Ab initio effective interactions and operators from...

50
Canada’s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucleaire et en physique des particules Ab initio effective interactions and operators from IM-SRG Ragnar Stroberg TRIUMF Double Beta Decay Workshop U = e η dH ds =[η,H ] U OU = O +[η, O]+ ... Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 1 / 27

Transcript of Ab initio effective interactions and operators from...

Page 1: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Canada’s national laboratory for particle and nuclear physicsLaboratoire national canadien pour la recherche en physique nucleaire

et en physique des particules

Ab initio effective interactions andoperators from IM-SRG

Ragnar StrobergTRIUMF

Double Beta Decay Workshop

U = eη

dHds = [η,H]

UOU † = O + [η,O] + . . .

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 1 / 27

Page 2: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Outline

Conceptual introduction to valence space IM-SRG

Targeted normal ordering

Ensemble reference states

Effective valence space operators

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 2 / 27

Page 3: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Introduction

Starting point: non-relativistic Schrodinger equation with nucleons as ourdegrees of freedom.

H|Ψ〉 = E|Ψ〉

We don’t know this

This is hard to solve

Effective theory → H is scheme and scale dependent.

Strongly-interacting system → highly correlated → hard to solve.

The underlying physical laws necessary for the mathematical theoryof a large part of physics and the whole of chemistry are thus

completely known, and the difficulty is only that the exact applicationof these laws leads to equations much too complicated to be soluble.

–Paul Dirac, 1929

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 3 / 27

Page 4: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Many-body approaches

NCSM, GFMC, etc

Use realistic H, solve directly

Works well for light systems

Operators treated consistently

Basis dimension grows rapidly

Microscopic

SM, RPA, IBM, DFT, etc.

Make the problem tractable

Missing physics → adjust H

Much larger reach in A

How to adjust other operators?

Phenomenological

Lee-Suzuki, MBPT, IM-SRG

Systematically treat missing physics

Consistently transform other operators

Does the expansion converge?

Microscopic/Effective

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 4 / 27

Page 5: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Many-body approaches

NCSM, GFMC, etc

Use realistic H, solve directly

Works well for light systems

Operators treated consistently

Basis dimension grows rapidly

Microscopic

SM, RPA, IBM, DFT, etc.

Make the problem tractable

Missing physics → adjust H

Much larger reach in A

How to adjust other operators?

Phenomenological

Lee-Suzuki, MBPT, IM-SRG

Systematically treat missing physics

Consistently transform other operators

Does the expansion converge?

Microscopic/Effective

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 4 / 27

Page 6: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

IM-SRG

Effective Interaction

Goal: Find a unitary transformation Usuch that

H = UHU †

〈P |H|Q〉 = 〈Q|H|P 〉 = 0

〈Ψi|P HP |Ψi〉 = 〈Ψi|H|Ψi〉

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 5 / 27

Page 7: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

IM-SRG

U may always be written as U = eη, for some generator η

For two-level system, η =(

0 θ−θ 0

)For our Hamiltonian, take η = 1

2atan(

2Hod∆

)− h.c.

Perform multiple rotations: UN = eηN . . . eη2eη1

Iterate until ηN = 0

Infinitessimal rotation of angle ds → dH(s)ds = [η(s), H(s)]

White 2002; Tsukiyama, Bogner, and Schwenk 2011; Morris, Parzuchowski, and Bogner 2015

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 6 / 27

Page 8: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

IM-SRG

Why “In-Medium”?⇒ To deal with the problem of induced many-body forces

eη = 1 + η +1

2!η2 + . . .

= 1 + + + + . . .

