A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for...

46
A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle systems to differential equations WIAS, February 21-23, 2012 IMPA and CNRS Rouen

Transcript of A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for...

Page 1: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

A thermodynamical theory for nonequilibriumsystems

L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L.

From particle systems to differential equationsWIAS, February 21-23, 2012

IMPA and CNRS Rouen

Page 2: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

EP@

1/N 2/N (N-1)/N

Λ ⊂ Rd N ≥ 1 {x/N ∈ Λ : x ∈ Z

d}

λ : ∂Λ → R chemical potential

Creation:eλ(x/N)

1 + eλ(x/N)annihilation

1

1 + eλ(x/N)

ηt = {ηt(x/N) : x/N ∈ Λ}

νNλ stationary state

A thermodynamical theory for nonequilibrium systems – p.1/24

Page 3: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Nonequilibrium free energy

πN =1

Nd

x/N∈Λ

η(x/N)δx/N

νNλ {πN ≈ ρ} ∼ 1

∇ · D(ρ)∇ρ = 0

f ′(ρ(x)) = λ(x) x ∈ ∂Λ

D(ρ) diffusion coefficient D(ρ) = (1/2)I

f equilibrium specific free energy f(a) = a log a+(1−a) log(1−a)

OA thermodynamical theory for nonequilibrium systems – p.2/24

Page 4: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Nonequilibrium free energy

πN =1

Nd

x/N∈Λ

η(x/N)δx/N

νNλ {πN ≈ ρ} ∼ 1

∇ · D(ρ)∇ρ = 0

f ′(ρ(x)) = λ(x) x ∈ ∂Λ

D(ρ) diffusion coefficient D(ρ) = (1/2)I

f equilibrium specific free energy f(a) = a log a+(1−a) log(1−a)

γ 6= ρ

νNλ {πN ≈ γ} ∼ e−NdSλ(γ)

Sλ(·) nonequilibrium free energy

A thermodynamical theory for nonequilibrium systems – p.2/24

Page 5: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Equilibrium × Nonequilibrium

λ constant νNλ no correlations

Sλ(γ) =

Λ

{

γ logγ

ρ+ [1 − γ] log

1 − γ

1 − ρ

}

dx

OA thermodynamical theory for nonequilibrium systems – p.3/24

Page 6: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Equilibrium × Nonequilibrium

λ constant νNλ no correlations

Sλ(γ) =

Λ

{

γ logγ

ρ+ [1 − γ] log

1 − γ

1 − ρ

}

dx

d = 1 Λ = (0, 1) λ(0) 6= λ(1) νNλ [η(x/N); η(y/N)] = O(N−1)

Derrida, Lebowtiz, Speer (2002) Bertini, De Sole, Gabrielli, Jona-Lasinio, L. (2002)

Sλ(γ) =

∫ 1

0

{

γ logγ

F+ [1 − γ] log

1 − γ

1 − F+ log

Fx

β − α

}

dx

Fxx

(Fx)2=

γ − F

F (1 − F ),

F (x) = eλ(x)/[1 + eλ(x)] , x ∈ ∂Λ

(DLS)

A thermodynamical theory for nonequilibrium systems – p.3/24

Page 7: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Hydrodynamic limit

πNt =

1

Nd

x/N∈Λ

ηtN2(x/N)δx/N

πN0 → γ(x) dx

De Masi, Presutti et al. 80’s Guo, Papanicolaou, Varadhan 86

[

πN ≈ w , [0, T ]]

∼ 1

∂tw = ∇ · D(w)∇w

f ′(w(t, x)) = λ(x) x ∈ ∂Λ

w(0, ·) = γ(·)

Stationary solution ρ globally attractive

A thermodynamical theory for nonequilibrium systems – p.4/24

Page 8: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Action Functional

Kipnis, Olla, Varadhan (1989), Donsker, Varadhan (1989), Quastel, Rezakhanlou,

Varadhan (1999), Bertini, L., Mourragui (2010)

u(t, ·) t ∈ [−T, 0]

Pu(−T )

[

πN ≈ u , [−T, 0]]

∼ e−NdI[−T,0](u)

K(ρ)H = −∇ ·(

χ(ρ)∇H)

