Accelerator Aspects of the Precision Mass Measurement...

24
Accelerator Aspects of the Precision Mass Measurement Experiments at the VEPP-4M Collider with the KEDR Detector S. A. Nikitin for the VEPP-4 Team BINP SB RAS

Transcript of Accelerator Aspects of the Precision Mass Measurement...

Accelerator Aspects of the Precision Mass

Measurement Experiments at the VEPP-4M

Collider with the KEDR Detector

S. A. Nikitin

for the VEPP-4 Team

BINP SB RAS

S. Nikitin Budker INP 2

IntroductionReview of mass measurement experiments at VEPP-4

O.V. Anchugov et al. Instruments and Experimental Techniques, 2010, Vol. 53, No. 1, pp. 15–2

Particle Δm/m, ppm

n

p

e

μ

π±

J/ψ

π 0

ψ′

0.04

0.04

0.04

0.09

2.5

4.0

4.5

5.0

Mile stones Top list of mass accuracy

S. Nikitin Budker INP 3

Beam polarization measurement and beam energy

monitoring methods developed and applied

Problems on accuracy of energy calibration by spin

precession frequency studied at new level

Questions on optimal tuning of VEPP-4 systems and

operation modes for obtaining and application of

beam polarization in mass measurements set and

solved

What contributed

S. Nikitin Budker INP 4

Compton Backscattering monitorResonant Depolarization technique

Energy error 5 10-5 , t ~ 30 min Small sensitivity to beam and machine

parameters (σlaser >> σbeam) Measure energy spread (10%) Energy monitoring

Energy error 2 keV (~10-6), t ~ 1 sec Considerable sensitivity to beam

and machine parameters No energy spread measurement Instant energy measurement

Methods for Beam Energy measurementV.E. Blinov et al. NIMA 598 (2009) 23-30.

S. Nikitin Budker INP 5

Absolute energy calibration by RD

Depolarizer control

-10

2 Depolarization jump

Intra-Beam-Scattering rate up to ~

Rb standard ( ) for both the RF and depolarizer systems

Machine limit on accuracy:

spin line w

1 MHz/mA

10

pol unpol

pol

N N

N

2 2 7

-6

idth

Typical error:

To date more RD calibrations

~ ( ) ~ 5 10

=2 keV (10 )

3000

xx

EH

E

E

S. Nikitin Budker INP 6

VEPP-4 layout with the polarization

manipulation and measurement devices

S. Nikitin Budker INP 7

Obtaining of polarized beams

• Suitable radiative polarization time in the VEPP-3 booster

• Too long desing radiative polarization time at VEPP-4M

• 3D spin kinematics in the VEPP-3-VEPP-4M beam-line results in decrease of the e+ polarization degree in the domain of 1.85 GeV if no special measures are taken for spin manipulation

• Acceptable polarization life-time in VEPP-4M even at small off-tunings from the spin resonances

• VEPP-3 and VEPP-4M tunes νx, νy are kept in free cells of the spin resonant grid ν+m ·νx+ n·νy=k up to the |m|+|n|=10 order

• Feed back on the VEPP-3 work point stabilization δ(νx, νy)=±0.002

GeV 1.85 @hr 70][

1540][

5

GeVEhr

pol

GeV 1.85 @ min 33][

12][

5

GeVEhr

pol

S. Nikitin Budker INP 8

Beam polarization degree at VEPP-3

M.V. Dyug et al. NIMA 536 (2005) 338-343

, 0.9g B T g

N NA A A

N N

Deuterium Atomic Jet has the electron polarization Pe1.

Target thickness of 5x1011 electrons/cm2

``Holding’’ field of 300-400 gauss varied in a sign

Counting rate of 6 Hz at I=100 mA.

First Möller polarimeter with Internal Polarized Target

S. Nikitin Budker INP 9

Solution of the polarized e+ beam injection problem

Vertical spin proection of injected

polarized beams vs Energy

Vertical spin projection of positrons

vs the solenoid strength

-1

-0.8

-0.6

-0.4

1500 1600 1700 1800 1900 2000

Injection Energy, MeV

Ve

rtic

al

sp

in c

om

po

ne

nt

e–

e+

0.4

0.6

0.8

1

0 20 40 60 80

Spin rotation angle, 0

Vert

ical sp

in p

roje

cti

on

Solution: 2.5 Tesla·meter pulse solenoid in the VEPP-3-VEPP-4M beam-line

Experiment: 1.5 times vertical e+ spin projection increase,

2 times depolarization jump increase (2.5 times calc.)

