80Sa01 Nuclear Structure: Shell-Model Description of the ......80Sa01 Shell-Model Description of the...

327
80Sa01 Shell-Model Description of the Nucleus 132 Te J. Sau, K. Heyde, R. Chery, Phys. Rev. C21, 405 (1980). Nuclear Structure: 132 Te; calculated levels, T 1/2 , B(λ). Two particle-two hole shell model.

Transcript of 80Sa01 Nuclear Structure: Shell-Model Description of the ......80Sa01 Shell-Model Description of the...

  • 80Sa01 Shell-Model Description of the Nucleus 132Te

    J. Sau, K. Heyde, R. Chery, Phys. Rev. C21, 405 (1980).

    Nuclear Structure: 132Te; calculated levels, T1/2, B(λ). Two particle-two hole shell model.

  • 80Sa02 Magnetization Distribution in 207Pb

    H. Sagawa, Phys. Lett. 90B, 21 (1980).

    Nuclear Reactions: 207Pb(e,e), E not given; calculated magnetic form factor, transition density. Core polarization, exchangecurrent effects.

  • 80Sa03 Asymmetry Effects in (p,γ) Reactions Through Isobaric Analog States

    F. Saporetti, R. Guidotti, Phys. Lett. 90B, 29 (1980).

    Nuclear Reactions: 208Pb(p,γ), E=14-18 MeV; calculated γ(θ) asymmetry. direct-semidirect model, IAR intermediate states.

  • 80Sa04 Application of the Isobar-Doorway Model to Pion Charge Exchange Reactions

    A. N. Saharia, R. M. Woloshyn, Phys. Rev. C21, 1111 (1980).

    Nuclear Reactions: 13C(π+,π+), (π-,π-), E=150 MeV; calculated σ(θ). 7Li, 13C, 15N, 18O(π+,π0), E=100-200 MeV; calculated σ(E).Isobar-doorway optical potential.

  • 80Sa05 Low-Lying Excited States of 106Ag Studied with the 103Rh(α,nγ)106Ag and 104Pd(α, pnγ)106Ag Reactions

    L. E. Samuelson, R. A. Emigh, D. E. Prull, R. E. Anderson, J. J. Kraushaar, R. A. Ristinen, Z. Phys. A294, 353 (1980).

    Nuclear Reactions: 103Rh(α,n), E=16.7 MeV; 104Pd(α, np), E=35.6 MeV; measured Eγ, Iγ, γ(θ), γγ-coin. 106Ag deduced levels,T1/ 2, J, π, γ-branching. Deformed rotor model.

  • 80Sa06 Coulomb Mixing of Nuclear States with Isospin

    D. I. Salamov, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 44 (1980).

    Nuclear Structure: 42Ca, 42Sc, 46Ti, 46V, 50Cr, 50Mn, 54Fe, 54Co, 58Ni, 58Cu, 64Zn, 64Ga, 66Zn, 66Ga, 208Pb, 208Bi; calculated rmsradii, Coulomb displacement energies.

  • 80Sa07 Electromagnetic Properties of the 749 and 777 keV Levels in 51Cr

    S. K. Saha, M. Maynard, B. C. Robertson, Nucl. Phys. A339, 253 (1980).

    Nuclear Reactions: 51V(p,nγ), E=3.7 MeV; measured Eγ, Iγ. 51Cr levels deduced T1/2, δ, B(M1), B(E2). Pulsed-beam γ-delay tim-ing.

  • 80Sa08 Analyzing Powers of Continuum Spectra of Reactions 28Si, 58Ni, 209Bi(p,p’X) and (p, dX) at 65 MeV

    H. Sakai, K. Hosono, N. Matsuoka, S. Nagamachi, K. Okada, K. Maeda, H. Shimizu, Phys. Rev. Lett. 44, 1193 (1980).

    Nuclear Reactions: 28Si, 58Ni, 209Bi(polarized p,p’X), (polarized p,dX), E=65 MeV; measured A(E(p’),θ), A(Ed,θ), energy spectrain compound nuclear continuum.