H(x) = 0 x ∈ ∂Λ

mobility: χ(a) = a(1 − a)I

I[−T,0](u) :=

∫ 0

−T

dt

Λ

dx[

∂tu−∇·D(u)∇u]

K(u)−1[

∂tu−∇·D(u)∇u]

A thermodynamical theory for nonequilibrium systems – p.5/24

Page 9: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi-potential

I[−T,0]

(

u)

OA thermodynamical theory for nonequilibrium systems – p.6/24

Page 10: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi-potential

I[−T,0]

(

u)

Fix γ infu(−T )=ρu(0)=γ

I[−T,0]

(

u)

OA thermodynamical theory for nonequilibrium systems – p.6/24

Page 11: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi-potential

I[−T,0]

(

u)

Fix γ infu(−T )=ρu(0)=γ

I[−T,0]

(

u)

infT>0

infu(−T )=ρu(0)=γ

I[−T,0]

(

u)

= Vλ(γ)

OA thermodynamical theory for nonequilibrium systems – p.6/24

Page 12: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi-potential

I[−T,0]

(

u)

Fix γ infu(−T )=ρu(0)=γ

I[−T,0]

(

u)

infT>0

infu(−T )=ρu(0)=γ

I[−T,0]

(

u)

= Vλ(γ)

Bodineau and Giacomin (2004), Farfan (2010)

Vλ is the nonequilibrium free energy:

νNλ {πN ≈ γ} ∼ e−NVλ(γ)

Holds for large class of systems in any dimension

OA thermodynamical theory for nonequilibrium systems – p.6/24

Page 13: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi-potential

I[−T,0]

(

u)

Fix γ infu(−T )=ρu(0)=γ

I[−T,0]

(

u)

infT>0

infu(−T )=ρu(0)=γ

I[−T,0]

(

u)

= Vλ(γ)

Bodineau and Giacomin (2004), Farfan (2010)

Vλ is the nonequilibrium free energy:

νNλ {πN ≈ γ} ∼ e−NVλ(γ)

Holds for large class of systems in any dimension

DLS, BDGJL d = 1, few models, Explict formula for Vλ(γ)

A thermodynamical theory for nonequilibrium systems – p.6/24

Page 14: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

1. Transformations

A thermodynamical theory for nonequilibrium systems – p.7/24

Page 15: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Basic assumptions

1. Local density u(t, x) and current j = j(t, x)

∂tu + ∇ · j = 0

2. Constitutive equation j = J(t, u(t)):

J(t, ρ) = −D(ρ)∇ρ + χ(ρ) E(t) ,

D(ρ) diffusion coefficient χ(ρ) mobility

3. Boundary condition

f ′(

u(t, x))

= λ(t, x) , x ∈ ∂Λ .

f is the equilibrium specific free energy

4. Einstein relation D(ρ) = χ(ρ) f ′′(ρ)

A thermodynamical theory for nonequilibrium systems – p.8/24

Page 16: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Energy balance

W[0,T ] =

∫ T

0

dt{

∂Λ

dσ(x) λ(t, x) j(t, x) · n̂(x) +

Λ

dx j(t, x) · E(t, x)}

,

Second law of thermodynamics (Clausius inequality)

W[0,T ][λ, E, ρ] ≥ F (u(T )) − F (ρ) ,

F equilibrium free energy:

F (ρ) =

Λ

dx f(ρ(x))

A thermodynamical theory for nonequilibrium systems – p.9/24

Page 17: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Energy balance

W[0,T ] =

∫ T

0

dt{

∂Λ

dσ(x) λ(t, x) j(t, x) · n̂(x) +

Λ

dx j(t, x) · E(t, x)}

,

λ = f ′(u(t)) D(ρ) = χ(ρ) f ′′(ρ) J(t, ρ) = −D(ρ)∇ρ + χ(ρ) E(t)

W[0,T ] =

∫ T

0

dt{

∂Λ

dσ f ′(u(t)) j(t) · n̂ +

Λ

dx j(t) · E(t)}

,

=

∫ T

0

dt

Λ

dx{

−∇ ·[

f ′(u(t)) j(t)]

+ j(t) · E(t)}

=

∫ T

0

dt

Λ

dx[

− f ′(u(t))∇ · j(t) − f ′′(u(t))∇u(t) · j(t) + j(t) · E(t)]

