A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology
Embed Size (px)
description
Transcript of A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology

CSICS 2013 Monterey, California
A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT
Technology
Saeid Daneshgar, Prof. Mark Rodwell (UCSB)Zach Griffith (Teledyne Scientific Company)

CSICS 2013 Monterey, California
Outline
Slide 2
• Application and Motivation of the work
• TSC 250nm HBT process overview
• Block diagram & schematic of the circuit
• Layout & EM modeling
• Measurement results and comparison table

CSICS 2013 Monterey, California
Motivation - I
Slide 3
50 GSample/sec Sample & Hold circuit

CSICS 2013 Monterey, California
Motivation - II
Slide 4
50 GHz clock circuit

CSICS 2013 Monterey, California
Applications - I
Slide 5
• High speed optoelectronic signal conversion requires broadband receivers
• Limiting amplifiers are the key components in these receivers in order to:
Provide a low input sensitivity and sufficient gain to achieve saturated output levels from small-signal inputs which enables reliable decision making
Provide a wide bandwidth to achieve short rise and fall times in order to provide an output signal with minimum distortion

CSICS 2013 Monterey, California
TSC 250nm InP HBT process
Slide 6
• Four metal interconnect stack• Peak bandwidth of ft=400 GHz & fmax = 700 GHz• MIM caps of 0.3 fF/μm2
• Thin-film resistors 50 Ω/square
• Plot courtesy Zach Griffith, UCSB 250nm InP HBT, 2007

CSICS 2013 Monterey, California
Modified Cherry-Hooper stage [1-3]
Slide 7
[1] Y. M. Greshishchev et al., “A 60-dB gain, 55-dB dynamic range, 10-Gb/s broad-band SiGe HBT limiting amplifier,” IEEE JSSC,
vol.34, no.12, pp. 1914-1920, Dec. 1999.
[2] K. Ohhata et al., “Design of a 32.7-GHz bandwidth AGC amplifier IC with wide dynamic range implemented in SiGe HBT,”
IEEE JSSC, vol.34, no.9, pp. 1290-1297, Sep. 1999
[3] C. D. Holdenried et al., “Analysis and design of HBT Cherry-Hooper amplifiers with emitter-follower feedback for optical
communications,” IEEE JSSC, vol.39, no.11, pp. 1959-1967, Nov. 2004.
Large signal behavior:
Conventional C-H amp. gain ≈ gm1-2 RF
Modified C-H amp. provides gain enhancement
by a factor of while 0 < < 2.5

CSICS 2013 Monterey, California
Block Diagram
Slide 8
Single-ended gain and BW measurements have be chosen due to
unavailability of 4-port s-param measurement for frequencies > 67 GHz
→ ~6dB gain has been added to get the differential equivalent

CSICS 2013 Monterey, California
Schematic
Slide 9
R1 =30 Ω
R2 =50 Ω
RF =40 Ω
Q1-8 =3x0.25 μm

CSICS 2013 Monterey, California
Compact layout
Slide 10
425 µm
500 µm
140 µm
100 µm

CSICS 2013 Monterey, California
Symmetric layout
Slide 11

CSICS 2013 Monterey, California
EM Simulation
Slide 12
54 port data item
Whole chip has been modeled using ADS momentum EM simulator

CSICS 2013 Monterey, California
S-parameter measurement results - I
Slide 13
Single-ended insertion lossSingle-ended input and output
return loss
• S21=14.5 dB , 3dB BW = 100 GHz• S21 gain ripple < ±0.5 dB
• S11< -20 dB , S22< -15 dB

CSICS 2013 Monterey, California
S-parameter measurement results - II
Slide 14
Rollet Stability factor Group Delay
Group delay ≈ 9 psecGroup delay variation = 11 psec

CSICS 2013 Monterey, California
Eye diagrams @ 30 Gb/s
Slide 15
Smal
l Sig
nal
Larg
e Si
gnal

CSICS 2013 Monterey, California
Eye diagrams @ 40 Gb/s
Slide 16
Smal
l Sig
nal
Larg
e Si
gnal

CSICS 2013 Monterey, California
Comparison table
Slide 17

CSICS 2013 Monterey, California Slide 18
Thank you for your listening