  • 80Sa09 Spectra of p, d, and t from Relativistic Nuclear Collisions

    A. Sandoval, H. H. Gutbrod, W. G. Meyer, R. Stock, C. Lukner, A. M. Poskanzer, J. Gosset, J. -C. Jourdain, C. H. King, G.King, Nguyen Van Sen, G. D. Westfall, K. L. Wolf, Phys. Rev. C21, 1321 (1980).

    Nuclear Reactions: U(20Ne,p), (20Ne,d), (20Ne,t), E=0.24, 0.39, 1.04, 2.1 GeV/nucleon; U, Ca(40Ar,p), (40Ar,d), (40Ar,t), Au, Ag,Al(20Ne, p), (20Ne,d), (20Ne,t), U, Al(α,p), (α,d), (α,t), E=390 MeV/nucleon; U, Ca(40Ar, p), (40Ar,d), (40Ar,t), U(α,p), (α, d), (α,t),U(p,p), (p,d), (p,t), E=1.04 GeV/nucleon; measured σ(E,θ).

  • 80Sa10 Gamma-Gamma Directional Correlations for Transitions in 84Kr

    R. N. Saxena, L. C. Jahnel, F. C. Zawislak, Phys. Rev. C21, 1531 (1980).

    Radioactivity: 84Br [from U(n,F), chemical separation]; measured γγ(θ) oriented nuclei. 84Kr deduced levels, J, π, δ.

  • 80Sa11 Determination of K-Shell Capture Fractions in the Decay of 195Au

    J. Sala-Lizarraga, J. Byrne, J. Phys. (London) G6, 525 (1980).

    Radioactivity: 195Au; measured γ(K X-ray)-, ce(K X-ray)-, (K X-ray)(K X-ray)-coin; deduced Q(ε), K-shell capture fractions. 195Ptlevels deduced K-shell capture probability. NaI(Tl), Si(Li), Si surface-barrier detectors.

  • 80Sa12 Resonant Behavior of the 24Mg(16O,12C)28Si Reaction

    S. J. Sanders, M. Paul, J. Cseh, D. F. Geesaman, W. Henning, D. G. Kovar, R. Kozub, C. Olmer, J. P. Schiffer, Phys. Rev.C21, 1810 (1980).

    Nuclear Reactions: 24Mg(16O,12C), E(cm)=26.3-32.4 MeV; measured σ(E,θ). 40Ca deduced resonances, J, Γ. Breit-Wignerresonance, direct amplitudes.

  • 80Sa13 Interaction of 80-164 MeV Protons with Nickel Isotopes

    M. E. Sadler, P. P. Singh, J. Jastrzebski, L. L. Rutledge, Jr., R. E. Segel, Phys. Rev. C21, 2303 (1980).

    Nuclear Reactions: 58, 60, 62, 64Ni(p,X), E=80, 100, 136, 164 MeV; measured σ(Eγ); deduced production σ for 58, 57, 59, 60, 61, 62,63, 64Ni, 54, 55, 56, 57, 58, 59, 60Co, 52, 53, 54, 55, 56, 57, 58Fe, 51, 52, 53, 54, 55, 56Mn, 50, 51, 52, 53, 54Cr, 47, 48, 49, 50V, 46, 48, 49, 50Ti.Hybrid exciton, cascade models.

  • 80Sa14 Gamma-Ray Lifetimes for Parity Doublets in 41K, 41Ca

    S. K. Saha, M. J. Maynard, B. C. Robertson, A. B. McDonald, E. D. Earle, Phys. Rev. C21, 2322 (1980).

    Nuclear Reactions: 41K(p,p’γ), E=3.22 MeV; 40Ca(d,pγ), E=3 MeV; measured Eγ, Iγ, T1/2.41K, 41Ca deduced doublet parity mix-

    ing. Direct timing, pulsed beam.

  • 80Sa15 Nuclear Excitation by Electron Transition (NEET) in 237Np Following K-Shell Photoionization

    T. Saito, A. Shinohara, K. Otozai, Phys. Lett. 92B, 293 (1980).

    Nuclear Reactions: 237Np(γ,γ’), E=122, 136 keV [from 57Co]; measured Eγ, Iγ, I(K X-ray), E(K X-ray). 237Np level deduced exci-tation probability by radiationless electron transition.