=

∫ T

0

dtd

dt

Λ

dx f(u(t)) +

∫ T

0

dt

Λ

dx j(t) · χ(u(t))−1j(t) ,

A thermodynamical theory for nonequilibrium systems – p.10/24

Page 18: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

2. Equilibrium states: J(u) = 0

A thermodynamical theory for nonequilibrium systems – p.11/24

Page 19: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Reversible and quasi static transformations

E = 0

Spatially homogenous equilibrium λ = cte

ρ̄λ = cte f ′(ρ̄λ) = λ

OA thermodynamical theory for nonequilibrium systems – p.12/24

Page 20: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Reversible and quasi static transformations

E = 0

Spatially homogenous equilibrium λ = cte

ρ̄λ = cte f ′(ρ̄λ) = λ

λ0 λ1

ρ̄0 = ρ̄λ0 −→ ρ̄1 = ρ̄λ1

λ(t) = λ0 , t ≤ 0 λ(t) = λ1 , t ≥ T

OA thermodynamical theory for nonequilibrium systems – p.12/24

Page 21: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Reversible and quasi static transformations

E = 0

Spatially homogenous equilibrium λ = cte

ρ̄λ = cte f ′(ρ̄λ) = λ

λ0 λ1

ρ̄0 = ρ̄λ0 −→ ρ̄1 = ρ̄λ1

λ(t) = λ0 , t ≤ 0 λ(t) = λ1 , t ≥ T

reversible transformation: energy exchanged is minimal

quasi static transformation: variation of the chemical potential isvery slow

A thermodynamical theory for nonequilibrium systems – p.12/24

Page 22: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Reversible and quasi static transformations

W =

0

dtd

dt

Λ

dx f(u(t)) +

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

= F (ρ̄1) − F (ρ̄0) +

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

No regularity assumption of the chemical potential in time

OA thermodynamical theory for nonequilibrium systems – p.13/24

Page 23: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Reversible and quasi static transformations

W =

0

dtd

dt

Λ

dx f(u(t)) +

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

= F (ρ̄1) − F (ρ̄0) +

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

No regularity assumption of the chemical potential in time

Smooth λ(t) λδ(t) = λ(δt) uδ(t)

J(t, ρ) = J(ρ) = −D(ρ)∇ρ D(ρ) = χ(ρ) f ′′(ρ)

W = F (ρ̄1) − F (ρ̄0) +

0

dt

Λ

dx∇f ′(uδ(t)) · χ(uδ(t))∇f ′(uδ(t)) ,

A thermodynamical theory for nonequilibrium systems – p.13/24

Page 24: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Reversible and quasi static transformations

W = F (ρ̄1) − F (ρ̄0) +

0

dt

Λ

dx∇f ′(uδ(t)) · χ(uδ(t))∇f ′(uδ(t))

ρ̄λδ(t) λδ(t)

∇f ′(ρ̄λδ(t)) = 0

0

dt

Λ

dx∇[

f ′(uδ(t))−f ′(ρ̄λδ(t))]

·χ(uδ(t))∇[

f ′(uδ(t))−f ′(ρ̄λδ(t))]

uδ(t) − ρ̄λδ(t) = O(δ)

OA thermodynamical theory for nonequilibrium systems – p.14/24

Page 25: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Reversible and quasi static transformations

W = F (ρ̄1) − F (ρ̄0) +

0

dt

Λ

dx∇f ′(uδ(t)) · χ(uδ(t))∇f ′(uδ(t))

ρ̄λδ(t) λδ(t)

∇f ′(ρ̄λδ(t)) = 0

0

dt

Λ

dx∇[

f ′(uδ(t))−f ′(ρ̄λδ(t))]

·χ(uδ(t))∇[

f ′(uδ(t))−f ′(ρ̄λδ(t))]

uδ(t) − ρ̄λδ(t) = O(δ)

Reversible transformation W = ∆F

No special property of λ(t)

A thermodynamical theory for nonequilibrium systems – p.14/24

Page 26: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Excess work

λ(0) = λ0 ρ̄0

Transformation λ(t) λ(t) −→ λ1 ρ̄1

excess work :