All terms beyond two-body operators are too expensive to handle

Define states with respect to a reference |Φ0〉 (Normal Ordering)

If |Φ0〉 is a reasonable approximation of |Ψ〉, then many-bodyterms are less important

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 7 / 27

Page 9: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG

Excluded configurations treatedwith IM-SRG (definition of Hod)

Valence configurations treatedexplicitly with standard shell modeldiagonalization

In following, all calculations useSRG evolved E&M N3LO NN +local N2LO 3N (kindly provided byAngelo Calci)

Entem and Machleidt 2003; Navratil 2007; Tsukiyama, Bogner, and Schwenk 2012

core

vale

nce

excl

uded

decouple

decouple

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 8 / 27

Page 10: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Ground states

15 20 25 30A

180

160

140

120

100

80

60

40Egs

(MeV

)

(c)

AO (Z=8)

ExperimentIMSRG(C=R)

Bogner et al. 2014

; Cipollone, Barbieri, and Navratil 2013; Hergert et al. 2014

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 9 / 27

Page 11: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Ground states

15 20 25 30A

180

160

140

120

100

80

60

40Egs

(MeV

)

(c)

AO (Z=8)

ExperimentMR-IMSRGSCGFCCSD(T)CRCCIT-NCSMIMSRG(C=R)

Bogner et al. 2014; Cipollone, Barbieri, and Navratil 2013; Hergert et al. 2014

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 9 / 27

Page 12: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Ground states

What are we missing?

core

vale

nce

excl

uded

decouple

decouple The other methods use the targetnucleus as |Φ0〉, while we use thecore

Other methods better captureeffect 3N forces between valencenucleons

Strategy:As valence neutrons are added, |22O〉 becomes a better reference than|16O〉, so use that

But still decouple the full sd shell

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 10 / 27

Page 13: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Ground states

What are we missing?

core

vale

nce

excl

uded

decouple

decouple

core

vale

nce

excl

uded

decouple

decouple

Strategy:As valence neutrons are added, |22O〉 becomes a better reference than|16O〉, so use that

But still decouple the full sd shell

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 10 / 27

Page 14: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Ground states

15 20 25 30A

180

160

140

120

100

80

60

40Egs

(MeV

)

(c)

AO (Z=8)

ExperimentMR-IMSRGSCGFCCSD(T)CRCCIT-NCSMIMSRG(C=R)

Bogner et al. 2014; Brown et al. 2006; Cipollone, Barbieri, and Navratil 2013; Hergert et al. 2014

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 11 / 27

Page 15: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Ground states

15 20 25 30A

180

160

140

120

100

80

60

40Egs

(MeV

)

(c)

AO (Z=8)

ExperimentMR-IMSRGSCGFCCSD(T)CRCCIT-NCSMIMSRG(C=R)IMSRG(TNO)

Bogner et al. 2014; Brown et al. 2006; Cipollone, Barbieri, and Navratil 2013; Hergert et al. 2014

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 11 / 27

Page 16: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Closed subshells

12 C 14 C 22 O 24 O 28 O 28 Si 34 Si 32 S 40 Ca1211109876

E/A

(MeV

)

AMEVS (C=R)VS (TNO)Single Ref.

|⟨Ψ|Φ0

⟩|2

0.30 0.90 0.82 0.94 1.00 0.06 0.91 0.43 1.00

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 12 / 27

Page 17: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence space IM-SRG: Ground state of 28Si

IM-SRGShell Model

|⟨Ψ|Φ0

⟩|2 IM-SRG

Single Reference

252

250

248

246

244

242

240

238

Ener

gy (M

eV)

0+

0+

0+

0+

0+

0+

0.06

0.24

0.06

0.000.07

28 Si

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 13 / 27

Page 18: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Aside: Basis dependence of occupation numbers

a†iai = Ua′†i a′iU†

neutron occupation01234567

1.96

3.87

1.93

4.68

0.57

0.57

=24 MeVωh, -1=2.0 fmΛLO 3N

= 6maxN

1/20s

3/20p

1/20p

5/20d

3/20d

1/21s

7/20f

5/20f

3/21p

1/21p

9/20g

7/20g

5/21d

3/21d

1/22s

11/20h

proton occupation0 1 2 3 4 5 6 7

1.96

3.87

1.93

4.68

0.57

0.57

Si28

Occupations:1) IM-SRG basis

2) Oscillator basis

1 2

0s1/2 2.0 1.960p3/2 4.0 3.870p1/2 2.0 1.930d5/2 6.0 4.681s1/2 0.0 0.570d3/2 0.0 0.57. . . . . . . . .

Same calculation,

different occupations!