  • 80Sa16 Realistic Structure of the T=1 Negative Parity States in the 4He Nucleus

    M. Sakai, Prog. Theor. Phys. (Kyoto) 63, 180 (1980).

    Nuclear Structure: 4He; calculated T=1, negative parity states. Realistic nuclear forces, variational method.

  • 80Sa17 Elastic and Inelastic Scattering of 6Li at About 74 MeV and the Folding Model

    G. R. Satchler, Phys. Rev. C22, 919 (1980).

    Nuclear Reactions: 58Ni, 90Zr, 124Sn, 208Pb(6Li, 6Li), E=73.7 MeV; 58Ni(6Li,6Li’), E=71 MeV; calculated σ(θ); deduced foldingmodel parameters.

  • 80Sa18 Energy Dependence of Multi-Pion Production in High-Energy Nucleus-Nucleus Collisions

    A. Sandoval, R. Stock, H. E. Stelzer, R. E. Renfordt, J. W. Harris, J. P. Brannigan, J. V. Geaga, L. J. Rosenberg, L. S.Schroeder, K. J. Wolf, Phys. Rev. Lett. 45, 874 (1980).

    Nuclear Reactions: K, Cl(Ar,X), (Ar,π-), E=0.4-1.8 GeV/nucleon; measured charged particle, pion production σ(E), multiplicitydistributions. Thermal, firestreak models.

  • 80Sa19 Pre-Equilibrium Process for 175Lu(p,xnγ), 176Yb(3He,xnypγ), and 174, 176Yb(α, xnγ) Reactions

    H. Sakai, A. Shimizu, H. Ejiri, T. Shibata, K. Okada, T. Kishimoto, K. Maeda, Phys. Rev. C22, 1002 (1980).

    Nuclear Reactions: 175Lu(p,xn), E=40 MeV; 176Yb(3He, xnyp), E=65-100 MeV; 174, 176Yb(α,xn), E=50-120 MeV; measured Eγ,Iγ; deduced production σ(E), median ground state band spin values for 174, 172, 170, 168Hf. 174, 172Hf deduced K-isomer populationratio. Enriched targets, hyperpure Ge, Ge(Li) detectors. Preequilibrium, two phase deexcitation model.

  • 80Sa20 Analyzing Powers of the Continuum Spectra: 65 MeV polarized protons on 12C, 28Si, 45Sc, 58Ni, 93Nb, 165Ho, 166Er, 209Bi

    H. Sakai, K. Hosono, N. Matsuoka, S. Nagamachi, K. Okada, K. Maeda, H. Shimi, Nucl. Phys. A344, 41 (1980).

    Nuclear Reactions: 12C, 28Si, 45Sc, 58Ni, 93Nb, 165Ho, 166Er, 209Bi(polarized p, p’X), (polarized p,dX); 93Nb, 209Bi(polarized p,αX),E=65 MeV; measured σ(θ,Ep’), σ(θ, Ed), σ(θ,Eα), analyzing power vs θ. Preequilibrium models.

  • 80Sa21 Binding Energies of the 1g9/2 and 1h11/2 Neutron and Average Two-Body Effective Interactions V(pn) and V(nn)

    M. Sakai, Nucl. Phys. A345, 232 (1980).

    Nuclear Structure: A=82-144; calculated 1g9/2, 1h11/2 neutron particle, hole binding energies. Effective proton-neutron, neutron-neutron interaction.

  • 80Sa22 Influence of the g Boson on the Interacting Boson Approximation Hamiltonian

    K. A. Sage, B. R. Barrett, Phys. Rev. C22, 1765 (1980).

    Nuclear Structure: 128, 130, 132, 134, 138Ba; calculated level splittings. Interacting boson approximation, s, d, g bosons, perturba-tion theory.