Wex = W [λ, E, ρ] − min W =

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

j(t) = J(u(t)) = −D(u)∇u D(ρ) = χ(ρ) f ′′(ρ)

Wex = −

0

dt

Λ

dx ∇f ′(u(t)) · J(u(t))

A thermodynamical theory for nonequilibrium systems – p.15/24

Page 27: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Excess work and quasi-potential

Relaxation path: (λ0, ρ̄0) λ1 for t > 0 u(t) −→ ρ̄1

Wex[λ1, ρ̄0] = −

0

dt

Λ

dx ∇f ′(u(t)) · J(u(t))

OA thermodynamical theory for nonequilibrium systems – p.16/24

Page 28: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Excess work and quasi-potential

Relaxation path: (λ0, ρ̄0) λ1 for t > 0 u(t) −→ ρ̄1

Wex[λ1, ρ̄0] = −

0

dt

Λ

dx ∇f ′(u(t)) · J(u(t))

∇f ′(ρ̄1) = 0

Wex[λ1, ρ̄0] =

0

dt

Λ

dx[

f ′(u(t)) − f ′(ρ̄1)]

∇ · J(u(t))

= −

0

dt

Λ

dx[

f ′(u(t)) − f ′(ρ̄1)]

∂tu(t)

=

Λ

dx[

f(ρ̄0) − f(ρ̄1) − f ′(ρ̄1)(

ρ̄0 − ρ̄1

)]

= Vλ1(ρ̄0)

Wex is not the difference of a thermodynamic potential

A thermodynamical theory for nonequilibrium systems – p.16/24

Page 29: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

3. Nonequilibrium states

A thermodynamical theory for nonequilibrium systems – p.17/24

Page 30: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Adjoint hydrodynamics

∂tu + ∇ · J(u(t)) = 0

Adjoint hydrodynamics chemical potential λ fixed

∂tu + ∇ · J∗(u(t)) = 0

1

2{J(ρ) + J∗(ρ)} = −χ(ρ)∇

δVλ(ρ)

δρ

OA thermodynamical theory for nonequilibrium systems – p.18/24

Page 31: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Adjoint hydrodynamics

∂tu + ∇ · J(u(t)) = 0

Adjoint hydrodynamics chemical potential λ fixed

∂tu + ∇ · J∗(u(t)) = 0

1

2{J(ρ) + J∗(ρ)} = −χ(ρ)∇

δVλ(ρ)

δρ

JλS (ρ) =

1

2{J(ρ) + J∗(ρ)} = −χ(ρ)∇

δVλ(ρ)

δρ

JλA(ρ) =

1

2{J(ρ) − J∗(ρ)} = J(ρ) − Jλ

S (ρ)

OA thermodynamical theory for nonequilibrium systems – p.18/24

Page 32: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Adjoint hydrodynamics

∂tu + ∇ · J(u(t)) = 0

Adjoint hydrodynamics chemical potential λ fixed

∂tu + ∇ · J∗(u(t)) = 0

1

2{J(ρ) + J∗(ρ)} = −χ(ρ)∇

δVλ(ρ)

δρ

JλS (ρ) =

1

2{J(ρ) + J∗(ρ)} = −χ(ρ)∇

δVλ(ρ)

δρ

JλA(ρ) =

1

2{J(ρ) − J∗(ρ)} = J(ρ) − Jλ

S (ρ)

Λ

dx JλS (ρ) · χ(ρ)−1Jλ

A(ρ) = 0

A thermodynamical theory for nonequilibrium systems – p.18/24

Page 33: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Work to maintain stationary state

λ u(t) = ρ̄λ 0 ≤ t ≤ T

W[0,T ] =

∫ T

0

dtd

dt

Λ

dx f(u(t)) +

∫ T

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

=

∫ T

0

dt

Λ

dx J(u(t)) · χ(u(t))−1J(u(t))

OA thermodynamical theory for nonequilibrium systems – p.19/24

Page 34: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Work to maintain stationary state

λ u(t) = ρ̄λ 0 ≤ t ≤ T

W[0,T ] =

∫ T

0

dtd

dt

Λ

dx f(u(t)) +

∫ T

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

=

∫ T

0

dt

Λ

dx J(u(t)) · χ(u(t))−1J(u(t))

