A RANS/RACE k ω LOW REYNOLDS NUMBER TURBULENCE MODEL FOR …fpinho/pdfs/CI2-IWNMNNF2010... ·...

of 19 /19
A RANS/RACE A RANS/RACE k- ω ω LOW REYNOLDS NUMBER LOW REYNOLDS NUMBER TURBULENCE MODEL FOR FENE-P FLUIDS TURBULENCE MODEL FOR FENE-P FLUIDS P. R. Resende Centro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia, Universidade do Porto, Portugal F. T. Pinho Centro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia, Universidade do Porto, Portugal B. A. Younis Dep. Civil and Environmental Engineering, University of California, Davis, USA K. Kim Dep. Mechanical Engineering,Hanbat National University, Daejeon, South Korea R. Sureshkumar Dep. Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA XVI th International Workshop on Numerical Methods For Non-Newtonian Flows 13 th -16 th June 2010 Northampton, MA, USA

Embed Size (px)

Transcript of A RANS/RACE k ω LOW REYNOLDS NUMBER TURBULENCE MODEL FOR …fpinho/pdfs/CI2-IWNMNNF2010... ·...

  • A RANS/RACE A RANS/RACE kk--ωω LOW REYNOLDS NUMBER LOW REYNOLDS NUMBER

    TURBULENCE MODEL FOR FENE-P FLUIDSTURBULENCE MODEL FOR FENE-P FLUIDS

    P. R. ResendeCentro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia, Universidadedo Porto, Portugal

    F. T. PinhoCentro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia, Universidadedo Porto, Portugal

    B. A. YounisDep. Civil and Environmental Engineering, University of California, Davis, USA

    K. KimDep. Mechanical Engineering,Hanbat National University, Daejeon, South Korea

    R. SureshkumarDep. Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA

    XVIth International Workshop on Numerical Methods For Non-Newtonian Flows13th-16th June 2010Northampton, MA, USA

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA

    Drag reduction: motivation

    2

    Drag reduction in fully-developed channel flow

    0

    5

    10

    15

    20

    25

    30

    1 10 100

    014 9.319.2 15.625.0 19.742.4 27.663.5 33.5100 39153 43.8222 50.5

    u+

    y+

    We!0

    DR [%]

    u+

    = 2.5 ln y+

    + 5.5

    u+

    = 11.7 ln y+

    -17.0

    u+ = y

    +

    Can a k-ω model improve on k-ε ?

    Advantages:Valid across all BL (no damping)Better in BL with adverse pres. grad.

    Disadvantages:Too sensitive to ω in free stream

    Existing models

    k-ε: Pinho et al., JNNFM 154 (2008) 89k-ε improved:Resende et a.l,JNNFM(2010), sub.k-ε-v2-f: Iaccarino et al.,JNNFM 165(2010)376

    (1st order)

    0 order: Li et al., JNNFM 159 (2006) 177

    (2nd order)Leighton et al. (2002,2003) APS, ASME

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA

    DNS cases: channel flow

    2hu

    1,x

    2,y

    Fully-developed channel flow

    3

    We!="u

    !

    2

    #0

    Re!=hu

    !

    "0

    Re! = 395," = 0.9,L2= 900

    We!= 25,DR = 18%

    Low Drag Reduction High Drag Reduction

    We!= 100,DR = 37%

    DNS test/calibration cases

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 4

    Closuresrequired

    ! ij , p ="p#

    f Ckk( )Cij $ f L( )% ij&' () +"p#f Ckk + ckk( )cij

    Cij

    !

    + uk"cij"xk

    # ckj"ui"xk

    + cik"u j"xk

    $

    %&

    '

    () = #

    * ij ,p+p

    Rheological constitutive equation: FENE-P

    Mij CTij NLTij

    RACE

    ! ij = 2"sSij + ! ij ,p

    !Ui

    !xi

    = 0Continuity:

    Momentum balance:

    !"Ui"t

    + !Uk"Ui"xk

    = #"p

    "xi+$s

    "2Ui"xk"xk

    #"

    "xk!uiuk( ) +

    "% ik,p"xk

    Reynolds decomposition:Overbar & upper-case: time-averaged quantitiesLower-case: fluctuating quantities

    B̂ = B+ b '

    New model: Governing Equations

    Independent of turbulence model

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 5

    Conformation (RACE) equation

    !Cij"

    + ! uk#cij#xk

    $ ckj#ui#xk

    + cik#u j#xk

    %

    &'

    (

    )*

    +

    ,--

    .

    /00= $ f Ckk( )Cij $ f L( )1 ij+, ./ $ f Ckk + ckk( )cij

    CTijMij NLTij

    Model for NLTij is identical to that for k-ε (Resende et al. (2010) JNNFM submitted)

    f Cmm( )NLTij

    !=f Cmm( )

    !fN1Cij

    f Cmm( )!

