A notion of multivariate Value at Risk from a directional ...

75
A NOTION OF MULTIVARIATE V ALUE AT R ISK FROM A DIRECTIONAL PERSPECTIVE Raúl A. TORRES Henry LANIADO Rosa E. LILLO EAFIT Department of Statistics Universidad Carlos III de Madrid August 2015 Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 1 / 44

Transcript of A notion of multivariate Value at Risk from a directional ...

Page 1: A notion of multivariate Value at Risk from a directional ...

A NOTION OF MULTIVARIATE VALUE AT RISK FROM A

DIRECTIONAL PERSPECTIVE

Raúl A. TORRES

Henry LANIADO

Rosa E. LILLO

EAFIT

Department of Statistics

Universidad Carlos III de Madrid

August 2015

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 1 / 44

Page 2: A notion of multivariate Value at Risk from a directional ...

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 2 / 44

Page 3: A notion of multivariate Value at Risk from a directional ...

Introduction

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 3 / 44

Page 4: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

Let X be a random variable representing loss, F its distribution

function and 0 ≤ α ≤ 1. Then,

VaRα(X) := infx ∈ R | F(x) ≥ α.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 4 / 44

Page 5: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

Let X be a random variable representing loss, F its distribution

function and 0 ≤ α ≤ 1. Then,

VaRα(X) := infx ∈ R | F(x) ≥ α.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 4 / 44

Page 6: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

Let X be a random variable representing loss, F its distribution

function and 0 ≤ α ≤ 1. Then,

VaRα(X) := infx ∈ R | F(x) ≥ α.

b

VaRα(X)

α

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 4 / 44

Page 7: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

The VaR has became in a benchmark for risk management.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 5 / 44

Page 8: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

The VaR has became in a benchmark for risk management.

The VaR has been criticized by Artzner et al. (1999) since it

does not encourage diversification.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 5 / 44

Page 9: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

The VaR has became in a benchmark for risk management.

The VaR has been criticized by Artzner et al. (1999) since it

does not encourage diversification.

But defended by Heyde et al. (2009) for its robustness and

recently by Daníelsson et al. (2013) for its tail subadditivity.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 5 / 44

Page 10: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

But, what is one of the problems with this measure?

It is its extension to the multivariate setting

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 6 / 44

Page 11: A notion of multivariate Value at Risk from a directional ...

Introduction

VALUE AT RISK (VaR)

But, what is one of the problems with this measure?

It is its extension to the multivariate setting, where

There is not a unique definition of a multivariate quantile.

There are a lot of assets in a portfolio. (High Dimension)

There is dependence among them.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 6 / 44

Page 12: A notion of multivariate Value at Risk from a directional ...

Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios

X = (X1, . . . ,Xn),

is to consider a function f : Rn −→ R and then:

The VaR of the joint portfolio is the univariate-one associated

to f (X).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 7 / 44

Page 13: A notion of multivariate Value at Risk from a directional ...

Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios

X = (X1, . . . ,Xn),

is to consider a function f : Rn −→ R and then:

The VaR of the joint portfolio is the univariate-one associated

to f (X).

In Burgert and Rüschendorf (2006),

f (X) =n

i=1

Xi or f (X) = maxi≤n

Xi.

Output: A NUMBER

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 7 / 44

Page 14: A notion of multivariate Value at Risk from a directional ...

Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach

of the Value at Risk,

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 8 / 44

Page 15: A notion of multivariate Value at Risk from a directional ...

Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach

of the Value at Risk,

Multivariate lower-orthant Value at Risk

VaRα(X) := ∂x ∈ Rn | FX(x) ≥ α.

Multivariate upper-orthant Value at Risk

VaRα(X) := ∂x ∈ Rn | FX(x) ≤ 1 − α.

Output: A SURFACE ON Rn

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 8 / 44

Page 16: A notion of multivariate Value at Risk from a directional ...

Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk

measure related to the measure introduced by Embrechts and Puc-

cetti (2006).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 9 / 44

Page 17: A notion of multivariate Value at Risk from a directional ...

Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk

measure related to the measure introduced by Embrechts and Puc-

cetti (2006).

Multivariate lower-orthant Value at Risk

VaRα(X) := E [X|FX(x) = α] .

Multivariate upper-orthant Value at Risk

VaRα(X) := E [X|FX(x) = 1 − α] .

Output: A POINT IN Rn

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 9 / 44

Page 18: A notion of multivariate Value at Risk from a directional ...

Introduction

DRAWBACKS IN THE MULTIVARIATE SETTING

The lack of a total order in high dimensions.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 10 / 44

Page 19: A notion of multivariate Value at Risk from a directional ...

Introduction

DRAWBACKS IN THE MULTIVARIATE SETTING

The lack of a total order in high dimensions.

The dependence among the variables.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 10 / 44

Page 20: A notion of multivariate Value at Risk from a directional ...

Introduction

DRAWBACKS IN THE MULTIVARIATE SETTING

The lack of a total order in high dimensions.

The dependence among the variables.

There are many interesting directions to analyze the data.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 10 / 44

Page 21: A notion of multivariate Value at Risk from a directional ...

Introduction

DRAWBACKS IN THE MULTIVARIATE SETTING

The lack of a total order in high dimensions.

The dependence among the variables.

There are many interesting directions to analyze the data.

The computation in high dimensions.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 10 / 44

Page 22: A notion of multivariate Value at Risk from a directional ...

Introduction

OBJECTIVES

Introduce a directional multivariate value at risk

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 11 / 44

Page 23: A notion of multivariate Value at Risk from a directional ...

Introduction

OBJECTIVES

Introduce a directional multivariate value at risk

1 Consider the dependence among the variables.

2 Give the possibility of analyzing the losses considering the

manager preferences.

3 Improve the interpretation of the risk measure.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 11 / 44

Page 24: A notion of multivariate Value at Risk from a directional ...

Introduction

OBJECTIVES

Introduce a directional multivariate value at risk

1 Consider the dependence among the variables.

2 Give the possibility of analyzing the losses considering the

manager preferences.

3 Improve the interpretation of the risk measure.

4 Provide a non-parametric estimation to compute the risk mea-

sure in high dimensions.

5 Provide analytic expressions of the risk measure with copulas.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 11 / 44

Page 25: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 12 / 44

Page 26: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)

DIRECTIONAL MVAR

Let X be a random vector satisfying "the regularity conditions", then the

Value at Risk of X in direction u and confidence parameter α is defined

as

VaRuα(X) =

(

QX(α,u)⋂

λu + E[X])

,

where λ ∈ R and 0 ≤ α ≤ 1.

Output: A POINT IN Rn

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 13 / 44

Page 27: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

QX(α, u) ≡ Directional Multivariate Quantile

(Laniado et al. (2012)).

DEFINITION

Given u ∈ Rn, ||u|| = 1 and a random vector X with distribution proba-

bility P, the α-quantile curve in direction u is defined as:

QX(α,u) := ∂x ∈ Rn : P [Cu

x ] ≤ α,

where ∂ mans the boundary and 0 ≤ α ≤ 1

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 14 / 44

Page 28: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

Cux ≡ Oriented Orthant.

DEFINITION

Given x, u ∈ Rn and ||u|| = 1, the orthant with vertex x and direction u

is:

Cux = z ∈ R

n|Ru(z − x) ≥ 0,

where e = 1√n(1, ..., 1)′ and Ru is a matrix such that Ruu = e.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 15 / 44

Page 29: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

EXAMPLES OF ORIENTED ORTHANTS

(A) Orthant in direction u = (0, 1) (B) Orthant in direction u = −e

Examples of oriented orthants in R2

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 16 / 44

Page 30: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

DIRECTIONAL MULTIVARIATE QUANTILES

u ∈ U =

(

− 1√2,− 1√

2

)

,

(

− 1√2,

1√2

)