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 14 / 27

Page 19: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

What to do about 22Na?co

reva

lenc

eex

clud

ed

decouple

decouple

|Φ0〉 = |16O〉

(Underestimate 3N)

core

vale

nce

excl

uded

decouple

decouple

|Φ0〉 = |28Si〉

(Overestimate 3N)

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 15 / 27

Page 20: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ensemble reference state (Equal filling)

Replace |Φ0〉 with ensemble (mixed) state characterized by density matrix:

ρ =∑i

αi|Φi〉〈Φi|Definition of normal ordering:

Tr(ρa†1 . . . aN) =∑i

αi〈Φi|a†1 . . . aN|Φi〉 = 0

Wick contraction:

a†paq =∑i

αi〈Φi|a†paq|Φi〉 ≡ npδpq

a†paq = npδpq , apa†q = (1− np)δpq , apaq = a†pa†q = 0

Now np can be fractional, which is exactly what we want!

No N-representability problem.

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 16 / 27

Page 21: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ensemble reference state (Equal filling)

Replace |Φ0〉 with ensemble (mixed) state characterized by density matrix:

ρ =∑i

αi|Φi〉〈Φi|Definition of normal ordering:

Tr(ρa†1 . . . aN) =∑i

αi〈Φi|a†1 . . . aN|Φi〉 = 0

Wick contraction:

a†paq =∑i

αi〈Φi|a†paq|Φi〉 ≡ npδpq

a†paq = npδpq , apa†q = (1− np)δpq , apaq = a†pa†q = 0

Now np can be fractional, which is exactly what we want!

No N-representability problem.

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 16 / 27

Page 22: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ensemble reference state (Equal filling)

Replace |Φ0〉 with ensemble (mixed) state characterized by density matrix:

ρ =∑i

αi|Φi〉〈Φi|Definition of normal ordering:

Tr(ρa†1 . . . aN) =∑i

αi〈Φi|a†1 . . . aN|Φi〉 = 0

Wick contraction:

a†paq =∑i

αi〈Φi|a†paq|Φi〉 ≡ npδpq

a†paq = npδpq , apa†q = (1− np)δpq , apaq = a†pa†q = 0

Now np can be fractional, which is exactly what we want!

No N-representability problem.

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 16 / 27

Page 23: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ensemble reference state (Equal filling)

Replace |Φ0〉 with ensemble (mixed) state characterized by density matrix:

ρ =∑i

αi|Φi〉〈Φi|Definition of normal ordering:

Tr(ρa†1 . . . aN) =∑i

αi〈Φi|a†1 . . . aN|Φi〉 = 0

Wick contraction:

a†paq =∑i

αi〈Φi|a†paq|Φi〉 ≡ npδpq

a†paq = npδpq , apa†q = (1− np)δpq , apaq = a†pa†q = 0

Now np can be fractional, which is exactly what we want!

No N-representability problem.

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 16 / 27

Page 24: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ensemble reference state (Equal filling)co

reva

lenc

eex

clud

ed

decouple

decouple

ρ = 23 |

16O〉〈16O|+ 13 |

22O〉〈22O|

18O

core

vale

nce

excl

uded

decouple

decouple

ρ = 12 |

16O〉〈16O|+ 12 |

28Si〉〈28Si|

22Na

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 17 / 27

Page 25: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence 3N forces: 10B, 22Na, 46V

Ground state of 10B is 3+

3N forces are required toreproduce this withoutfitting

Similar situation for 22Naand 46V

Normal ordering withensemble referencecaptures this

First ab initio calculationsof 22Na and 46V to obtaincorrect ordering

Navratil and Ormand 2002; Pieper, Varga, and Wiringa 2002; Gebrerufael, Calci, and Roth 2015

-3-2-101

E−E

3+ (M

eV)

1+3+

Λ3N=400 MeV

(a)

10 B

4 6 8 4 He8 He10 B-3-2-101

E−E

3+ (M

eV) 1+

3+

Λ3N=500 MeV10 BNCSM Nmax IMSRG reference

Exp. 22 Na 16 O 22 Na 16 O0.60.40.20.00.20.40.60.8

E−E

3+ (M

eV) 1+

3+

22 Na

(b) Λ3N =500 MeV

Λ3N =400 MeV

IMSRG ref. IMSRG ref.Exp.46 V40 Ca

0.1

0.0

0.1

0.2 1+

3+

46 V

(c) Λ3N =400 MeV

IMSRG ref.