    " fN2 Ckj#Ui#xk

    + Cik#Uj#xk

    $

    %&

    '

    ()

    *+,

    -,

    ./,

    0,

    + fN3Ckn

    102SpqSpq

    uium#Uj#xk

    #Um#xn

    + ujum#Ui#xk

    #Um#xn

    $

    %&

    '

    () +

    1

    102SpqSpq

    #Uk#xn

    #Um#xk

    Cjnuium + Cinu jum( )$

    %&

    '

    ()

    $

    %&&

    '

    ())

    " fN4 Cjn#Uk#xn

    #Ui#xk

    + Cin#Uk#xn

    #Uj#xk

    + Ckn#Uj#xn

    #Ui#xk

    +#Ui#xn

    #Uj#xk

    234

    567

    $

    %&

    '

    () + fN5

    4

    15

    8 N

    91 sCmm: ij

    fNi = f (We!0 , y+)Based on exact equation; explicit model

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA

    The specific dissipation rate: ω

    ! !u2

    t& t !

    l

    u;! !

    k32

    l

    1) Estimate of dissipation (large scale)

    µT! !

    k2

    "

    Chou (1945)![ ] =

    length2

    time3

    !"uiu j = 2µT Sij !2

    3"k# ij

    µT= ! kl

    How to determine l ? Generally difficult ! Various alternatives

    k Transport equation

    Prandtl- Kolmogorov closure for Reynolds Stress/Boussinesq app.

    6

    Kolmogorov (1942)

    ! !"

    k2) Specific dissipation rate:

    µT! !

    k

    "

    ![ ] =1

    timeω is better behaved near walls,

    but more sensitive far from walls

    ! "2#

    Ck$ y2

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 7

    Reynolds stress closure: eddy viscosity model (k-ε & k-ω)

    !uiu j = 2"T Sij !2

    3k#ij

    Prandtl-Kolmogorov model

    !TN= fµ

    k

    "N

    !TP= fµCµ

    PfµPCkk

    k

    "N

    !N=

    "N

    Ckk

    New model with Note: C

    k= C

    µ

    Pinho et al. JNNFM (2010) submitted: k-ε

    !TN= Cµ fµ

    k2

    !"N

    !T= !

    T

    N"!

    T

    P

    !TP= Cµ fµCµ

    PfµPCkk

    k2

    !"N

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 8

    Transport equation for k

    !Dk

    Dt= "!uiuk

    #Ui#xk

    " !ui#k '

    dxi"#p 'ui#xi

    +$s#2k

    #xi#xi"$s

    #ui#xk

    #ui#xk

    +#% ik , p

    'ui

    #xk" % ik , p

    ' #ui#xk

    DV

    !"V−εΝDNDTPk0

    exact exactUnchanged(Newtonian)

    PreviousModel

    PreviousModel

    !"N= !C

    kk#

    N

    Previous model: k-ε context

    !"

    N= ! !"

    N+ D( ) with

    and solve equation for !!N

    D = 2! sd k

    dy

    "

    #$%

    &'

    2

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 9

    DV=!p"

    #

    #xkCik f Cmm + cmm( )ui + cik f Cmm + cmm( )ui$%

    &'

    (!p"

    #

    #xkf Cmm( )

    Cik FU( )i + CU( )ijk2

    $

    %)

    &

    '* +!+ p

    #2k

    #xk2

    Cik FU( )i ! fFUCknuiui

    !xn fFU = fFU We( )

    f Cmm( )CUijk!

    = " f#1

    uium$Ckj$xm

    + u jum$Cik$xm

    %

    &'(

    )*"f#

    7

    f Cmm( )!

    ± u j2Cik ± ui

    2Cjk

    +,-

    ./0

    f!1 , f!7 = f! We( )Unchanged coefficients & functions;

    as in k-ε

    !" p ="xy

    p

    !#

    Resende et alJNNFM (2010)sub.

    Viscoelastic turbulent diffusion, DV

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 10

    Viscoelastic stress work: εV

    !V "1

    #$ ik ,p' %ui

    %xk&'p#(

    cik f Cmm + cmm( )%ui%xk

    )

    *+

    ,

    -.

    f 'c 'ik!ui

    !xk" f

    #V $ f Cmm( )cik

    !ui

    !xk NLTiif!V = f

    !V We( )

    Same model as in k-ε(Resende et al (2010) Subm.)

    Unchanged

    !V = f!V

    "p

    #$f Cmm( )

    NLTii

    2

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA

    0 =d

    dy!" p +!s +

    # fT$T% k

    &'(

    )*+dk

    dy

    ,

    -.

    /

    01 + Pk 2 #Ck3

    Nk +

    !p4

    d

    dyf Cmm( )

    Cnk FU( )n +CUnny2

    ,

    -.