Advantage: precise measurement of the energy gap between e+ and e- (~1 keV)

First proposal: O.N. Gordeev et al. Preprint 83-110. Realized in 2007: V. Blinov et al. Beam Dynamics NewsLetter, No. 48, 207-217

Pulse solenoid layout

E=1.85 GeV

S. Nikitin Budker INP 10

Analysis of Polarization Life-Time nearby

the tau-lepton threshold energy

VEPP-4M

E=1777 MeV

ν – 4=0.03 <<1(27 kHz)τpol =87 hrτr /τpol << 1

Depolarization by quantum fluctuations (QF)–vertical disalignment of

focusing magnets

–vertical orbit bumps

–coupling due to lens and bend magnet rotations

–coupling due to vertical orbit distortion in sextupoles

–synchrotron modulation of spin frequency

–betatron oscillations in sextupoles

Resonance spin diffusion at ripples in the 25-30 KHzrange (?)PWM corrector power supply:f=(1, 2, 3)12.5 kHZ, σν=1.4

kHz

QF-based depolarization models: τr ≥1 hr most likely

A.Bogomyagkov et al. EPAC’04 Proc. , pp. 737-739

S. Nikitin Budker INP 11

Experimental data on polarization

at the tau-threshold

Work Cycle Tuning Stage Regular Runs in 2005-2008

S. Nikitin Budker INP 12

Questions on Accuracy

Accuracy of instant absolute energy calibration

Modulation spin resonances

Spin tune shift not conserving the “spin tune - energy” ratio

Effect of orbit corrections on energy

Central mass energy determination

Energy and energy spread stability

S. Nikitin Budker INP 13

Field ripples as a hazard in RD technique

Resonance depolarization band width before and

after a suppression of parasitic pulsations in

magnetic elements of VEPP-4M

0

100

200

300

1 5 9 13 17 21 25 29 33 37

Run's number

2 d

F d

ep

, H

z

Runs 243-330 df/dt=0.10 Hz/sec Runs 332-342

Pulsations of 60 ppm

in FS and DS are canceled

df/dt=0.2 Hz/sec

Ratio of depolarization times at the first modulation and main externalspin resonances vs. the amplitude of 50 Hz ripples (E=1850 MeV)

Depolarizer operation mode tuning:• Depolarizing efficiency batching at a level sufficient just for the main

spin resonance (most powerful) and not affecting modulation ones• Crucially depends on correctness of the Spin Response Function (F)

calculation

Energy error: 10–4 → 10–6

S. Nikitin Budker INP 14

Spin Response Function

1001~ variation valueLocal

2|| 1efficiencyr depolarize

field Transverse

Fd

Ya.S. Derbenev, A.M. Kondratenko, A.N. Skrinsky.Part.Acc., 1979, V.9, N4

• We choose Kicker 1 or Kicker 3 as the depolarizer depending on the work energy domain• We properly tune the depolarizer scan mode (scan rate and voltage at plates)

Design characteristic like β-functionEnergy and azimuth dependent

Resonance at ν ± νz=m·lm, the super-period number

S.Nikitin. Preprint ИЯФ 2005-54

S. Nikitin Budker INP 15

FD

Z0

i+1

i

DH H

Spin tune shift due to vertical closed orbit distortions

MC Simulation

Analytical estimate

A.V. Bogomyagkov, S.A. Nikitin, A.G. Shamov.RUPAC 2006 Proceedings.

