A Model for the Origin of Homochirality in Polymerization and β Sheet Formation

32
A Model for the Origin of Homochirality in Polymerization and β Sheet Formation Nathaniel Wagner , βoris Rubinov, Gonen Ashkenasy

description

A Model for the Origin of Homochirality in Polymerization and β Sheet Formation. Nathaniel Wagner , β oris Rubinov, Gonen Ashkenasy. Chirality. Chiral Molecule. - PowerPoint PPT Presentation

Transcript of A Model for the Origin of Homochirality in Polymerization and β Sheet Formation

Page 1: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

A Model for the Origin of Homochirality

in Polymerization and β Sheet Formation

Nathaniel Wagner, βoris Rubinov, Gonen Ashkenasy

Page 2: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Chirality

Page 3: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

A molecule that has a nonidentical mirror image, which does not contain a plane of symmetry, is said to be chiral. The pair of molecules are called enantiomers.

Chiral Molecule

Page 4: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Naming Conventions

R (Rectus) vs. S (Sinister)

D (Dextro) vs. L (Levo)

Page 5: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Homochirality in Nature

• Active amino acids are all L

• Biologically relevant sugars are mostly D

• RNA and DNA are also homochiral

What is the origin of homochirality?

How is this related to the origin of life?

What came first – life or homochirality?

Page 6: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Suggested Origins of Homochirality

• Random initial fluctuations followed by chiral amplification• Evolution: racemic molecules too inefficient for biochemical life

processes• Extra-terrestial: L-amino acids came from outer space• Cosmic radiation: circularly polarized light delivered to primitive Earth by

comets or meteorites• Parity violation in weak interaction leads to a small energy shift between

enantiomers, resulting in a phase transition• Thermodynamic-kinetic feedback near equilibrium led to chiral separation• Enantioselective adsorption or reactions on chiral surfaces (e.g., quartz)• Magnetic fields or Vortex motion• Spontaneous mirror symmetry breaking as a cooperative phenomenon in

non-linear dissipative systems

Page 7: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Frank Model (1953)Proposed a reaction scheme where chiral autocatalysis – in which each enantiomer catalyzes its own formation and suppresses the production of the opposite enantiomer - amplifies small statistical fluctuations, leading to large enantiomeric excess. Concluded: “A laboratory demonstration may not be impossible.”

Kondepudi (1990)Asakura (1995)Ghadiri (2001)Luisi (2001)Buhse (2003)Blackmond (2004)Plasson (2004, 2007)Viedma (2005)Ribo (2008)

Chiral Amplification / Symmetry BreakingModels and Experiments

Soai Reaction (1990, 1995) Designed and implemented an asymmetric autocatalytic reaction system, where a small enantiomeric excess yielded a much larger excess at the end of the reaction.

Page 8: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Lahav et al (2007-2009)

Studied polymerization of amino acids in aquaeous solutions, and observed long homochiral chains when antiparallel β sheets were formed.

Page 9: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Theoretical Explanation of Lahav et al

Goals:

•Gain insight into kinetic model

•Simulate the potential role of β sheets in peptide length distributions

•Highlight the parameters that affect homochiral polymerization

•Probe the interplay between the various competing processes

•Investigate open systems

•Provide “recipes” for further experiments

•Further speculation …

Page 10: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

A toy model is a simplified set of objects and equations used to understand complex mechanisms. This is usually done by reducing the number of dimensions or variables, while leaving in the essential details, in order to reproduce the main qualitative effects.

Sandars (2003)

Wattis and Coveney (2005)

Brandenburg et al (2005, 2007)

Kafri, Markovitch, Lancet (2010) Chiral selection resulting from the GARD model

Blanco and Hochberg (2011) Explained symmetry breaking in Lahav’s chiral crystallization experimental results

Toy ModelsPolymerization leading to Homochirality

Page 11: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Brack (1979, 2007) Ulijn (2005)

Maury (2009)

Otto (2010)

β Sheets

It has been suggested that β sheet peptide structures have played a critical role in self-replication, homochirality, and the origin of life.

Page 12: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Brack (1979, 2007) Ulijn (2005)

Maury (2009)

Otto (2010)

Lahav et al (2007-2009)

β Sheets

It has been suggested that β sheet peptide structures have played a critical role in self-replication, homochirality, and the origin of life.