    /

    01 2!p

    f Cmm( )4

    NLTnn

    2

    Based on Newtonian model of Nagano & Hishida (1984)

    !k= 1.1

    fT = 1+ 3.5exp ! RT 150( )2"

    #$%

    Variable Prandtl numbers: Nagano & Shimada (1993), Park and Sung (1995)

    11

    Transport equation of k: final modeled form

    New form

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 12

    Specific rate of deformation: transport equation

    !N=

    "N

    Cµk

    D!N

    Dt=1

    Cµk

    D"N

    Dt#!

    N

    k

    Dk

    Dt

    D!N

    Dt= P

    !N " #

    !N +$

    !N + D

    !N

    T+ D

    !N

    N+ E

    !N

    V

    !D" N

    Dt= C"

    1

    "kPk +

    ##xi

    $s +$% p + !&T'(

    )

    *+,

    -.#" N

    #xi

    /

    01

    2

    34 5C"

    2

    !" 2 +C"

    k$s +$% p + !&T( )

    #k#xi

    #"#xi

    + E" NV

    Viscous cross-diffusion (Bredberg et al. 2002)

    Dk

    Dt= P

    k! "

    N+#

    k+ D

    k

    T+ D

    k

    N+ D

    k

    V! "

    V

    D!N

    Dt= P

    !N " #

    !N +$

    !N + D

    !N

    T+ D

    !N

    N+ E

    !N

    V

    Production

    Destruction

    Redistribution

    Turbulentdiffusion

    Moleculardiffusion

    Viscoelasticinteraction

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 13

    Viscoelastic contribution to ω: model

    Definition

    and modelE

    !N

    V=1

    CµkE

    "N

    V#!

    kD

    k

    V+!

    k"V

    Slide 10Slide 9

    E!NV " 2#s

    #p$ L2 % 3( )

    &ui&xm

    &

    &xk

    &

    &xmf Cnn( ) f Ĉpp( )cqq' Cik'( )*

    +,-

    ./0

    Model of

    E!NV " # fDR

    ! !N2

    kC!F1

    !V

    Ckk$NL2 # 3( )

    2

    +C!F2 Cii f Ckk( )%& '(2%

    &)

    '

    (*

    improved version relative to k-ε of Resende et al (2010), it nowincorporates effects of β & L2

    fDR!= fDR

    !We

    0,",L2( )

    E!N

    V

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 14

    Mean velocity: Reτ0= 395; β=0.9, L2=900

    0

    5

    10

    15

    20

    25

    30

    100

    101

    102

    We= 0

    We= 25

    We= 100

    DNS- We= 25

    DNS- We= 100

    We= 0

    We= 25

    We= 100

    u+

    y+

    u+

    = 2.5 ln y+

    + 5.5

    u+

    = 11.7 ln y+

    - 17.0

    u+

    = y+

    k-!

    k-"}

    }

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 15

    Turbulent kinetic energy: Reτ0= 395; β=0.9, L2=900

    0

    1

    2

    3

    4

    5

    6

    7

    1 10 100

    DNS- Mansour (We= 0)DNS- We= 25DNS- We= 100We= 0We= 25We= 100We= 0We= 25We= 100

    k+

    y+

    k-!

    k-"}}

    !T = Cµ fµk2

    !"N1# Cµ

    PfµPCkk( )

    !T = Cµ fµk

    "N1#Cµ

    PfµPCkk( )

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA

    Dissipation of k by solvent: Reτ0= 395; β=0.9, L2=900

    16

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1 10 100

    DNS- Mansour (We=0)DNS- We= 25DNS- We= 100We= 0We= 25We= 100We= 0We= 25We= 100

    !+

    y+

    k-!

    k-"}}

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA 17

    NLTii: Reτ0= 395; β=0.9, L2=900

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    1 10 100

    DNS- We= 25

    DNS- We= 100

    We= 0

    We= 25

    We= 100

    We= 0

    We= 25

    We= 100

    NLTii

    *

    y+

    k-!

    k-"}}

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA

    0

    100

    200

    300

    400

    500

    600

    700

    800

    1 10 100

    DNS- We=25

    DNS- We=100

    We=0

    We=25

    We=100

    We=0

    We=25

    We=100

    Cxx

    y+

    k-!

    k-"}}

    18

    Cxx: Reτ0= 395; β=0.9, L2=900

  • A RANS/RACE k-ω low Re turbulence model for FENE-P fluids Resende, Pinho, Younis, Kim & Sureshkumar

    CEFT-FEUP Centro de Estudos de Fenómenos de Transporte XVI IWNMNNF, Northampton, USA

    Conclusions, Future Work and Acknowledgments

    - k-ω model developed, it works well at Low DR and High DR (50%)

    - Closures for elastic terms: similar to corresponding in k-ε

    (Resende et al. JNNFM (2010) Submitted)

    - Slightly better than k-ε

    - More stable (easier convergence)

    - Need for 2nd order Reynolds stress closures: deficiency in k

    - Need to extend models to Maximum DR, & β & L2

    19

    Acknowledgments - FundingFundação para a Ciência e TecnologiaProjects PTDC/EQU-FTT/70727/2006 & PTDC/EME-MFE/70186/2006