,

(

1√2,− 1√

2

)

,

(

1√2,

1√2

)

(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CLASSICAL DIRECTIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 17 / 44

Page 31: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

DIRECTIONAL MULTIVARIATE QUANTILES

u ∈ U = (1, 0) , (0, 1) , (−1, 0) , (0,−1)

(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CANONICAL DIRECTIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 17 / 44

Page 32: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

(A) Bivariate Uniform (C) Bivariate Exponential (B) Bivariate Normal

VaR−e0.7(X)

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 18 / 44

Page 33: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

(A) Bivariate Uniform (C) Bivariate Exponential (B) Bivariate Normal

VaRe0.3(X)

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 18 / 44

Page 34: A notion of multivariate Value at Risk from a directional ...

Directional MVaR Properties

MVAR PROPERTIES

Non-Negative Loading: If λ > 0,

E[X] u VaRuα(X),

where the order is given by

PREORDER (LANIADO ET AL. (2010))

x is said to be less than y if:

x u y ≡ Cux ⊇ C

uy ≡ Rux ≤ Ruy.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 19 / 44

Page 35: A notion of multivariate Value at Risk from a directional ...

Directional MVaR Properties

MVAR PROPERTIES

Quasi-Odd Measure: VaRuα(−X) = −VaR−u

α (X).

Positive Homogeneity and Translation Invariance: Given c ∈R+ and b ∈ R

n, then

VaRuα(cX + b) = cVaRu

α(X) + b.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 20 / 44

Page 36: A notion of multivariate Value at Risk from a directional ...

Directional MVaR Properties

MVAR PROPERTIES

Orthogonal Quasi-Invariance: Let w and Q be an unit vector and

a particular orthogonal matrix obtained by a QR decomposition

such that Qu = w. Then,

VaRwα(QX) = QVaRu

α(X).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 21 / 44

Page 37: A notion of multivariate Value at Risk from a directional ...

Directional MVaR Properties

MVAR PROPERTIES

Consistency: Let X and Y be random vectors such that E[Y] =cu + E[X], for c > 0 and X ≤Eu Y. Then:

VaRuα(X) u VaRu

α(Y),

where the stochastic order is defined by

STOCHASTIC EXTREMALITY ORDER (LANIADO ET AL. (2012))

Let X and Y be two random vectors in Rn,

X ≤Eu Y ≡ P [Ru(X − z) ≥ 0] ≤ P [Ru(Y − z) ≥ 0] ≡ PX [Cuz ] ≤ PY [Cu

z ] ,

for all z in Rn.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 22 / 44

Page 38: A notion of multivariate Value at Risk from a directional ...

Directional MVaR Properties

MVAR PROPERTIES

Non-Excessive Loading: For all α ∈ (0, 1) and u ∈ B(0),

VaRuα(X) u R′

u supω∈Ω

RuX(ω).

Subadditivity in the Tail Region: Let X and Y be random vectors,

with the same mean µ and let (RuX,RuY) be a regularly varying

random vector. Then,

VaRuα(X + Y) u VaRu

α(X) + VaRuα(Y).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 23 / 44

Page 39: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

RESULT

Let X be a random vector and u a direction. Then for all 0 ≤ α ≤ 1,

VaRuα(X) u VaR−u

1−α(X).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 24 / 44

Page 40: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

Then, analogously as Embrechts and Puccetti (2006) and Cousin

and Di Bernardino (2013), we can define:

Lower Multivariate VaR in the direction u as

VaRuα(X),

Upper Multivariate VaR in the direction u as

VaR−u1−α(X).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 24 / 44

Page 41: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

47 48 49 50 51 52 5347

48

49

50

51

52

53

Lower Multivariate VaR = VaRe0.3(X) and

Upper Multivariate VaR = VaR−e0.7(X)

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 24 / 44

Page 42: A notion of multivariate Value at Risk from a directional ...

Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

47 48 49 50 51 52 5347

48

49

50

51

52

53

Lower Multivariate VaR = VaR( 1√

5, 2√

5)

0.3 (X) and

Upper Multivariate VaR = VaR−( 1√

5, 2√

5)

0.7 (X)

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 24 / 44

Page 43: A notion of multivariate Value at Risk from a directional ...

Marginal VaR vs. MVaR

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 25 / 44

Page 44: A notion of multivariate Value at Risk from a directional ...

Marginal VaR vs. MVaR

RELATION BETWEEN THE MARGINAL VaR AND THE

MVaR

RESULT

Let X be a random vector with survival function F quasi-concave. Then,

for all α ∈ (0, 1):

VaR1−α(Xi) ≥ [VaReα(X)]i , for all i = 1, ..., n.

Moreover, if its distribution function F is quasi-concave, then, for all α ∈(0, 1),

[

VaR−e1−α(X)

]

i≥ VaR1−α(Xi), for all i = 1, ..., n.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 26 / 44

Page 45: A notion of multivariate Value at Risk from a directional ...

Marginal VaR vs. MVaR

RELATION BETWEEN THE MARGINAL VaR AND THE

MVaR

RESULT

Let X be a random vector and u a direction. If the survival function of

RuX is quasi-concave. Then, for all 0 ≤ α ≤ 1,

VaR1−α([RuX]i) ≥ [RuVaRuα(X)]i , for all i = 1, ..., n.

And if RuX has a quasi-concavity cumulative distribution, we have that

[

RuVaR−u1−α(X)

]

i≥ VaR1−α([RuX]i), for all i = 1, ..., n.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 26 / 44

Page 46: A notion of multivariate Value at Risk from a directional ...

Copulas and VaRuα(X)

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 27 / 44

Page 47: A notion of multivariate Value at Risk from a directional ...

Copulas and VaRuα(X)

BIVARIATE COPULAS

In R2 ⇒ u = (cos θ, sin θ).

Let X be a bivariate vector with density given by a copula density

c(·, ·). Then, the first component of VaRuα(X) can be obtained by

solving the equation on the domain,

∫ ∫

Dθ(x1)c(s, t)dtds = α,

where Dθ(x1) = Cu(x1,lθ(x1))

[0, 1]2 and

lθ(x1) :=

x1 sin(θ)− 12(sin(θ)−cos(θ)

cos(θ) , if cos(θ) 6= 0 and x1 ∈ [0, 1],12, if cos(θ) = 0 and x1 ∈ [0, 1].

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 28 / 44

Page 48: A notion of multivariate Value at Risk from a directional ...

Copulas and VaRuα(X)

BIVARIATE COPULAS

Example of Dθ(x1) for θ ∈ (π4, π

2)

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 28 / 44

Page 49: A notion of multivariate Value at Risk from a directional ...

Copulas and VaRuα(X)

BIVARIATE COPULAS

Results of VaRuα(X) with the Frank’s copula, for different values on the

dependence parameter β:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

α - level

Va

Rαu(X

)

β= -10β= -3β= 1β= 3β= 10

0 0.2 0.4 0.6 0.80.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

α - level

Va

Rαu(X

)

β= -10β= -3β= 1β= 3β= 10

a) Direction u = −e b) Direction u = − 3√

55[1

3, 2

3]′

Behavior of the first component of VaRuα(X)

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 28 / 44

Page 50: A notion of multivariate Value at Risk from a directional ...

Copulas and VaRuα(X)

n-DIMENSIONAL ARCHIMEDEAN COPULAS

Let X be a n-dimensional random vector with [0, 1]-uniform marginals.

If X has an Archimedean copula distribution generated by φ(·),then:

[

VaR−e1−α(X)

]

i= φ−1

(

1 − φ(α)

n

)

.

If X has a survival copula given by an Archimedean copula

generated by φ(·), then:

[VaReα(X)]i = 1 − φ−1

(

φ(α)

n

)

.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 29 / 44

Page 51: A notion of multivariate Value at Risk from a directional ...