  • 80Sa23 Asymptotic Normalization Constants of 3He and 3H

    T. Sasakawa, T. Sawada, Y. E. Kim, Phys. Rev. Lett. 45, 1386 (1980).

    Nuclear Structure: 3H, 3He; calculated s-wave asymptotic normalization. Reid soft-core potential, Coulomb effect.

  • 80Sa24 The Influence of the Fission Barrier on the Mass Distribution in Reactions with Symmetric Fragmentation

    C. -C. Sahm, H. Schulte, D. Vermeulen, J. Keller, H. -G. Clerc, K. -H. Schmidt, F. Hessberger, G. Munzenberg, Z. Phys.A297, 241 (1980).

    Nuclear Reactions: Fission 144Sm, 176Hf(40Ar,X), (40Ar, F), E=190 MeV; 208Pb(40Ar,X), (40Ar, F), E=208 MeV; 165Ho, 175Lu,181Ta(40Ar, X), (40Ar,F), E not given; measured σ(fragment mass,E). 184Hg, 205At, 215Ac, 216Th, 221Pa, 248Fm deduced symmetricfission fragmentation contribution, fission barrier influence.

  • 80Sa25 Energy Dependence in 12C + 28Si Elastic Scattering

    G. R. Satchler, M. L. Halbert, R. G. Stokstad, R. M. Devries, D. A. Goldberg, J. G. Cramer, Nucl. Phys. A346, 179 (1980).

    Nuclear Reactions: 28Si(12C,12C), E=131.5 MeV; measured σ(θ); deduced optical model potentials. Enriched targets. Opticalmodel analyses.

  • 80Sa26 Isobaric Analog State Excitation in Proton Radiative Capture

    F. Saporetti, R. Guidotti, Nucl. Phys. A346, 449 (1980).

    Nuclear Reactions: 208Pb(p,γ), E=9-18 MeV; calculated σ(θ, E); deduced mechanisms in E1 process. DSD model, capture viaIAS.

  • 80Sa27 Kaon Scattering on 12C and 40Ca

    Y. Sakamoto, Y. Hatsuda, M. Toyama, Lett. Nuovo Cim. 27, 140 (1980).

    Nuclear Reactions: 12C, 40Ca(K-,K-), (K+, K+), E at 800 MeV/c; calculated σ(θ). Glauber model, eikonal approximation.

  • 80Sa28 Neutron-Proton Elastic Scattering at High Energies

    M. Saleem, Fazal-e-Aleem, Lett. Nuovo Cim. 29, 17 (1980).

    Nuclear Reactions: 1H(n,n), E=100, 200, 360 GeV/c; analyzed σ(θ). Diffraction theory, double pomeron pole.

  • 80Sa29 Fission Modes of 24Mg

    A. M. Sandorfi, J. R. Calarco, R. E. Rand, H. A. Schwettman, Phys. Rev. Lett. 45, 1615 (1980).

    Nuclear Reactions: Fission 24Mg(e,F), E=26-40 MeV; measured production σ(E) for α, 12C, 16O fragments. 24Mg deducedenhanced asymmetric fission, resonances, statistical giant resonance decay, clustering.

  • 80Sa30 Two Moments of Inertia of Bands in the Cranking Model

    H. Sagawa, T. Dossing, Phys. Lett. B96, 238 (1980).

    Nuclear Structure: 166Yb; calculated moments of inertia vs rotational frequency, angular momentum I; deduced single-particleangular momentum alignment effects. Cranking model, Nilsson potential.

  • 80Sa31 Resonant Behavior of the 24Mg(16O,12C)28Si* (6.4 < Ex < 10 MeV) Reaction

    S. J. Sanders, C. Olmer, D. F. Geesaman, W. Henning, D. G. Kovar, M. Paul, J. P. Schiffer, Phys. Rev. C22, 1914 (1980).

    Nuclear Reactions: 24Mg(16O,12C), E(cm)=24-36 MeV; measured σ(E,θ), σ(E(12C)). 40Ca resonances deduced entrance, exitchannel partial widths. DWBA analysis.

