Satisfies CO lower limits• Type II migration

    slower than usual

    For constant α,

    But cannot explainorigin of hole

    Σgas ∼ 10 − 100 g cm−2

    Kim et al. 09Spitzer Cha I

  • Planet Clearing

    Lubow & D’Angelo 06 Lubow et al. 99

    Inner disk fills in

    Ṁinner ≈ 0.1Ṁouter • But planetary migration reduces clearing efficiency• Short-lived solution (tdiffusion ~ r2 / ν ~ 104 orbits)• Perhaps multiple planets can help

    Initialt = 700 orbits

    neglecting migration

    Initial profile set toanalytic steady state; note robustness of inner disk

  • But deeper correlations may exist ...

    arim ∝ M2

    Ṁ∗ ∝ M2

    Ṁ∗ ∝ M2

    Same

    holds fornon-transitional

    disks

    How to keep the inner hole

    clear of dust?

    Leaked dust might concentrate at , restoring :

    Gapped(“pre-transitional”) disk

    possible

    a ! arim

    τ10µm > 1

    .

    Kim et al. 09

  • 1023 cm-2

    tdiff ∼ a2rim / ν

    ν = α csh

    MRI simulations give 10-4-10-1

    Mrim = 2πarim × 2h × N∗ µ

    photo-ionization heating CO ro-vibrational cooling

    230 K

    *

    Glassgold, Najita, & Igea 04EC & Murray-Clay 07

    Ṁ ∼Mrimtdiff

    12παN∗a2rim(k T∗ )3/2

    GM∗µ1/2

    LXσXe−N

    ∗σX fheatn

    4πa2rim

    ∼ ΛCO(T∗)

    *

    X-rays

    }N*

    T*a rim

    X-rays

    dustygasrim

    MRI-active

    Inside-Out MRI

  • tblow ∼1

    (

    1

    Ωtstop

    )

    N*τrim ∼ 0.1

    • Leaked dust might concentrate at , restoring : Gapped (“pre-transitional”) disk possible

    a ! arim

    τ10µm > 1

    EC & Murray-Clay 07

    -▽Ppoints in

    Aerodynamic filter Radiation pressure

    Gas is super-Keplerian

    Dust is Keplerian ∴ dragged out

    Keeping inner hole clear of dust

    • Filtering is inefficient

    Rice et al. 06

  • “Pre-Transitional” Gapped Disks

    Espaillat et al. 08

    Espaillat et al. 07

    1600 K blackbody fit to excess

    0.12 AU

    < 0.15 AU

    LkCa 15 46 AU

  • But deeper correlations may exist ...

    ˙

    arim ∝ M2

    Ṁ∗ ∝ M2

    Ṁ∗ ∝ M2

    Why?

    And does similarrelation hold

    for debris disks?

    Same

    holds fornon-transitional

    disks

  • (T̂ > 1)

    Sustaining MRI at a

  • Outer diskphotoevaporationstarves inner disk

    t=0

    t=6 Myr

    t=6.02 Myr

    t=6.18 Myr

    Alexander 08

  • x4e+

    (

    βgrβrec

    )

    x3e+

    (

    ζ

    nβdiss

    βtβrec

    )

    x2e−

    (

    ζ

    nβdiss

    βtβrec

    ) (

    βgrβt

    + xmet,tot

    )

    xe−βt

    βrec

    (

    ζ

    nβdiss

    )2

    = 0

    n = 2N/arim ζ =LXσXe

    −NσX ξsecondary

    4πEXa2rim

    Estimating N*

    xmet,tot = 10−6

    10−7

    10−8

    EC & Murray-Clay 07

    0

    Am*

    N*

  • Theories for transitional disks are not mutually exclusive

    Planets + MRI +

    smaller Ṁ∗ smaller τ10µmorigin

    of viscosityMultiple planetsmight explainfactor of 10

    and prolong Type II migration

    Grain growth +Radiative /

    aerodynamic blowout

    smaller τ10µm

    Imperfectclearing can

    lead to gapped disks(e.g. LkCa 15)

  • 0.01

    0.1

    1

    10

    100

    Am

    =(x

    M++

    xH

    CO

    +)β

    inn

    H2/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    1

    102

    104

    106

    108

    1010

    Re

    =c s

    h/D

    Re∗

    LX = 1031 erg s−1

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    No PAH

    Low PAHHigh

    PAH

    PossiblePA

    H

    abundances

    109 1010 1011 1012 1013nH2 [cm

    −3]

    Re∗

    Std. Model (a = 3 AU)