Copulas and VaRuα(X)

n-DIMENSIONAL ARCHIMEDEAN COPULAS

Then, we compare VaR−eα (X) (Our) with VaRα(X) (Cousin and Di

Bernardino (2013)) and VaRe1−α(1 − X) with VaRα(1 − X), using the

Clayton’s family of copulas.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α - level

VaR

α-e(X

)

Beta= -1Beta= 0Beta= 1Beta= 8Beta= ∞

a) Lower Case b) Upper Case

Dashed line ≡ Cousin and Di Bernardino. Solid line ≡ VaRuα(X)

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 29 / 44

Page 52: A notion of multivariate Value at Risk from a directional ...

Non-Parametric Estimation

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 30 / 44

Page 53: A notion of multivariate Value at Risk from a directional ...

Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

Given the sample Xm := x1, · · · , xm of the random loss X, the direction

u and the value of α. We find the directional quantile curve as:

QXm(α,u) :=

xi : PXm

[

Cuxi

]

= α

,

where

PXm [Cuxi] =

1

m

m∑

j=1

1xj∈Cuxi.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 31 / 44

Page 54: A notion of multivariate Value at Risk from a directional ...

Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

However, it is possible that QXm(α,u) = ∅. This can be solved allowing

a slack h:

QhXm

(α,u) :=

xj : |PXm

[

Cuxj

]

− α| ≤ h

,

where QXm(α,u) ⊂ QhXm

(α,u), for all h.

Once the directional α-quantile curve is obtained, we cross it with the

line µXm+ λu where

µXm= E[Xm].

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 31 / 44

Page 55: A notion of multivariate Value at Risk from a directional ...

Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

Input: u, α, h and the multivariate sample Xm.

for i = 1 to m

Pi = PXm

[

Cuxi

]

,

If |Pi − α| ≤ h

xi ∈ QhXm

(α,u),

end

for xj ∈ QhXm

(α,u)

dj = dist(xj, µXm+ λu),

end

end

VaRuα(Xm) = xk|dk = mindj.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 31 / 44

Page 56: A notion of multivariate Value at Risk from a directional ...

Non-Parametric Estimation

EXECUTION TIME

Time in SecondsDim\ Size 1000 5000 10000 50000

5 2 49 199 4903

10 2 53 208 5191

50 4 82 325 7656

100 6 139 561 12487

In an Intel core i7 (3,4 GH) computer with 32 Gb RAM.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 32 / 44

Page 57: A notion of multivariate Value at Risk from a directional ...

Robustness

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 33 / 44

Page 58: A notion of multivariate Value at Risk from a directional ...

Robustness

ROBUSTNESS

We analyze the behavior of the MVaR when a sample is contami-

nated with different types of outliers.

We use as a benchmark the measurement given by the multivariate

VaR in Cousin and Di Bernardino (2013).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 34 / 44

Page 59: A notion of multivariate Value at Risk from a directional ...

Robustness

ROBUSTNESS

We simulate 5000 observations of the following random vector:

Xω d=

X1 with probability p = 1 − ω,

X2 with probability p = ω,

where X1d= N1(µ1,Σ1), X2

d= N2(µ1 + ∆µ,Σ1 + ∆Σ) and 0 ≤ ω ≤ 1.

Specifically:

µ1 = [50, 50]′, Σ1 =

(

0.5 0.3

0.3 0.5

)

.

Contaminating

1. Varying only the mean.

2. Varying only the variances.

3. Varying all the parameters.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 35 / 44

Page 60: A notion of multivariate Value at Risk from a directional ...

Robustness

ROBUSTNESS

To evaluate the impact of the contamination, we use:

PVω =||Measure(Xω)− Measure(X0)||2

||Measure(X0)||2,

where Measure(X0) is the sample with ω = 0% and Measure(Xω) is

the sample with level of contamination ω%, (ω = 1% → 10%).

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 36 / 44

Page 61: A notion of multivariate Value at Risk from a directional ...