J(ρ) = JλS (ρ) + Jλ

A(ρ)

JλS (ρ) = −χ(ρ)∇

δVλ(ρ)

δρ

δVλ(ρ̄λ)

δρ= 0 Jλ

S (ρ̄λ) = 0

OA thermodynamical theory for nonequilibrium systems – p.19/24

Page 35: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Work to maintain stationary state

λ u(t) = ρ̄λ 0 ≤ t ≤ T

W[0,T ] =

∫ T

0

dtd

dt

Λ

dx f(u(t)) +

∫ T

0

dt

Λ

dx j(t) · χ(u(t))−1j(t)

=

∫ T

0

dt

Λ

dx J(u(t)) · χ(u(t))−1J(u(t))

J(ρ) = JλS (ρ) + Jλ

A(ρ)

JλS (ρ) = −χ(ρ)∇

δVλ(ρ)

δρ

δVλ(ρ̄λ)

δρ= 0 Jλ

S (ρ̄λ) = 0

W[0,T ] = T

Λ

dx JλA(ρ̄λ) · χ(ρ̄λ)−1Jλ

A(ρ̄λ)

A thermodynamical theory for nonequilibrium systems – p.19/24

Page 36: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Renormalized work

Fix T > 0 profile ρ ch. pot. λ(t)

u(t) j(t) t ≥ 0

W ren[0,T ][λ, ρ] = W[0,T ][λ, ρ]−

∫ T

0

dt

Λ

dx Jλ(t)A (u(t)) ·χ(u(t))−1J

λ(t)A (u(t))

OA thermodynamical theory for nonequilibrium systems – p.20/24

Page 37: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Renormalized work

Fix T > 0 profile ρ ch. pot. λ(t)

u(t) j(t) t ≥ 0

W ren[0,T ][λ, ρ] = W[0,T ][λ, ρ]−

∫ T

0

dt

Λ

dx Jλ(t)A (u(t)) ·χ(u(t))−1J

λ(t)A (u(t))

Orthogonality Jλ(t)S (u(t)), J

λ(t)A (u(t))

W ren[0,T ][λ, ρ] = F (u(T ))−F (ρ)+

∫ T

0

dt

Λ

dx Jλ(t)S (u(t)) ·χ(u(t))−1J

λ(t)S (u(t))

A thermodynamical theory for nonequilibrium systems – p.20/24

Page 38: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Clausius inequality

W ren[0,T ][λ, ρ] = F (u(T ))−F (ρ)+

∫ T

0

dt

Λ

dx Jλ(t)S (u(t)) ·χ(u(t))−1J

λ(t)S (u(t))

λ(t) → λ1

Jλ(t)S (u(t)) → Jλ1

S (ρ̄1) = 0

W ren[λ, ρ] = F (ρ1) − F (ρ) +

0

dt

Λ

dx Jλ(t)S (u(t)) · χ(u(t))−1J

λ(t)S (u(t))

OA thermodynamical theory for nonequilibrium systems – p.21/24

Page 39: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Clausius inequality

W ren[0,T ][λ, ρ] = F (u(T ))−F (ρ)+

∫ T

0

dt

Λ

dx Jλ(t)S (u(t)) ·χ(u(t))−1J

λ(t)S (u(t))

λ(t) → λ1

Jλ(t)S (u(t)) → Jλ1

S (ρ̄1) = 0

W ren[λ, ρ] = F (ρ1) − F (ρ) +

0

dt

Λ

dx Jλ(t)S (u(t)) · χ(u(t))−1J

λ(t)S (u(t))

W ren[λ, ρ] ≥ F (ρ1) − F (ρ)

W [λ, ρ] ≥ W ren[λ, ρ] ≥ F (ρ1) − F (ρ)

A thermodynamical theory for nonequilibrium systems – p.21/24

Page 40: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi static transformations

λ(0) = λ0 ρ(0) = ρ̄λ0

λ(t) = λ1 t ≥ T

δ > 0 λδ(t) = λ(δt) (uδ(t), jδ(t))

0

dt

Λ

dx Jλδ(t)S (uδ(t)) · χ(uδ(t))

−1Jλδ(t)S (uδ(t))

OA thermodynamical theory for nonequilibrium systems – p.22/24

Page 41: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi static transformations