  • 80Sa32 Isospin-Symmetry Violating Branch of 42Sc β+ Decay

    A. M. Sandorfi, C. J. Lister, D. E. Alburger, E. K. Warburton, Phys. Rev. C22, 2213 (1980).

    Radioactivity: 42Sc [from 42Ca(p,n), E=8 MeV]; measured γγγ-coin. 42Ca levels deduced β-branching ratio. Isospin symmetry vio-lation effects, vector coupling constant.

  • 80Sa33 Dipole Pomeron and Neutron-Proton Elastic Scattering between 70 and 400 GeV/c

    M. Saleem, Fazal-e-Aleem, Indian J. Pure Appl. Phys. 18, 678 (1980).

    Nuclear Reactions: 1H(n,n), (n,X), E at 70-400 GeV/c; calculated total σ, differential σ(elastic). Dipole pomeron model.

  • 80Sa34 Cross Section for the Formation of Gamma-Quanta During the Interaction of Fast Neutrons with Carbon, Lead, and RheniumNuclei

    M. V. Savin, Yu. A. Khokhlov, I. N. Paramonova, V. A. Chirkin, V. N. Ludin, N. N. Zalyalov, At. Energ. 49, 236 (1980); Sov. At.Energy 49, 686 (1981).

    Nuclear Reactions: C(n,n’γ), E=4.75-7.5 MeV; Re, Pb(n,γ), E=1-10 MeV; measured total σ(E).

  • 80Sa35 Effect of the Spin-orbit Interaction on the Magnetic Properties of Nuclei

    V. A. Sadovnikova, Yad. Fiz. 32, 1527 (1980); Sov. J. Nucl. Phys. 32, 791 (1980).

    Nuclear Structure: 208Pb; calculated µ, reduced M1 transition probabilities; deduced spin-orbit interaction effects.

  • 80Sa36 New Type of Decay of Heavy Nuclei Intermediate between Fission and α decay

    A. Sandulescu, D. N. Poenaru, W. Greiner, Fiz. Elem. Chastits At. Yadra 11, 1334; Sov. J. Part. Nucl. 11, 528 (1980).

    Radioactivity: Fission 252No(SF); calculated fission product yields; 252, 254No, 248, 250Cm, 250, 252Cf, 254, 252Fm, 244, 246Pu, 238,236U(SF); calculated two-body fragmentation penetrability vs mass; deduced decay mechanism intermediate between fission, α-decay. Fragmentation theory.

  • 80SaZA

    Conference proceedings: Kiev(Neutron Physics) Proc, Part2,P144,Salnikov

    Nuclear Reactions: 113Cd(p,n), E=6, 7, 8, 9, 10 MeV; 113In(n, n’), E=5.34, 6.47, 7.49, 8.53 MeV; measured σ(En, θ); deducedreaction mechanism. 113In deduced nuclear temperature, level density parameters. Tof. Statistical, exciton models.

  • 80SaZB

    Conference proceedings: Kiev(Neutron Physics) Proc, Part2,P17,Savin

    Nuclear Reactions: Cu, Mo(n,Xγ), E=1-10 MeV; measured σ(E,Eγ); deduced residuals nuclear temperature, level density param-eters. Statistical theory.

  • 80SaZC

    Conference proceedings: Gaussig, P46,Salnikov,ZFK-410

    Nuclear Reactions: 113In(n,n’), E=5.34 MeV; 113Cd(p,n), E=6 MeV; measured σ(En,θ).

  • 80SaZD

    Conference proceedings: Leningrad, P176,Sadovnikova

    Nuclear Structure: 207, 209Pb, 207, 209Bi; calculated L-forbidden B(M1) transition. Spin-orbital interaction.

  • 80SaZE

    Conference proceedings: Berkeley(Int Conf on Nucl Phys) Proc, P38,Sage

    Nuclear Structure: 128, 138Ba; calculated level splittings; deduced g boson renormalization effects. Interacting boson Hamil-tonian, perturbative monopole-monopole correction.

