A Comparison of Step 3 & Step 4

19
A Comparison of Step 3 & Step 4 Timothy Carlisle, Oxford CM 28

description

A Comparison of Step 3 & Step 4. Timothy Carlisle, Oxford CM 28. Step 3. Step 3 rematched for 830 mm spool piece Calc. B(z) & BetaFn with the following: Minimize F at 1 point in a const. field region in 2 nd Tracker. Matching Step 3. Beta Fn. [cm]. 140 120 100 80 60 40 20. - PowerPoint PPT Presentation

Transcript of A Comparison of Step 3 & Step 4

Page 1: A Comparison of Step 3 & Step 4

A Comparison of Step 3 & Step 4

Timothy Carlisle, OxfordCM 28

Page 2: A Comparison of Step 3 & Step 4

Step 3

Page 3: A Comparison of Step 3 & Step 4

Matching Step 3

Step 3 rematched for 830 mm spool piece

Calc. B(z) & BetaFn with the following:

Minimize F at 1 point in a const. field region in 2nd Tracker.

3

F = 0.5*(βγ0 - αα0 + β0γ)

-5 -4 -3 -2 -1 0

z [m]Many solutions...

140

120

100

80604020

Beta Fn. [cm]

Page 4: A Comparison of Step 3 & Step 4

Step 3 Empty: 6mm e beam

M1 = 158.9M2 = 92.4

SigPz = 1 MeV/c, 100k muons

Beta Fn. [cm]

Bz [T] on Axis

Emittance [mm]

Av. Pz [MeV/c

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

140120100

80604020

6.08

6.06

6.04

6.02

6

43210

-1-2-3-4

202

201.5

201

200.5

200

199.5

Page 5: A Comparison of Step 3 & Step 4

Amplitude Cooling...

Step 3 empty Step 4 empty

Amp OUT

Amp IN

Amp OUT

Amp IN

6mm beam, SigPz = 1 MeV/c, 100k muons

140

120

100

80

60

40

20

140

120

100

80

60

40

20

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

Page 6: A Comparison of Step 3 & Step 4

Amplitude Cooling...

Step 3: LiH Step 4: LH2

6mm beam, SigPz = 1 MeV/c, 100k muons

Amp OUT

Amp IN

Amp OUT

Amp IN

140

120

100

80

60

40

20

0 20 40 60 80 100 120 140

140

120

100

80

60

40

20

0 20 40 60 80 100 120 140

Page 7: A Comparison of Step 3 & Step 4

1 2 3 4 5 6 7 8 9 10 100

-0.1

-0.05

0

0.05

0.1

0.15LH2 - Step 4

Theoretical Cooling Performance

Input beam emittance [mm]

de/e

2

2 30

0.014 GeV

2tn nd dE

dz E dX Em X

Page 8: A Comparison of Step 3 & Step 4

1 2 3 4

-0.1

-0.05

0

0.05

0.1

0.15

Step 3

EmptyLiHTotal CoolingTheory

de/e

Input beam emit-tance [mm]

8

cooling

heating

G4MICE : 100k mu, SigPz =1 MeV/c

Page 9: A Comparison of Step 3 & Step 4

1 2 3 4

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Step 4

EmptyLH2Total CoolingTheory

cooling

heating

Input beam emittance [mm]

de/e

Page 10: A Comparison of Step 3 & Step 4

Focus Coil switched off

No LH2

Minimized Fn at z= -0.3 m~ centre of 2nd Tracker

Range of solutions:

10

F = 0.5*(βγ0 - αα0 + β0γ)

-5 -4 -3 -2 -1 0

z [m]

-4 -2 0z [m]

16014012010080604020

43210

-1-2-3-4

Step IV but without FCBz [T] on

Axis

Beta Fn. [cm]

Page 11: A Comparison of Step 3 & Step 4

Step 3: Empty Step 4: EmptyStep 4: No FC currents

Transmission

1000 mu1% 400 mu

0.4%400 mu0.4%

within Tracker

Transmitted

Quality cut: Amp < 16*Av. e

Raw Beam

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

100

99.5

99

98.5

98

97.5

100

99.8

99.6

99.4

99.2

90

100

99.8

99.6

99.4

99.2

90

6mm beam, SigPz = 1 MeV/c, 100k muons

Page 12: A Comparison of Step 3 & Step 4

ConclusionsClearly more difficult to measure cooling in Step 3

~10 x more heating than Step 4Step 3 cooling disagrees with theory

e0 < theory – don’t know why (same in ICOOL)

Need to include Tracker reconstruction...

It appears we can run Step 4 without FC currents Is this useful – Trackers?

Can we run Step 4 with no currents in M1,M2 & FC? Alignments?

Page 13: A Comparison of Step 3 & Step 4

Extras...

Page 14: A Comparison of Step 3 & Step 4

Step 3 – comparison with existing data..

Empty Channel LiH absorber

14

cooling

heating

heating

Black Data: 100k mu, SigPz =1 MeV/c, G4MICE

Marco Data: 10k mu, SigPz = big (10%), ICOOL – note 199

0 1 2 3 4 5 6 7 8 9 10

Input emittance [mm]

0 1 2 3 4 5 6 7 8 9 10

Input emittance [mm]

5%

2%

0

6%

3%

0-2%-4%

Page 15: A Comparison of Step 3 & Step 4

Step3 Empty: 1mm e beamSigPz = 1 MeV/c, 100k muons

B(z) on Axis

M1 = 158.9M2 = 92.4

Emittance [mm]

Beta Fn. [cm]

Bz [T] on Axis

Av. Pz [MeV/c

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

43210

-1-2-3-4

140120100

80604020

200.4

200.3

200.2

200.1

200

Page 16: A Comparison of Step 3 & Step 4

Step 3 LiH: 6mm e beam

M1 = 158.9M2 = 92.4

SigPz = 1 MeV/c, 100k muons

Beta Fn. [cm]

Bz [T] on Axis

Emittance [mm]

Av. Pz [MeV/c

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-6 -4 -2 0

z [m]

140120100

80604020

5.9

5.85

5.8

5.75

5.7

43210

-1-2-3-4

210208206204202200198196194

-5 -4 -3 -2 -1 0

z [m]

Page 17: A Comparison of Step 3 & Step 4

Step 4 Empty: 6mm e beamSigPz = 1 MeV/c, 100k muons

Beta Fn. [cm]

Bz [T] on Axis

Emittance [mm]

Av. Pz [MeV/c

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-6 -4 -2 0 2

z [m]

-5 -4 -3 -2 -1 0

z [m]5.952

5.95

5.948

5.946

5.944

5.942

43210-1-2-3-4

202

201.5

201

200.5

200

140120100

80604020

Beta Fn. [cm]

Page 18: A Comparison of Step 3 & Step 4

Step 4 LH2: 6mm e beam SigPz = 1 MeV/c, 70k muons

Bz [T] on Axis

Av. Pz [MeV/c

-5 -4 -3 -2 -1 0

z [m]

-5 -4 -3 -2 -1 0

z [m]

-6 -4 -2 0 2

z [m]

-6 -4 -2 0z [m]

5.9

5.7

43210-1-2-3-4

208206204202200198196

140120100

80604020

Beta Fn. [cm]

Emittance [mm]

Page 19: A Comparison of Step 3 & Step 4

Output AmpSq

Step 3 Empty Step 4 Empty

Step 3 LiH Step 4 LH2