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    Re∗

    xM = 10−6

    0.01

    0.1

    1

    10

    100

    Am

    =(x

    M++

    xH

    CO

    +)β

    inn

    H2/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    1

    102

    104

    106

    108

    1010

    Re

    =c s

    h/D

    Re∗

    LX = 1031 erg s−1

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    No PAH

    Low PAH

    High

    PAH

    PossiblePA

    H

    abundances

    109 1010 1011 1012 1013nH2 [cm

    −3]

    Re∗

    Std. Model (a = 3 AU)

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    Re∗

    xM = 10−6

    0.01

    0.1

    1

    10

    100

    Am

    =(x

    M++

    xH

    CO

    +)β

    inn

    H2/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    1

    102

    104

    106

    108

    1010

    Re

    =c s

    h/D

    Re∗

    LX = 1031 erg s−1

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    No PAH

    Low PAH

    High

    PAH

    PossiblePA

    H

    abundances

    109 1010 1011 1012 1013nH2 [cm

    −3]

    Re∗

    Std. Model (a = 3 AU)

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109 1010 1011 1012 1013nH2 [cm

    −3]

    Re∗

    xM = 10−6

    X-ray ionized MRI-active surface layer

    Σactive ~ 1 g cm-2

    Am ~ 1 (α ~ 10-3)

    Perez-Becker & EC 10

    At 3 AU,

  • 0.01

    0.1

    1

    10

    100

    Am

    =(x

    M++

    xH

    CO

    +)β

    inn

    H2/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    108 109 1010 1011nH2 [cm

    −3]

    1

    102

    104

    106

    108

    1010

    Re

    =c s

    h/D

    Re∗

    xM = 0

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    No PAH

    Low PAH

    High

    PAH

    Possible PAH

    abundances

    108 109 1010 1011nH2 [cm

    −3]

    Re∗

    Std. Model (a = 30 AU)

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    108 109 1010 1011nH2 [cm

    −3]

    Re∗

    ζCR = 1/4 × 10−17 s−1

    0.01

    0.1

    1

    10

    100

    Am

    =(x

    M++

    xH

    CO

    +)β

    inn

    H2/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    108 109 1010 1011nH2 [cm

    −3]

    1

    102

    104

    106

    108

    1010

    Re

    =c s

    h/D

    Re∗

    xM = 0

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    No PAH

    Low PAH

    High

    PAH

    Possible PAH

    abundances

    108 109 1010 1011nH2 [cm

    −3]

    Re∗

    Std. Model (a = 30 AU)

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    108 109 1010 1011nH2 [cm

    −3]

    Re∗

    ζCR = 1/4 × 10−17 s−1

    Sideways

    N, h

    N, �

    X− rays

    h ≈ N/nH2Σ = Nµ

    cosmic rays

    1

    Σactive ~ 0.1 g cm-2if no cosmic rays

    At 30 AU,

    Am ~ 1 (α ~ 10-3)

    Σactive ~ 10 g cm-2if cosmic rays

    X-ray ionized MRI-active surface layer

  • Far-UV (912-1100 Å) ionized MRI-active surface layer

    H2 + hν→ H + HH + H + grain → H2 + grain

    C + hν ⇄ C+ + e-

    xCO = 10-4

    Σactive ~ 0.01 g cm-2

    At 3-30 AU,

    Am > 102 (α ~ 0.1)

    1

    10

    102

    103

    104

    Am

    =(x

    C+)β

    inn

    H/Ω

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109

    1010

    1011

    1012

    nH [cm−3]

    1

    102

    104

    106

    108

    1010

    1012

    Re

    =c s

    h/D

    Re∗

    fC = 10−4

    a = 3 AULX = 1031 erg s−1

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    108

    109

    1010

    1011

    nH [cm−3]

    Re∗

    fC = 10−4

    a = 30 AU

    0.01 0.1 1 10

    Σ [g cm−2]

    Am∗

    109

    1010

    1011

    1012

    nH [cm−3]

    Re∗

    xM = 10−6fC = 10−4

    a = 3 AU

  • Planet Clearing

    Run duration = 100 orbits ≪ Viscous time ~ 10000 orbits

    Initial Σinner / Σouter = 0.01

    ∴ Hole in simulation reflects assumed initial conditions

    Quillen et al. 2004

    tdiff ∼ a2rim / ν

    ν = α csh

    0.004 (assumed)

    tdiff

    0.1MJ

    10AU

    arim =

  • 3 AUX-ray3 AU

    Far-UV30 AUX-ray+CR

    30 AUFar-UV

    αΣactive(g/cm2)T

    (K)Ṁ

    (M☉/yr)

    10-118010-31

    3010-30.1-10 10-11-10-9

    0.1

    0.1

    0.01 300 4 x 10-11

    0.01 300 10-9

  • 200 AU

    Protoplanetary Disks

    disk mass ~ 0.001-0.1 stellar mass