  • 80SaZF

    Conference proceedings: Berkeley(Int Conf on Nucl Phys) Proc, P213,Saporetti

    Nuclear Reactions: 208Pb(p,γ), (polarized p,γ), E=14-17 MeV; calculated A(θ), σ(θ), integrated σ vs E. GDR, IAR intermediatestates for direct-semidirect E1 capture process.

  • 80SaZG

    Conference proceedings: Berkeley(Int Conf on Nucl Phys) Proc, P106,Sato

    Nuclear Moments: +2}H; calculated µ. Nonstatic one-boson, two-boson exchange currents.

  • 80SaZH High Spin Levels in Kr-79

    D. L. Sastry, M. S. Rao, B. M. Rao, D. G. S. Narayana, V. S. Rao, A. V. Ramayya, J. H. Hamilton, A. P. de Lima, H.Kawakami, R. L. Robinson, H. J. Kim, Contrib. Intern. Conf. Band Structure and Nuclear Dynamics, New Orleans, Louisiana(1980), A. L. Goodman, Ed., p. 127 (1980).

    Nuclear Reactions: 70Zn(12C,3n), E=38.4 MeV; measured Eγ, Iγ, γγ-coin, γ(θ). 79Kr deduced levels, J, π, rotational band.

  • 80SaZI Single-Particle States in Nuclear Matter and in Finite Nuclei

    R. Sartor, C. Mahaux, JUL-Spez-72, p. 102 (1980).

    Nuclear Structure: 28Si, 40Ca, 58Ni; calculated hole strength functions. Brueckner Hartree-Fock approach.

  • 80SaZJ

    Report: IPCR-80, P53,Sano

    Nuclear Reactions: 12C(p,p’), E=45.5, 155 MeV; calculated σ(θ). DWBA analysis, RPA form factors.

  • 80SaZK Low-Lying States of 76Se and 78Se Excited by the Inelastic Scattering of 65 MeV Protons

    N. Sakamoto, K. Ogino, Y. Kadota, K. Obori, T. Taniguchi, Y. Okuma, T. Higo, Y. Iwashita, S. Matsuki, T. Yanabu, RCNP(Osaka), Ann. Rept. 1979, p. 60 (1980).

    Nuclear Reactions: 76, 78Se(p,p’), E=65 MeV; measured σ(θ); deduced direct, indirect excitation coupling effects. DWBA, com-plex form factors.

  • 80SaZL Analyzing Powers of the Continuum Spectra: 56 MeV polarized deuterons on 58Ni, 93Nb and 209Bi

    H. Sakai, N. Matsuoka, K. Hatanaka, K. Okada, H. Shimizu, RCNP (Osaka), Ann. Rept. 1979, p. 46 (1980).

    Nuclear Reactions: 58Ni, 93Nb, 209Bi(polarized d,pX), (polarized d,d’X), E=56 MeV; measured σ(θp,Ep), σ(θd,Ed), vector, tensoranalyzing powers vs θ, particle energy.

  • 80SaZM Systematic Study on the Elastic Scattering of Polarized Protons at 65 MeV (II)

    H. Sakaguchi, M. Nakamura, K. Hatanaka, T. Noro, F. Ohtani, H. Sakamoto, S. Kobayashi, RCNP (Osaka), Ann. Rept. 1979,p. 17 (1980).

    Nuclear Reactions: 16O, 20Ne, 24Mg, 28Si, 40Ar, 40, 44, 48Ca, 46, 48, 50Ti, 54, 56Fe, 58Ni, 59Co, 89Y, 90Zr, 208Pb(polarized p,p), E=65MeV; analyzed data; deduced shell effect in spin-orbit term. Optical model, volume integral considerations.

  • 80SaZN Systematic Study on the Elastic Scattering of Polarized Protons at 65 MeV (I)

    H. Sakaguchi, M. Nakamura, K. Hatanaka, T. Noro, F. Ohtani, H. Sakamoto, S. Kobayashi, RCNP (Osaka), Ann. Rept. 1979,p. 13 (1980).

    Nuclear Reactions: 56Fe, 58, 60, 62, 64Ni(polarized p,p), E=65 MeV; analyzed σ(θ), A(θ); deduced optical model parameters,effective two-body interaction range vs mass.