Page 13: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Self Replicating β-Sheet Forming Peptides

B. Rubinov, N. Wagner, H. Rapaport, G. Ashkenasy, Agnew. Chem. Int. Ed. 48, 6683 (2009)

Suggested Mechanism:

TnE●N●Tn Tn+1

E N

Simple peptides can form β sheets that serve as catalysts for self-replication.

Page 14: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Model and Simulation

(2) Reversible β Sheet Formation

(1) Irreversible Polymerization

(3) No Epimerization (Chirality Switching)

Page 15: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

“Scoring” for β Sheets

• Monomers prefer to join peptides that are part of β sheets

• Stability of β sheets proportional to no. of hydrogen bonds

Page 16: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

“Scoring” for Chirality

• Polymerization favors adjacent units of identical chirality

• β sheets strengthened by having units of opposite chirality in adjacent strands

• Monomers prefer to join β sheets where chirality of adjacent strands is opposite

Page 17: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Sigmoid Weighting Functions

1

1 + e- w * (s-m)

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Score

Str

engt

h

k=0.3

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Score

Str

engt

h

k=10

No Weighting( w = 0 )

High Weighting( w )

Medium Weighting

s-m s-ms-m

Weighting Factor =

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Score

Str

engt

h

k=0

Allow us to take the various scoring factors into account

Page 18: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Simulation Flow Chart

Concurrent processes (until monomers run out):

Polymerization β Sheet Formation β Sheet Breakup

Page 19: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Chiral Polymerization

D4 D3L D2L2 DL3 L4

Binomial distribution

Page 20: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Chiral Polymerization

Polymerization w = 3 β Sheet w = 3 Polymerization w = 0.3 β Sheet w = 3

Page 21: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Chiral Polymerization

Simulation ResultsExperimental Results (Lahav 2007)

Page 22: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Non-Racemic Initial Conditions (20% ee)

j kj k i

i

j kj k i

j k L D

deL D

ee = ([L]-[D])/([L]+[D])

20% ee-20% ee

enantiomeric excess: diastereomeric excess:

Page 23: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

• Model:• Irreversible polymerization, reversible β sheet formation• No epimerization (chirality switching)

• Results:• Non-random distribution of peptide lengths• Tendency to form long isotactic peptide diastereoisomers• Consistent with Lahav et al’s experimental results• Critically depend on formation of β sheets• Hold for initially racemic or nonracemic systems• Hold for open or closed systems

• Possible Implications:• Scenario where Origin of Chirality preceded Origin of Life• Explanation for increase in chirality with biochemical complexity• Potential description of origin of chiroselectivity in biological systems

Summary and Conclusions

N. Wagner, B. Rubinov, G. Ashkenasy, Chem. Phys. Chem. 12, 2771 (2011)

Page 24: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Special Thanks to…

Prof. Gonen Ashkenasy Prof. Meir Lahav Boris Rubinov

Maya Kleiman

Prof. Addy Pross ● Prof. Emmanuel TannenbaumDr. Rivka Cohen-Luria ● Dr. Dima LukatskyZehavit Dadon ● Rita Eisenberg ● Yosi Shamay ● Inbal Shumacher ● Lina ShtelmanSamaa Alesebi ● Dennis Ivnitski ● Valery Bourbo ● Nadia Levin ● Vered Zavaro Yoav Raz ● Eran Itan

Prof. Avshalom ElitzurMachon IYAR – Israel Institute for Advanced Study

Page 25: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

A Model for the Origin of Homochirality in Polymerization and Sheet Formation

Nathaniel Wagner, Boris Rubinov and Gonen Ashkenasy

Abstract

The origin of homochirality in living systems is an open question closely related to the origin of life. Several explanations and models have been proposed, while various experimental systems demonstrating increasing chirality have been discovered using autocatalysis, crystallization or polymerization. In one particular approach, Lahav et al1 studied the chiral amplification obtained during peptide formation by polymerization and β sheet formation of amino acid building blocks. Consequently, we have introduced a simple model and stochastic simulation for this system2, showing the crucial effects of the β sheets on the distributions of peptide lengths. When chiral affinities are included, racemic β sheets of alternating homochiral strands lead to the formation of chiral peptides whose isotacticity increases with length, consistent with the experimental results. The tendency to form isotactic peptides is shown for both initially racemic and initially nonracemic systems, as well as for closed and open systems. We suggest that these or similar mechanisms may explain the origin of chiroselectivity in prebiotic environments.

