AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3....

53
AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics Stanford University Chapter 10 - Elements of potential flow

Transcript of AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3....

Page 1: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

AA200 Applied Aerodynamics

Brian Cantwell Department of Aeronautics and Astronautics

Stanford University

Chapter 10 - Elements of potential flow

Page 2: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.1 Incompressible flow

Page 3: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 4: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.2 Potentials

Page 5: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 6: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.4 Point source solution of Laplace's equation

Φ r,t( ) = −Q t( )4πρr

Ur =∂Φ∂r

=Q t( )4πρr2

Radial velocity

Integrate over any closed surface surrounding the source

Ur0

π

∫0

∫ r2Sin θ( )dθdφ =Q t( )ρ

Potential at due to a source at x xs

Page 7: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Potential generated by a distribution of sources

Scalar potential

∇2Φ = Q x ,t( )

∇2A = −Ω x ,t( )

Vector potential

Page 8: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Example - Scalar potential generated by a line distribution of sources

Source distribution

Integrate

Potential

Units of S = Area/Sec

Page 9: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Semi-infinite line of sources - Let a→ −∞

Page 10: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Let b→∞

Infinite line of sources

Page 11: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

2-D potential for a point source Q

2-D radial velocity

Integrate over any closed contour surrounding the source

The fundamental source solution can be used to construct the Poisson solution for a distribution of sources in two dimensions

Units of Q t( ) = Mass/Length-Sec

Page 12: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Example – A vortex monopole

Vorticity point source

Vector potential

Velocity field

Page 13: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Example - Vector potential generated by a line distribution of vortices

A = 0,0,Az( )

Vector source distribution

Vector potential has only one non-zero component

Page 14: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

The velocity has two nonzero components

Page 15: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

2-D vector potential for a point vortex Γ

The fundamental point vortex solution can be used to construct the Poisson solution for a distribution of vortices in two dimensions

Let a = -b and take the limit b→∞

Infinite line of vortices

aka the stream function

Page 16: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Example - Uniform Flow past a sphere

Page 17: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Disturbance velocity from a 3-D body decays like 1 / r3

Page 18: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.6 Elementary 2-D potential flows

2-D potential flows satisfy the Cauchy Riemann conditions

Complex potential

Page 19: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Both components of the complex potential satisfy Laplace's equation

Complex velocity

Page 20: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

W =U∞z +Q2π

Ln z − a( ) − Q2π

Ln z + a( )

Page 21: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 22: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 23: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 24: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 25: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 26: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 27: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 28: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

In steady flow the force is perpendicular to the velocity vector approaching the body

Force by a uniform flow on a 3-D rigid body in an inviscid fluid

Page 29: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Force on a 2-D rigid body

Page 30: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Force on a 2-D body in potential flow is

Page 31: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.9 Virtual mass

Virtual mass = 1/2 of the displaced mass

Page 32: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 33: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Fx = 2π Rsphere( )3 ρ U∞dfdt

⎛⎝⎜

⎞⎠⎟ =

23π Rsphere( )3 ρ U∞

dfdt

⎛⎝⎜

⎞⎠⎟ +

43π Rsphere( )3 ρ U∞

dfdt

⎛⎝⎜

⎞⎠⎟

Fx =23π Rsphere( )3 ρ U∞

dfdt

⎛⎝⎜

⎞⎠⎟

Force on an accelerated sphere vs a sphere in an accelerated fluid

Fluid is inviscid

Accelerate the sphere

Virtual mass = 1/2 of the displaced mass

Accelerate the fluid

Acceleration

U∞df t( )dt

f t( ) is dimensionless

Virtual mass effect Buoyancy effect

Page 34: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Low Reynolds number flow

Take the curl of the incompressible momentum equation

∇× ∂U∂t

+U ⋅∇U + 1ρ∇P −ν∇2U

⎛⎝⎜

⎞⎠⎟= 0

The result is the transport equation for the vorticity ∂Ω∂t

+U ⋅∇Ω−Ω⋅∇U = ν∇2Ω

If the flow is steady and the velocity is very small the equation reduces to ∇2Ω = 0

Recall the Poisson equation for the vector potential

∇2A = −ΩLow Reynolds number flow is governed by the biharmonic equation

∇2 ∇2A( ) = 0

Page 35: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

z

U∞

g

Viscous flow past a sphere at low Reynolds number

R

Page 36: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

∇2 ∇2A( ) = ∂2

∂r2+Sin θ( )r2

∂∂θ

1Sin θ( )

∂∂θ

⎛⎝⎜

⎞⎠⎟

⎝⎜⎞

⎠⎟

2

Ψ = 0

Ur = −1

r2Sin θ( )∂Ψ∂θ

Uθ =1

rSin θ( )∂Ψ∂r

Ur R,θ( ) = 0Uθ R,θ( ) = 0

limr→∞

Ψ→ −12U∞r

2Sin2 θ( )

The Stokes stream function

The flow is axisymmetric and best posed in spherical polar coordinates

Velocities

Boundary conditions

No-slip condition

Uniform flow at infinity

Page 37: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Ψ = f r( )Sin2 θ( )