λ(0) = λ0 ρ(0) = ρ̄λ0

λ(t) = λ1 t ≥ T

δ > 0 λδ(t) = λ(δt) (uδ(t), jδ(t))

0

dt

Λ

dx Jλδ(t)S (uδ(t)) · χ(uδ(t))

−1Jλδ(t)S (uδ(t))

ρ̄δ(t) = ρ̄λδ(t)

Jλδ(t)S (ρ̄δ(t)) = 0

0

dt

Λ

dx[

Jλδ(t)S (uδ(t))−J

λδ(t)S (ρ̄δ(t))

]

·χ(uδ(t))−1

[

Jλδ(t)S (uδ(t))−J

λδ(t)S (ρ̄δ(t))

OA thermodynamical theory for nonequilibrium systems – p.22/24

Page 42: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Quasi static transformations

λ(0) = λ0 ρ(0) = ρ̄λ0

λ(t) = λ1 t ≥ T

δ > 0 λδ(t) = λ(δt) (uδ(t), jδ(t))

0

dt

Λ

dx Jλδ(t)S (uδ(t)) · χ(uδ(t))

−1Jλδ(t)S (uδ(t))

ρ̄δ(t) = ρ̄λδ(t)

Jλδ(t)S (ρ̄δ(t)) = 0

0

dt

Λ

dx[

Jλδ(t)S (uδ(t))−J

λδ(t)S (ρ̄δ(t))

]

·χ(uδ(t))−1

[

Jλδ(t)S (uδ(t))−J

λδ(t)S (ρ̄δ(t))

W ren = ∆F = F (ρ̄1) − F (ρ̄0)

A thermodynamical theory for nonequilibrium systems – p.22/24

Page 43: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Excess work

λ(t) −→ λ1

initial density profile ρ.

Wex[λ, ρ] = W ren[λ, ρ] − min W ren[λ′, ρ]

=

0

dt

Λ

dx Jλ(t)S (u(t)) · χ(u(t))−1J

λ(t)S (u(t))

A thermodynamical theory for nonequilibrium systems – p.23/24

Page 44: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Relaxation path: excess work and quasi potential

(λ0, ρ̄0) λ1 t ≥ 0

u(t) −→ ρ̄1

Wex[λ1, ρ̄0] =

0

dt

Λ

dx Jλ1

S (u(t)) · χ(u(t))−1Jλ1

S (u(t))

=

0

dt

Λ

dx Jλ1(u(t)) · χ(u(t))−1Jλ1

S (u(t))

OA thermodynamical theory for nonequilibrium systems – p.24/24

Page 45: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Relaxation path: excess work and quasi potential

(λ0, ρ̄0) λ1 t ≥ 0

u(t) −→ ρ̄1

Wex[λ1, ρ̄0] =

0

dt

Λ

dx Jλ1

S (u(t)) · χ(u(t))−1Jλ1

S (u(t))

=

0

dt

Λ

dx Jλ1(u(t)) · χ(u(t))−1Jλ1

S (u(t))

0

dt

Λ

dx∇ · Jλ1(u(t))δVλ1(u(t))

δρ= −

0

dt

Λ

dx ∂tu(t)δVλ1(u(t))

δρ

OA thermodynamical theory for nonequilibrium systems – p.24/24

Page 46: A thermodynamical theory for nonequilibrium systems€¦ · A thermodynamical theory for nonequilibrium systems L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. L. From particle

Relaxation path: excess work and quasi potential

(λ0, ρ̄0) λ1 t ≥ 0

u(t) −→ ρ̄1

Wex[λ1, ρ̄0] =

0

dt

Λ

dx Jλ1

S (u(t)) · χ(u(t))−1Jλ1

S (u(t))

=

0

dt

Λ

dx Jλ1(u(t)) · χ(u(t))−1Jλ1

S (u(t))

0

dt

Λ

dx∇ · Jλ1(u(t))δVλ1(u(t))

δρ= −

0

dt

Λ

dx ∂tu(t)δVλ1(u(t))

δρ

Wex[λ1, ρ̄0] = Vλ1(ρ̄0) − Vλ1(ρ̄1) = Vλ1(ρ̄0)

A thermodynamical theory for nonequilibrium systems – p.24/24