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 18 / 27

Page 26: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Valence 3N forces: 10B, 22Na, 46V

Ground state of 10B is 3+

3N forces are required toreproduce this withoutfitting

Similar situation for 22Naand 46V

Normal ordering withensemble referencecaptures this

First ab initio calculationsof 22Na and 46V to obtaincorrect ordering

Navratil and Ormand 2002; Pieper, Varga, and Wiringa 2002; Gebrerufael, Calci, and Roth 2015

-3-2-101

E−E

3+ (M

eV)

1+3+

Λ3N=400 MeV

(a)

10 B

4 6 8 4 He8 He10 B-3-2-101

E−E

3+ (M

eV) 1+

3+

Λ3N=500 MeV10 BNCSM Nmax IMSRG reference

Exp. 22 Na 16 O 22 Na 16 O0.60.40.20.00.20.40.60.8

E−E

3+ (M

eV) 1+

3+

22 Na

(b) Λ3N =500 MeV

Λ3N =400 MeV

IMSRG ref. IMSRG ref.Exp.46 V40 Ca

0.1

0.0

0.1

0.2 1+

3+

46 V

(c) Λ3N =400 MeV

IMSRG ref.Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 18 / 27

Page 27: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ground states with ensemble reference

8 10 12 14 16 18 20 22 24A

120

100

80

60

40

Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

10 15 20 25A

160

140

120

100

80

60

40

20

0

Egs

(MeV

)

(b)AN (Z=7)

ExperimentSCGFIMSRG(C=R)IMSRG(TNO)

15 20 25 30A

220

200

180

160

140

120

100

80

60

Egs

(MeV

)

AF (Z=9)

ExperimentSCGFCCSD(T)IMSRG(C=R)IMSRG(TNO)

20 25 30 35 40A

260

240

220

200

180

160

140

120

100

Egs

(MeV

)

(d)ANa (Z=11)

ExperimentIMSRG(C=R)IMSRG(TNO)

35 40 45 50 55 60A

550

500

450

400

350

300

250

200

Egs

(MeV

)

(e)ACa (Z=20)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

8 10 12 14 16 18 20 22 24A

120

100

80

60

40

Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

Cipollone, Barbieri, and Navratil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 19 / 27

Page 28: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ground states with ensemble reference

8 10 12 14 16 18 20 22 24A

120

100

80

60

40

Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

10 15 20 25A

160

140

120

100

80

60

40

20

0

Egs

(MeV

)

(b)AN (Z=7)

ExperimentSCGFIMSRG(C=R)IMSRG(TNO)

15 20 25 30A

220

200

180

160

140

120

100

80

60

Egs

(MeV

)

AF (Z=9)

ExperimentSCGFCCSD(T)IMSRG(C=R)IMSRG(TNO)

20 25 30 35 40A

260

240

220

200

180

160

140

120

100

Egs

(MeV

)

(d)ANa (Z=11)

ExperimentIMSRG(C=R)IMSRG(TNO)

35 40 45 50 55 60A

550

500

450

400

350

300

250

200

Egs

(MeV

)

(e)ACa (Z=20)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

8 10 12 14 16 18 20 22 24A

120

100

80

60

40Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

Cipollone, Barbieri, and Navratil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 19 / 27

Page 29: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ground states with ensemble reference

8 10 12 14 16 18 20 22 24A

120

100

80

60

40

Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

10 15 20 25A

160

140

120

100

80

60

40

20

0

Egs

(MeV

)

(b)AN (Z=7)

ExperimentSCGFIMSRG(C=R)IMSRG(TNO)

15 20 25 30A

220

200

180

160

140

120

100

80

60

Egs

(MeV

)

AF (Z=9)

ExperimentSCGFCCSD(T)IMSRG(C=R)IMSRG(TNO)

20 25 30 35 40A

260

240

220

200

180

160

140

120

100

Egs

(MeV

)

(d)ANa (Z=11)

ExperimentIMSRG(C=R)IMSRG(TNO)