22

,

1/22 60

,

V

cos cos( | |)8 sin

1777 MeV, Z 1.2 mm ~10 , 1.5 1.5 ke

j

i

i i j ij iji i j

i j

Hd

H

E E

Planar orbit = q′E/ec, the spin tune

2cos = Tr L

L= 2×2 matrix of spin rotation about the vertical axis

Non-planar orbit ≈ q′E/ec+Δ (E,perturbations)

L′= L + ΔL =Li , a matrix product of spin rotations

about arbitrary axes

Δ ≈ Tr (ΔL)/(2 sin )

S. Nikitin Budker INP 16

Spin tune shift due to KEDR field compensation error

Advantages:• Optimal compensation solenoid coil current Ics(opt)=97 A• Optimal ratio to the detector field Ics(opt)/HKEDR =16.13 A/kgs• Systematic energy error reduction down to ~1 keV• Betatron coupling minimization due to RD technique with an accuracy

~1% in adjusting Ics

S.A. Nikitin. RUPAC 2006 Proceedings

S. Nikitin Budker INP 17

Energy shift due to radial orbit correctors

xE

E

radial deflection angle

x – dispersion function

momentum comp. factor

machine perimeter

V.E. Blinov et al. NIMA 494 (2002) 81-85

Orbit and corrector monitoring during luminosity run between RD calibrations

S. Nikitin Budker INP 18

Effect of vertical bumps on energy and spin tune shift

C CAB B

S. Nikitin Budker INP 19

Energy loss distribution and

C.M. energy determination by RD data

e+ orbit e- orbitRF

0( ) 1 ( )E E f

IP

Energy difference of e+ and e-in simultaneous measurements

O.Anchugov et al., EPAC’06 Proc.

S. Nikitin Budker INP 20

Asymmetry of Luminosity distribution

in energyEffect of beam potential

A.Bogomyagkov, S. Nikitin, V.Telnov, G.Tumaikin.APAC 2004 Proc., TUP-11002.

• Beam angular and energy spread (invariant mass correction ~ 0.3 keV)• Beam separation in parasitic IPs (invariant mass correction ~ 5 keV)• Vertical dispersion of opposite sign for e+ and e- in conjunction with non-zero separation in IP

(due to beam-beam effect or perturbations from beam separation in parasitic IPs)

A.Bogomyagkov et al., PAC 2007 Proceedings, MOOBI01, p.63

Some corrections to C.M. energy determination

Other sources of error

S. Nikitin Budker INP 21

Beam energy spread

87.76 ÈßÔ Preprint entsev. E.Perevednov,V.Korchuga v,G.Kulipano v,N.Vinokuro

221 ,)cos(1

2

exp22

2exp)(

yb

ats

s

EE

ttA

Change in energy spread vs relative disturbance of dispersion in the dipole-gradient wigglers

Physicists demand:

in narrow resonance measurements (ψ–family) δσE < a few %

at tau-lepton threshold δσE ~ 5-10 %

Energy spread measurement O.I. Meshkov et al., J. Inst. 2 N 6 (June 2007)

1. Fit of the measured betatron oscillation envelope

Energy spread control

2. Measurement of amplitude ratio of synchrotron

satellites to the main betatron peak

in dependence of chromaticity

E

s

y

s

Cyxdx

y

x

exmJy

ym

R

0

,0

22

2

)(22

1)(

2

2

0

2

42

sin11

2

m

em cmE

3. Fit of the edge of Compton back-scattering spectrum

S. Nikitin Budker INP 22

Energy stability

NMR magnetometer monitoring

data on the reference magnet field.

NMR data were read with a

period of several seconds.

Feedback band ~ 0.1 Hz .

Long-term field stability ~10-6.

Daily beam energy drift

with the field feedback

loop on ~ 1 keV

Round-the-clock energy variations (no thermo-stabilization)

Long-term energy stability with thermo-stabilization

Thermal stabilization

NMR data-based Feed Back Loop

off on

on

O.V. Anchugov et al. Instrumental and Experimental Techniques, 2010, Vol. 53, No. 1, pp. 15-28.

V.E.Blinov et al. Beam Dynamics Newsletter, 2009. No. 48, pp. 207-217.

Service water T oC Distillate T oC

• RD (blown-up)• CBS

For the experiment with ~10-9 depolarization frequency resolution

S. Nikitin Budker INP 23

Acknowledgements

Thanks to V.Smaluk, S.Karnaev and

V.Kiselev for help in material preparation.

S. Nikitin Budker INP 24

Thank you for attention!