Ab-initio analysis of the structural and electronic ...

35
Ab-initio analysis of the structural and electronic properties of new carbon allotropes. Francesco Delodovici Supervisors: G. Onida N. Manini

Transcript of Ab-initio analysis of the structural and electronic ...

Page 1: Ab-initio analysis of the structural and electronic ...

Ab-initio analysis of the structural and electronic propertiesof new carbon allotropes.

Francesco Delodovici Supervisors: G. Onida N. Manini

Page 2: Ab-initio analysis of the structural and electronic ...
Page 3: Ab-initio analysis of the structural and electronic ...
Page 4: Ab-initio analysis of the structural and electronic ...
Page 5: Ab-initio analysis of the structural and electronic ...
Page 6: Ab-initio analysis of the structural and electronic ...
Page 7: Ab-initio analysis of the structural and electronic ...
Page 8: Ab-initio analysis of the structural and electronic ...
Page 9: Ab-initio analysis of the structural and electronic ...

● Ab-initio ground-state theory: no parameters

E [n( r⃗)]=T [n( r⃗)]+ENucl [n ( r⃗ )]+EHa [n( r⃗ )]+Exc [n( r⃗)]

Density Functional Theory

7

Page 10: Ab-initio analysis of the structural and electronic ...

● Ab-initio ground-state theory: no parameters

● Kohn-Sham equations:

{−ℏ2

2m∇2+V nuc (r⃗)+V Ha [n( r⃗)]+V xc [n( r⃗)]} ψi( r⃗)= ϵi ψi( r⃗)

Density Functional Theory

E [n ( r⃗ )]=T [n( r⃗ )]+ENucl [n ( r⃗)]+EHa [n( r⃗)]+Exc [n( r⃗ )]

7

Page 11: Ab-initio analysis of the structural and electronic ...

● Ab-initio ground-state theory: no parameters

● Kohn-Sham equations:

{−ℏ2

2m∇2+V nuc (r⃗)+V Ha [n( r⃗)]+V xc [n( r⃗)]} ψi( r⃗)= ϵi ψi( r⃗)

Density Functional Theory

E [n ( r⃗ )]=T [n( r⃗ )]+ENucl [n ( r⃗)]+EHa [n( r⃗)]+Exc [n( r⃗ )]

Approximated (LDA,GGA etc.)

7

Page 12: Ab-initio analysis of the structural and electronic ...

● Ab-initio ground-state theory: no parameters

● Kohn-Sham equations:

{−ℏ2

2m∇2+V nuc (r⃗)+V Ha [n( r⃗)]+V xc [n( r⃗)]} ψi( r⃗)= ϵi ψi( r⃗)

Density Functional Theory

E [n ( r⃗ )]=T [n( r⃗ )]+ENucl [n ( r⃗)]+EHa [n( r⃗)]+Exc [n( r⃗ )]

● Total energy:

E tot=∑ jϵ j−EHa+∫ [ϵxc (n( r⃗))−V xc (n( r⃗))]n ( r⃗ )d r⃗+Eion−ion

7

Page 13: Ab-initio analysis of the structural and electronic ...

● Ab-initio ground-state theory: no parameters

● Kohn-Sham equations:

{−ℏ2

2m∇2+V nuc (r⃗)+V Ha [n( r⃗)]+V xc [n( r⃗)]} ψi( r⃗)= ϵi ψi( r⃗)

Density Functional Theory

E [n ( r⃗ )]=T [n( r⃗ )]+ENucl [n ( r⃗)]+EHa [n( r⃗)]+Exc [n( r⃗ )]

● Total energy (fixed ions position):

E tot=∑ jϵ j−EHa+∫ [ϵxc (n( r⃗))−V xc (n( r⃗))]n ( r⃗ )d r⃗+Eion−ion

Optimized structural equilibrium

7

Page 14: Ab-initio analysis of the structural and electronic ...
Page 15: Ab-initio analysis of the structural and electronic ...

Structural research

● Minimum energy configuration unkown → is any dimer present?

9

Page 16: Ab-initio analysis of the structural and electronic ...

Structural research

● Minimum energy configuration unkown → is any dimer present?

Total energy, binding energy

● Structural optimization of different configurations (DFT relaxation)

9

Page 17: Ab-initio analysis of the structural and electronic ...

Structural research

● Minimum energy configuration unkown → is any dimer present?

● Structural optimization of different configurations (DFT relaxation)

Total energy, binding energy

9

Page 18: Ab-initio analysis of the structural and electronic ...

Structural research

● Excitation energy as a function of the displacement of the switching carbons

10

Page 19: Ab-initio analysis of the structural and electronic ...

Structural research

● 2 equivalent minima

● Excitation energy as a function of the displacement of the switching carbons

● No dimer configuration is unstable

● Formation E of one dimer ~ 1 eV (protomene ~ 0.6 eV)

10

Page 20: Ab-initio analysis of the structural and electronic ...

Numerical results

Ebdiam=− 8.908 [eV ] LDA

− 8.252 [eV ] GGA

Eb=EtotN−Eatom

Comparable stability

11

Page 21: Ab-initio analysis of the structural and electronic ...