ΨU∞R

2 = −12

rR

⎛⎝⎜

⎞⎠⎟2

+34

rR

⎛⎝⎜

⎞⎠⎟−14

rR

⎛⎝⎜

⎞⎠⎟−1⎛

⎝⎜⎞

⎠⎟Sin2 θ( )

Ur

U∞

= 1− 32

rR

⎛⎝⎜

⎞⎠⎟−1

+12

rR

⎛⎝⎜

⎞⎠⎟−3⎛

⎝⎜⎞

⎠⎟Cos θ( )

U∞

= −1+ 34

rR

⎛⎝⎜

⎞⎠⎟−1

+14

rR

⎛⎝⎜

⎞⎠⎟−3⎛

⎝⎜⎞

⎠⎟Sin θ( )

τ rθRµU∞

=32

rR

⎛⎝⎜

⎞⎠⎟−4

Sin θ( )

P − P∞( )RµU∞

= −ρgR2

µU∞

zR

⎛⎝⎜

⎞⎠⎟−32

rR

⎛⎝⎜

⎞⎠⎟2

Cos θ( )

f r( ) = ar+ br + cr2 + dr4

Assume

Solution

Viscous stress

Pressure

Page 38: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

FzPressure = − P R,θ( )Cos θ( )( )R2Sin θ( )0

π

∫0

∫ dθdφ =43πR3ρg + 2πµRU∞

FzViscous = τ rθ R,θ( )Sin θ( )( )R2Sin θ( )0

π

∫0

∫ dθdφ = 4πµRU∞

Fz =43πR3ρg + 2πµRU∞ + 4πµRU∞

Drag components

Buoyancy force

Pressure drag

Viscous drag

Page 39: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

DStokes = 6πµRU∞

Re =ρU∞ 2R( )

µ

CD =DStokes

12ρU∞

2 πR2( )=12πµRU∞

ρU∞2 πR2( ) =

12µρU∞R

=24Re

Reynolds number

Non buoyant pressure plus viscous drag

Page 40: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Dissipation of kinetic energy by viscous friction

εµ=τ ijµ

∂Ui

∂x j= 2SijSij Sij =

12

∂Ui

∂x j+∂Uj

∂xi

⎝⎜⎞

⎠⎟

εµ= 2 ∂Ur

∂r⎛⎝⎜

⎞⎠⎟2

+ 2 1r∂Uθ

∂θ+Ur

r⎛⎝⎜

⎞⎠⎟2

+ 2 Ur

r+Uθ

rCot θ( )⎛

⎝⎜⎞⎠⎟2

+ ∂Uθ

∂r−Uθ

r+ 1r∂Ur

∂θ⎛⎝⎜

⎞⎠⎟2

εR2

µU 2∞

=94

rR

⎛⎝⎜

⎞⎠⎟−8

3 rR

⎛⎝⎜

⎞⎠⎟2

−1⎛

⎝⎜⎞

⎠⎟

2

Cos2 θ( ) + Sin2 θ( )⎛

⎝⎜⎜

⎠⎟⎟

Axisymmetric flow in spherical polar coordinates

Low Reynolds number flow over a sphere

Page 41: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

εr2Sin θ( )drR

∫0π

∫0

∫ dθdφ =

94µU 2

∞RrR

⎛⎝⎜

⎞⎠⎟−8

3 rR

⎛⎝⎜

⎞⎠⎟2

−1⎛

⎝⎜⎞

⎠⎟

2

Cos2 θ( ) + Sin2 θ( )⎛

⎝⎜⎜

⎠⎟⎟

rR

⎛⎝⎜

⎞⎠⎟2

Sin θ( )d rR

⎛⎝⎜

⎞⎠⎟1

∫0π

∫0

∫ dθdφ = 6πµU∞R( )U∞ = DStokesU∞

Integrate the kinetic energy dissipation over the flow volume out to infinity

Page 42: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 43: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.7 Force on a rigid body translating in an inviscid fluid

Space-fixed reference frame

Body-fixed reference frame

Page 44: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Transform the Bernoulli constant

Page 45: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Transformation of the time derivative of the potential

The force on the body in the body fixed frame is determined by

Page 46: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.7.3 Relation between the force acting on the body and the potential

Page 47: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

UB = XB t( ), YB t( ), ZB t( )( )

U = uLet

Use the vector identity

These two terms cancel

Page 48: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 49: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics
Page 50: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

Finally the force on a body in potential flow in the body-fixed frame is

In steady flow the force is perpendicular to the velocity vector approaching the body

Page 51: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

10.9 Virtual mass

Force on the sphere in the body-fixed frame

Page 52: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics

What is the force on the body in the space-fixed frame?

Force on the sphere in the space-fixed frame

Virtual mass = 1/2 of the displaced mass

Page 53: AA200 Applied Aerodynamics - Stanford Universitycantwell/AA200_Course_Material/... · 2019. 3. 26. · AA200 Applied Aerodynamics Brian Cantwell Department of Aeronautics and Astronautics