Robustness

ROBUSTNESS

1. Varying only the mean, ∆µ 6= 0, ∆Σ = 0.

0 2 4 6 8 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ω

VaR

0.1e (X)

CB VaR

0 2 4 6 8 100

0.01

0.02

0.03

0.04

0.05

0.06

ω

VaR

0.1e (X)

CB VaR

(A) ∆µ = (20, 20)′ (B) ∆µ = (0, 50)′

Mean of PVω

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 37 / 44

Page 62: A notion of multivariate Value at Risk from a directional ...

Robustness

ROBUSTNESS

2. Varying only the variances, ∆µ = 0, ∆Σ =

[

4.5 0

0 6.5

]

,

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

ω

VaR

0.1e (X)

CB VaR

Mean of PVω

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 38 / 44

Page 63: A notion of multivariate Value at Risk from a directional ...

Robustness

ROBUSTNESS

3. Varying all the parameters, ∆µ 6= 0, ∆Σ =

[

4.5 0.2

0.3 6.5

]

,

0 2 4 6 8 100

1

2

3

4

5

6

7x 10

-3

ω

VaR

0.1e (X)

CB VaR

0 2 4 6 8 100

0.5

1

1.5

2

2.5

3

3.5

4x 10

-3

ω

VaR

0.1e (X)

CB VaR

(A) ∆µ = (20, 20)′ (B) ∆µ = (0, 50)′

Mean of PVω

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 39 / 44

Page 64: A notion of multivariate Value at Risk from a directional ...

Conclusions

OUTLINE

1 INTRODUCTION

2 DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)

3 MARGINAL VAR VS. MVAR

4 COPULAS AND VaRuα(X)

5 NON-PARAMETRIC ESTIMATION

6 ROBUSTNESS

7 CONCLUSIONS

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 40 / 44

Page 65: A notion of multivariate Value at Risk from a directional ...

Conclusions

CONCLUSIONS

We introduce a directional multivariate value at risk and a non-

parametric estimation for this risk measure.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 41 / 44

Page 66: A notion of multivariate Value at Risk from a directional ...

Conclusions

CONCLUSIONS

We introduce a directional multivariate value at risk and a non-

parametric estimation for this risk measure.

The directional approach allows to consider external informa-

tion or management preferences in the analysis of the data.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 41 / 44

Page 67: A notion of multivariate Value at Risk from a directional ...

Conclusions

CONCLUSIONS

We introduce a directional multivariate value at risk and a non-

parametric estimation for this risk measure.

The directional approach allows to consider external informa-

tion or management preferences in the analysis of the data.

We provide good properties for this risk measure, including

the tail subadditivity property.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 41 / 44

Page 68: A notion of multivariate Value at Risk from a directional ...

Conclusions

CONCLUSIONS

We introduce a directional multivariate value at risk and a non-

parametric estimation for this risk measure.

The directional approach allows to consider external informa-

tion or management preferences in the analysis of the data.

We provide good properties for this risk measure, including

the tail subadditivity property.

We obtain analytic expressions with copulas.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 41 / 44

Page 69: A notion of multivariate Value at Risk from a directional ...

Conclusions

CONCLUSIONS

We introduce a directional multivariate value at risk and a non-

parametric estimation for this risk measure.

The directional approach allows to consider external informa-

tion or management preferences in the analysis of the data.

We provide good properties for this risk measure, including

the tail subadditivity property.

We obtain analytic expressions with copulas.

The simulation study of robustness shows good behavior of

the measure.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 41 / 44

Page 70: A notion of multivariate Value at Risk from a directional ...

Thanks

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 42 / 44

Page 71: A notion of multivariate Value at Risk from a directional ...

BIBLIOGRAPHY

Torres R., Lillo R.E., and Laniado H.,

A directional multivariate VaR.Submitted, arXiv:1502.00908, 2015.

Nelsen R.B.,An Introduction to copulas, (2nd edn)Springer-Verlag: New York, 2006.

Shaked M. and Shanthikumar J.,Stochastic Orders and their Applications.Associated Press, 1994.