1. I. Rubinstein, R. Eliash, G. Bolbach, I. Weissbuch and M. Lahav, Angew. Chem. Int. Ed. 46, 3710 (2007); I. Weissbuch, R. A. Illos, G. Bolbach and M. Lahav, Accounts Chem. Res. 42, 1128 (2009).

2. N. Wagner, B. Rubinov and G. Ashkenasy, Chem. Phys. Chem. 12, 2771 (2011).

Page 26: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Achiral Polymerization

a) w = 0 m = 0 b) w = 3 m = 2

c) w = 2 m = 5 d) w = 5 m = 3

Page 27: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Computation of Average Length for Random Achiral Polymerization

The average polymer length for random achiral polymerization, when all the monomers have been polymerized, can be computed as follows.

Let m0 be the initial number of monomers, and mi the number left after step i, and let ni be the total number of

independent units (monomers and polymers) available after step i. Since we begin only with monomers, n0 = m0.

The average polymer length after any step i will be m0 / ni. After each step one less unit is available, so ni

decreases by 1, yielding ni = m0 – i. On the other hand, mi decreases either by 2 if a monomer joins another

monomer, or by 1 if a monomer joins a polymer. At each step i, a monomer may join another monomer with probability (mi-1 -1) / (ni-1 -1), or a polymer with probability (ni-1 - mi-1) / (ni-1 -1). On average, the number of

monomers then becomes:

1 0 1

1 1

0 0

1 12 1

i i

i i i

m m i mm m m

m i m i

Combining terms yields the difference equation:

0

1

0

11i i

m im m

m i

This can be expanded further:

0 0

2

0 0

11 1

1i i

m i m im m

m i m i

0 0 0

3

0 0 0

1 11 1 1

1 2i

m i m i m im

m i m i m i

The sum goes all the way to m0, yielding:

0 0 0 0

0

0 0 0 0

1 1 1 11

1 2 1i

m i m i m i m im m

m i m i m i m

Page 28: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

or equivalently:

0 0 0 0 0

0

0 0 0 0 0

1 1 1 1 1

1 2 1 1i

m i m i m i m i m im m

m i m i m i m m

This can be listed as a finite summation:

o

0

0

0 o

1 11

1i

m

j m i

mm m i

m j

For very large m0 the summation approaches the integral:

o

0

0

0o

11

11

i

m

m i

mm m i d j

m j

and this can then be approximated by:

0

0

0

1 1 lni

mm m i

m i

We are interested in the step where the monomers run out, which is given by:

0 0

0 0

1 ln 0m m

em i m i

The last term is just the expression for the average length, yielding an average polymer length of e, independent of m0.

Page 29: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Non-Racemic Initial Conditions (20% ee)

j kj k i

i

j kj k i

j k L D

deL D

j kj k i

i

j kj k i

j k L D

iiL D

ee = ([L]-[D])/([L]+[D])

20% ee-20% ee

enantiomeric excess:

diastereomeric excess:

isotacticity index:

Page 30: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

Open System Simulation

Li , Di

r Li , r Di li , di

ΔL , ΔD Δli , Δdi

Schematic diagram illustrating an open continuous reaction system, and its equivalent model as implemented in the simulation, calculated in order to keep the correct proportions.

intake outtake proportionally increasing intake

Page 31: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

20% ee followed by 100 racemic ‘waves’ (1% intake)

j kj k i

i

j kj k i

j k L D

deL D

ee = ([L]-[D])/([L]+[D])

Peptide length = 3

Peptide length = 10

Page 32: A Model for the Origin of  Homochirality in  Polymerization and  β  Sheet Formation

a) ee = 0 followed by 100 racemic ‘waves’b) ee = 20% followed by 100 racemic ‘waves’c) ee = 50% followed by 100 racemic ‘waves’

Time Evolution of Open Systems

Peptide length = 3

Peptide length = 10