35 40 45 50 55 60A

550

500

450

400

350

300

250

200

Egs

(MeV

)

(e)ACa (Z=20)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

8 10 12 14 16 18 20 22 24A

120

100

80

60

40

Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

Cipollone, Barbieri, and Navratil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 19 / 27

Page 30: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Ground states with ensemble reference

8 10 12 14 16 18 20 22 24A

120

100

80

60

40

Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

10 15 20 25A

160

140

120

100

80

60

40

20

0

Egs

(MeV

)

(b)AN (Z=7)

ExperimentSCGFIMSRG(C=R)IMSRG(TNO)

15 20 25 30A

220

200

180

160

140

120

100

80

60

Egs

(MeV

)

AF (Z=9)

ExperimentSCGFCCSD(T)IMSRG(C=R)IMSRG(TNO)

20 25 30 35 40A

260

240

220

200

180

160

140

120

100

Egs

(MeV

)

(d)ANa (Z=11)

ExperimentIMSRG(C=R)IMSRG(TNO)

35 40 45 50 55 60A

550

500

450

400

350

300

250

200

Egs

(MeV

)

(e)ACa (Z=20)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

8 10 12 14 16 18 20 22 24A

120

100

80

60

40

Egs

(MeV

)

(a)AC (Z=6)

ExperimentCCSD(T)IT-NCSMIMSRG(C=R)IMSRG(TNO)

50 55 60 65 70 75 80A

750

700

650

600

550

500

450

400

350

300

Egs

(MeV

)

(f)

ANi (Z=28)

ExperimentMR-IMSRGCRCCIMSRG(C=R)IMSRG(TNO)

Cipollone, Barbieri, and Navratil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 19 / 27

Page 31: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Germanium/Selenium 0+ states

IM-SRG Exp

0

5

10

15E

(0+

) (M

eV)

72 Ge

-740.98 -628.69

IM-SRG Exp2

0

2

4

6

E(0

+) (

MeV

)

74 Ge

-756.72 -645.66

IM-SRG Exp1

0

1

2

3

E(0

+) (

MeV

)

76 Ge

-772.90 -661.60

IM-SRG Exp0.50.00.51.01.52.02.5

E(0

+) (

MeV

)

72 Se

-738.10 -622.40

IM-SRG Exp202468

10E

(0+

) (M

eV)

74 Se

-758.87 -642.89

IM-SRG Exp

0.50.00.51.01.52.02.53.0

E(0

+) (

MeV

)

76 Se

-778.51 -662.07

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 20 / 27

Page 32: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Effective operators

Effective operators

Some very preliminary results

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 21 / 27

Page 33: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Effective operators

Operators transform just like H:

O = eΩOe−Ω = O + [Ω,O] +1

2[Ω, [Ω,O]] + . . .

Tensor operators require additional angular momentum coupling:

Oλ = eΩOλe−Ω = Oλ + [Ω,Oλ]λ +1

2[Ω, [Ω,Oλ]λ]λ + . . .

Shell model expectation values then reflect full-space expectationvalues:

〈Ψ|O|Ψ〉 = 〈ΨSM |O|ΨSM 〉

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 22 / 27

Page 34: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Effective operators

The deuteron

Valence space: 0s shell

No effects of induced many-body forces

Bare quadrupole operator (λ = 2) gives identically zero

0s1/2

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 23 / 27

Page 35: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Effective operators

The deuteron

0 2 4 6 8 10emax

2

1

0

1

E (M

eV)

BindingEnergy

0 2 4 6 8 10emax

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Q (f

m2

) QuadrupoleMoment

Energy correctly reproduced

〈0s1/20s1/2|Q|0s1/20s1/2〉 6= 0

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 23 / 27

Page 36: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Into the sd shell: Neon Radii

18 20 22 24 26 28 30A

2.5

2.6

2.7

2.8

2.9

3.0

3.1rm

s ch

arge

radi

us (f

m)

ANe

IM-SRG

IM-SRG (Scaled)

Skyrme HF

IM-SRG (targeted)

Marinova et al. 2011; Brown 1998

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 24 / 27

Page 37: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Tensor Operators

Moments

N

S

20 O 20 F 20 Ne 20 Na 20 Mg2

1

0

1

2

3

µ(2

+) (µN

)