Arbia, G.,

Bivariate value at risk.Statistica LXII, 231-247, 2002.

Artzner P., Delbae, F., Heath J. Eber D.,

Coherent measures of risk.Mathematical Finance 3, 203-228, 1999.

Barnett V.,

The ordering of multivariate data (with discussion).JRSS, Series A 139, 318-354, 1976.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 43 / 44

Page 72: A notion of multivariate Value at Risk from a directional ...

BIBLIOGRAPHY

Burgert C. and Rüschendorf L.,

On the optimal risk allocation problem.Statistics & Decisions 24, 153-171, 2006.

Cardin M. and Pagani E.,

Some classes of multivariate risk measures. Mathematical andStatistical Methods for Actuarial Sciences and Finance, 63-73, 2010.

Cascos I. and Molchanov I.,

Multivariate risks and depth-trimmed regions.Finance and stochastics 11(3), 373-397, 2007.

Cascos I., López A. and Romo J.,

Data depth in multivariate statistics.Boletín de Estadística e Investigación Operativa 27(3), 151-174, 2011.

Cascos I. and Molchanov I.,

Multivariate risk measures: a constructive approach based on selections.Risk Management Submitted v3, 2013.

Cousin A. and Di Bernardino E.,

On multivariate extensions of Value-at-Risk.Journal of Multivariate Analysis, Vol. 119, 32-46, 2013.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 43 / 44

Page 73: A notion of multivariate Value at Risk from a directional ...

BIBLIOGRAPHY

Daníelsson J. et al.,

Fat tails, VaR and subadditivity.Journal of econometrics 172-2, 283-291, 2013.

Embrechts P. and Puccetti G.,

Bounds for functions of multivariate risks.Journal of Multivariate Analysis 97, 526-547, 2006.

Fernández-Ponce J. and Suárez-Llorens A.,

Central regions for bivariate distributions.Austrian Journal of Statistics 31, 141-156, 2002.

Fraiman R. and Pateiro-López B.,

Quantiles for finite and infinite dimensional data.Journal Multivariate Analysis 108, 1-14, 2012.

Hallin M., Paindaveine D. and Siman M.,

Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth.Annals of Statistics 38, 635-669, 2010.

Heyde C., Kou S. and Peng X.,

What is a good external risk measure: bridging the gaps between robustness, subadditivity, and insurance risk measure.(Preprint). 2009.

Jessen A. and Mikosh T.,

Regularly varying functions.Publications de l’institute mathématique 79, 2006.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 43 / 44

Page 74: A notion of multivariate Value at Risk from a directional ...

BIBLIOGRAPHY

Kong L. and Mizera I.,

Quantile tomography: Using quantiles with multivariate data.ArXiv preprint arXiv:0805.0056v1, 2008.

Laniado H., Lillo R. and Romo J.,

Extremality in Multivariate Statistics.Ph.D. Thesis, Universidad Carlos III de Madrid, 2012

Laniado H., Lillo R. and Romo J.,

Multivariate extremality measure.Working Paper, Statistics and Econometrics Series 08, Universidad Carlos III de Madrid, 2010.

Nappo G. and Spizzichino F.,

Kendall distributions and level sets in bivariate exchangeable survival models.Information Sciences 179, 2878-2890, 2009.

Rachev S., Ortobelli S., Stoyanov S., Fabozzi F.,

Desirable Properties of an Ideal Risk Measure in Portfolio Theory.International Journal of Theoretical and Applied Finance 11(1), 19-54, 2008.

Serfling R.,

Quantile functions for multivariate analysis: approaches and applications.Statistica Neerlandica 56, 214-232, 2002.

Zuo Y. and Serfling R.,

General notions of statistical depth function.Annals of Statistics 28(2), 461-482, 2000.

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 43 / 44

Page 75: A notion of multivariate Value at Risk from a directional ...

Thanks

Torres Díaz, Raúl A. Multivariate VaR: Directional perspective August 2015 44 / 44