Insulator – metal transition

Semiconductor:

● Ground-state novamene

Egap=0.336 [eV ]

Indirect gap

12

Page 22: Ab-initio analysis of the structural and electronic ...
Page 23: Ab-initio analysis of the structural and electronic ...
Page 24: Ab-initio analysis of the structural and electronic ...

Numerical results

transition

14

Page 25: Ab-initio analysis of the structural and electronic ...

Numerical results

transition

14

Page 26: Ab-initio analysis of the structural and electronic ...

Phonons dispersion relation: protomene ground state

● DFPT: density functional perturbation theory

C I , Jα , β=

∂E {R⃗}∂R I

α⋅∂RJβ Interatomic force constant matrix

● ω normal modes

15

Page 27: Ab-initio analysis of the structural and electronic ...

Phonons dispersion relation: protomene ground state

● DFPT

C I , Jα , β=

∂E {R⃗}∂R I

α⋅∂RJβ

● ω normal modes

● gap in optical modes

Δ≈92 [cm−1]≈2.75 [THz ]

15

● Mechanical stability

Page 28: Ab-initio analysis of the structural and electronic ...

● DFPT

C I , Jα , β= ∂ E {R⃗}

∂R Iα⋅∂RJ

β

● ω normal modes

● gap in optical modes

● mechanical stability

Δ≈92 [cm−1]≈2.75 [THz ]

Phonons dispersion relation: protomene ground state

15

Page 29: Ab-initio analysis of the structural and electronic ...

Conclusions

● Theoretical design and optimization of mixed sp²-sp³ carbon structures.

● Temperature driven switching between insulating and conducting states.

● Stability has been checked by phonon spectra calculations.

16

Page 30: Ab-initio analysis of the structural and electronic ...

Further developments

● Complete analysis of novamene dimers combination

● Understanding optical gap in protomene phonons

● Phonons spectra of novamene

● Slab configurations

● Raman spectrum17

Page 31: Ab-initio analysis of the structural and electronic ...

Density Functional Theory

● Exchange correlation term.

LDA → Exc [n( r⃗)]=∫V ϵheg(n(r⃗))n( r⃗ )d r⃗ ϵheg≈∑i[ni

² / ³−ni¹ / ³ ]

V xc [n(r⃗)]=δExc [n( r⃗)]δn( r⃗)

=ϵheg(n(r⃗ ))+n( r⃗ )∂ϵheg( r⃗ , n( r⃗ ))

∂n( r⃗)

E tot=∑ jϵ j−EHa+∫ϵxc(n( r⃗))n( r⃗ )d r⃗−∫V xc (n( r⃗ ))n(r⃗)d r⃗ + E ion−ion

EHa=e2

2 ∫n(r⃗ )n(r⃗ ' )|⃗r−r⃗ '|

d r⃗ d r⃗ ' LDA (GGA )E ion−ion=e

2∑k< l

Zk Z l|Rk−R l|

QMC

18

HF

Page 32: Ab-initio analysis of the structural and electronic ...

Density Functional Theory

● Total energy

E tot=∑ jϵ j−EHa+∫ϵxc(n( r⃗))n( r⃗)d r⃗−∫V xc (n( r⃗ ))n(r⃗)d r⃗ + E ion−ion

19

T ks + Eions(n(r⃗ ))+EHa

E tot=T ks+Eions+EHa+∫ϵxc(n(r⃗))n( r⃗ )d r⃗ + Eion−ion

double counting

Page 33: Ab-initio analysis of the structural and electronic ...

DFT relaxation

● BFGS algorithm: quasi newtonian algorithm

Hessian approximation

(iteratively updated)

20

x⃗ n+1= x⃗ n−[H f ( x⃗ n)]−1 ∇⃗ f ( x⃗ n)

xn+1=xn−f ' (xn)f ' ' (xn)

f ( x⃗ 'n)≡E tot ({ R⃗ ions })

Hellman-Feynman:

F⃗ I =−∇⃗ E tot (R⃗)=−⟨ψ | ∇⃗ V ( R⃗)| ψ⟩−∇⃗ E ions( R⃗)

Page 34: Ab-initio analysis of the structural and electronic ...

Density Functional Perturbation Theory

DFPT

C I , Jα , β=

∂E {R⃗}∂R I

α⋅∂RJβ

ω normal modes:

15

∑J ,β[D I , J

α ,β−ω2δ I , J δα ,β ]uJβ=0

∂2 E∂ R I∂ RJ

=∫ ∂V (r )∂ R I

∂n (r )∂RJ

d r⃗+∫n(r) ∂2V (r )

∂ R I ∂RJd r⃗

Linear response function:

χ=χ0+χ0 [δV el

δn] χχ0(r , r ')≈ℜ∑v , c

~ψ ' v (r ) ψc(r)~ψ c (r ' ) ψv (r ' )

ϵv−ϵc

Page 35: Ab-initio analysis of the structural and electronic ...