USD-bareUSD-effExpIMSRG-bareIMSRG-eff

20 O 20 F 20 Ne 20 Na 20 Mg30

25

20

15

10

5

0

5

10

Q(2

+) (ef

m2

)USD-bareUSD-effExpIMSRG-bareIMSRG-eff

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 25 / 27

Page 38: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Tensor Operators

Transitions

N

S

20 O 20 F 20 Ne 20 Na 20 Mg0.0

0.1

0.2

0.3

0.4

0.5

B(M

1;3

+→

2+

) (µ

2 N)

USD-bareUSD-effExpIMSRG-bareIMSRG-eff

20 O 20 F 20 Ne 20 Na 20 Mg

0

10

20

30

40

50

60

70

80

B(E

2;2

+→

0+

) (e2

fm4

)

USD-bareUSD-effExpIMSRG-bareIMSRG-eff

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 26 / 27

Page 39: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Summary

Ab initio methods provide a means to calculate matrix elementswhere fitting to data is not possibleEffective valence-space approach enables consistent treatment ofexcited states, transitions, open-shell/deformed systemsTargeted normal ordering with an ensemble reference provides areasonable approximation of valence 3N forcesEvolved tensor operators produce some renormalization – more workto be done.MEC corrections to operators can be handled without additionaltrouble

Collaborators:

A. Calci, J. Holt, P. Navratil

NSCL/MSU S. Bogner, H. Hergert, T. Morris, N. Parzuchowski

TU Darmstadt A. Schwenk, J. SimonisRagnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 27 / 27

Page 40: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Appendix

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 28 / 27

Page 41: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Tensor Operators

Moments

N

S

12 16 20 24 28ω (MeV)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

µ(2

+) (µN

)

ωem

p

20 Nebare

12 16 20 24 28ω (MeV)

10

9

8

7

6

5

4

3

2

Q0(2

+) (ef

m2

)

ωem

p

20 Neemax=4emax=6emax=8emax=10

bare

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 29 / 27

Page 42: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Tensor Operators

Moments

N

S

12 16 20 24 28ω (MeV)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

µ(2

+) (µN

)

ωem

p

20 Nebare1b

12 16 20 24 28ω (MeV)

10

9

8

7

6

5

4

3

2

Q0(2

+) (ef

m2

)

ωem

p

20 Neemax=4emax=6emax=8emax=10

bare1b

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 29 / 27

Page 43: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Tensor Operators

Moments

N

S

12 16 20 24 28ω (MeV)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

µ(2

+) (µN

)

ωem

p

20 Nebare1b1b+2b

12 16 20 24 28ω (MeV)

10

9

8

7

6

5

4

3

2

Q0(2

+) (ef

m2

)

ωem

p

20 Neemax=4emax=6emax=8emax=10

bare1b1b+2b

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 29 / 27

Page 44: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

Tensor Operators

Transitions

N

S

12 16 20 24 28ω (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B(M

1;3

+→

2+

) (µ

2 n)

emax=4emax=6emax=8emax=10

20 Fbare1b1b+2b

12 16 20 24 28ω (MeV)

0

5

10

15

20

25

B(E

2;2

+→

0+

) (e2

fm4

)

ωem

p

emax=4emax=6emax=8emax=10

20 Ne bare1b1b+2b

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 30 / 27

Page 45: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

How to choose Ω?

A toy problem:

H =

(ε1 hodhod ε2

), Ω =

(0 θ−θ 0

), eΩ =

(cos θ sin θ− sin θ cos θ

)

eΩHe−Ω =

(ε1 cos2 θ + ε2 sin2 θ + h sin 2θ hod cos 2θ + ε2−ε1

2 sin 2θhod cos 2θ + ε2−ε1

2 sin 2θ ε2 cos2 θ + ε1 sin2 θ − h sin 2θ

)

h′od → 0 ⇒ θ = 12 tan−1

(2hodε1−ε2

)θ 1 ⇒ θ ≈ hod

ε1−ε2

S. R. White, J. Chem Phys. 117, 7472 (2002)Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 31 / 27

Page 46: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

IM-SRG

Application to 16O:

|Φ0〉 =

η ∼ Hod∆ − h.c.

Hod is any term that connects|Φ0〉 to any other configuration

s is the total “angle” rotated

Ground state energy given by asingle matrix element: 〈Φ0|H|Φ0〉

Tsukiyama, Bogner, and Schwenk 2011; Ekstrom et al. 2015

0 1 2 3 4 5s

130

120

110

100

90

80

70

60

50

40

E0 (M

eV)

N2LOSAT

ω=22 MeV

13 shells

16 O

Experiment

0 5 10 15 20 25 30 35s

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

||η||

N2LOSAT

ω=22 MeV

13 shells

16 O

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 32 / 27

Page 47: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

IM-SRG

Where did all the correlations go?

Original single particle basis: |φi〉 = a†i |0〉The transformed H is implicitly in terms of a†i

a†i = U †(a†i )U

= Cia†i +∑j 6=iCja†j +

∑jk

Cjkla†ja†kal + . . .

The single-particle orbits are now much more complicated!

⇒U

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 33 / 27

Page 48: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

References I

Binder, Sven et al. (2014). “Ab initio path to heavy nuclei”. In: Phys. Lett. B 736, pp. 119–123. issn: 03702693. doi:

10.1016/j.physletb.2014.07.010. url: http://www.sciencedirect.com/science/article/pii/S0370269314004961.

Bogner, S. K. et al. (2014). “Nonperturbative shell-model interactions from the in-medium similarity renormalization group”.

In: Phys. Rev. Lett. 113.14, p. 142501. issn: 0031-9007. doi: 10.1103/PhysRevLett.113.142501. arXiv: 1402.1407. url:http://link.aps.org/doi/10.1103/PhysRevLett.113.142501.

Brown, B. A. (1998). “New Skyrme interaction for normal and exotic nuclei”. In: Phys. Rev. C 58.1, pp. 220–231. issn:

0556-2813. doi: 10.1103/PhysRevC.58.220. url: http://link.aps.org/doi/10.1103/PhysRevC.58.220.

Brown, B. A. et al. (2006). “Tensor interaction contributions to single-particle energies”. In: Phys. Rev. C 74.6, p. 061303.

issn: 0556-2813. doi: 10.1103/PhysRevC.74.061303. url: http://link.aps.org/doi/10.1103/PhysRevC.74.061303.

Cipollone, A., C. Barbieri, and P. Navratil (2013). “Isotopic Chains Around Oxygen from Evolved Chiral Two- and

Three-Nucleon Interactions”. In: Phys. Rev. Lett. 111.6, p. 062501. issn: 0031-9007. doi:10.1103/PhysRevLett.111.062501. url: http://link.aps.org/doi/10.1103/PhysRevLett.111.062501.

Ekstrom, A. et al. (2015). “Accurate nuclear radii and binding energies from a chiral interaction”. In: Phys. Rev. C 91.5,

p. 051301. issn: 0556-2813. doi: 10.1103/PhysRevC.91.051301. url:http://link.aps.org/doi/10.1103/PhysRevC.91.051301.

Entem, D. R. and R. Machleidt (2003). “Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral

perturbation theory”. In: Phys. Rev. C 68.4, p. 041001. issn: 0556-2813. doi: 10.1103/PhysRevC.68.041001. url:http://link.aps.org/doi/10.1103/PhysRevC.68.041001.

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 34 / 27

Page 49: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

References II

Gaudin, Michel (1960). “Une demonstration simplifiee du theoreme de wick en mecanique statistique”. In: Nucl. Phys. 15,

pp. 89–91. issn: 00295582. doi: 10.1016/0029-5582(60)90285-6. url:http://www.sciencedirect.com/science/article/pii/0029558260902856.

Gebrerufael, Eskendr, Angelo Calci, and Robert Roth (2015). “Open-Shell Nuclei and Excited States from Multi-Reference

Normal-Ordered Hamiltonians”. In: p. 6. arXiv: 1511.01857. url: http://arxiv.org/abs/1511.01857.

Hergert, H. et al. (2014). “Ab initio multireference in-medium similarity renormalization group calculations of even calcium and

nickel isotopes”. In: Phys. Rev. C 90.4, p. 041302. issn: 0556-2813. doi: 10.1103/PhysRevC.90.041302. url:http://link.aps.org/doi/10.1103/PhysRevC.90.041302.

Jansen, G. R. et al. (2015). “Deformed sd-shell nuclei from first principles”. In: arXiv: 1511.00757. url:

http://arxiv.org/abs/1511.00757.

Marinova, K. et al. (2011). “Charge radii of neon isotopes across the s d neutron shell”. In: Phys. Rev. C 84.3, p. 034313. issn:

0556-2813. doi: 10.1103/PhysRevC.84.034313. url: http://link.aps.org/doi/10.1103/PhysRevC.84.034313.

Morris, T. D., N. M. Parzuchowski, and S. K. Bogner (2015). “Magnus expansion and in-medium similarity renormalization

group”. In: Phys. Rev. C 92.3, p. 034331. issn: 0556-2813. doi: 10.1103/PhysRevC.92.034331. arXiv: 1507.06725. url:http://journals.aps.org.ezproxy.library.ubc.ca/prc/abstract/10.1103/PhysRevC.92.034331.

Navratil, P. (2007). “Local three-nucleon interaction from chiral effective field theory”. In: Few-Body Syst. 41.3-4, pp. 117–140.

issn: 0177-7963. doi: 10.1007/s00601-007-0193-3. url: http://link.springer.com/10.1007/s00601-007-0193-3.

Navratil, Petr and W Erich Ormand (2002). “Ab initio shell model calculations with three-body effective interactions for p-shell

nuclei.” In: Phys. Rev. Lett. 88.15, p. 152502. issn: 0031-9007. doi: 10.1103/PhysRevLett.88.152502. url:http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.152502.

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 35 / 27

Page 50: Ab initio effective interactions and operators from IM-SRGdoublebetadecay.triumf.ca/slides/ragnar_dbws.pdf · Strongly-interacting system !highly correlated !hard to solve. The underlying

References III

Perez-Martin, Sara and L. M. Robledo (2008). “Microscopic justification of the equal filling approximation”. In: Phys. Rev. C

78.1, p. 014304. issn: 0556-2813. doi: 10.1103/PhysRevC.78.014304. url:http://journals.aps.org/prc/abstract/10.1103/PhysRevC.78.014304.

Pieper, S., K. Varga, and R. Wiringa (2002). “Quantum Monte Carlo calculations of A=9,10 nuclei”. In: Phys. Rev. C 66.4,

p. 044310. issn: 0556-2813. doi: 10.1103/PhysRevC.66.044310. url:http://link.aps.org/doi/10.1103/PhysRevC.66.044310.

Thouless, D. J. (1957). “Use of Field Theory Techniques in Quantum Statistical Mechanics”. In: Phys. Rev. 107.4,

pp. 1162–1163. issn: 0031-899X. doi: 10.1103/PhysRev.107.1162. url:http://journals.aps.org/pr/abstract/10.1103/PhysRev.107.1162.

Tsukiyama, K., S. K. Bogner, and A. Schwenk (2011). “In-Medium Similarity Renormalization Group For Nuclei”. In: Phys.

Rev. Lett. 106.22, p. 222502. issn: 0031-9007. doi: 10.1103/PhysRevLett.106.222502. url:http://link.aps.org/doi/10.1103/PhysRevLett.106.222502.

— (2012). “In-medium similarity renormalization group for open-shell nuclei”. In: Phys. Rev. C 85.6, p. 061304. issn:

0556-2813. doi: 10.1103/PhysRevC.85.061304. url: http://link.aps.org/doi/10.1103/PhysRevC.85.061304.

White, Steven R. (2002). “Numerical canonical transformation approach to quantum many-body problems”. In: J. Chem. Phys.

117.16, p. 7472. issn: 00219606. doi: 10.1063/1.1508370. url:http://scitation.aip.org.proxy2.cl.msu.edu/content/aip/journal/jcp/117/16/10.1063/1.1508370.

Ragnar Stroberg (TRIUMF) Valence space IM-SRG May 13, 2016 36 / 27