  • 80SaZO Analyzing Powers of the Continuum Spectra: 65 MeV polarized protons on 12C, 28Si, 45Sc, 58Ni, 93Nb, 165Ho, 166Er and 209Bi

    H. Sakai, K. Hosono, N. Matsuoka, K. Okada, K. Maeda, H. Shimizu, S. Nagamachi, RCNP (Osaka), Ann. Rept. 1979, p. 8(1980).

    Nuclear Reactions: 12C, 28Si, 45Sc, 58Ni, 93Nb, 165Ho, 166Er, 209Bi(polarized p, p’X), (polarized p,dX), (polarized p,αX), E=65MeV; measured σ(θp’,Ep’), σ(θd,Ed), σ(θα, Eα), analyzing power vs Ep’, Ed, Eα; deduced entrance channel effects.

  • 80SaZP Evidence of Sequential α Decay of 16O in 27Al(16O,12Cα)27Al Reactions at 88 MeV

    M. Sasagase, M. Sato, S. Hanashima, K. Furuno, Y. Nagashima, Y. Tagishi, S. M. Lee, T. Mikumo, UTTAC-37 (1980).

    Nuclear Reactions: 27Al(16O,α12C), E=88 MeV; measured 12Cα-coin; deduced reaction mechanism. 16O deduced sequential α-decay. Entrance, exit channel angular momentum matching, barrier penetration effects.

  • 80SaZQ

    Journal: BAPSA 25 734, CC3,Sau

    Radioactivity: 134Sb [from fission, chemical seperation, autobatch techniques]; measured γγ(t). 134Te levels deduced transitionrates, γ-branching. Shell model calculations.

  • 80SaZR

    Journal: BAPSA 25 595, JG6,Sales

    Nuclear Reactions: 66Zn(p,p), E=2.6-3.26 MeV; measured σ(Ep, θp). 67Ga deduced resonances, J, π, analog-state spectros-copic properties.

  • 80SaZS

    Journal: BAPSA 25 593, JF7,Samanta

    Nuclear Reactions: 40Ca(p,2p), E=75 MeV; 16O, 40Ca(α, αp), E=140 MeV; measured σ(Ep1,Ep2), σ(Eα,Ep); deduced S. DWIAanalysis.

  • 80SaZT

    Journal: BAPSA 25 590, JE2,Sandorfi

    Nuclear Reactions: 12C(12C,γ), E(cm)=5.3-6.3 MeV; measured Eγ, Iγ. 24Mg deduced resonance.

  • 80SaZU

    Journal: BAPSA 25 540, EF5,Sandhya Devi

    Nuclear Reactions: 93Nb(16O,X), E=204 MeV; calculated total reaction, fusion σ. time-dependent Hartree-Fock method.

  • 80SaZV

    Journal: BAPSA 25 507, BG14,Sandoval

    Nuclear Reactions: K(Ar,π-), E=0.4-1.8 GeV/nucleon; measured σ(E,E(π-)), π-multiplicity, total charged-particle multiplicity.

  • 80SaZW

    Journal: BAPSA 25 506, BG7,Sandoval

    Nuclear Reactions: K, Cl(40Ar,X), E=1.8 GeV/nucleon; measured π- multiplicity, momentum spectra, correlation functions;deduced temperature, density dependence.

  • 80SaZX

    Preprint: NUPAB GP-418, Sakai,6/25/80

  • 80SaZY Formation of Gold and Mercury Radionuclides in Reactions α + Pt and Possibilities of Activation Analysis of Platinum Contain-ing Samples at a Cyclotron

    R. N. Sagaidak, V. K. Utyonkov, JINR-P7-12734 (1980).

    Radioactivity: 193m, 195m, 199mHg, 193m, 195m, 197m, 196, 198Au [from Pt(α,xnyp), E=15-40 MeV]; measured T1/2, Eγ.

    Nuclear Reactions: 192, 194, 196Pt(α,n), (α,3n), 195Pt(α,2n)(α,p), (α,2np), 198Pt(α, 3n), 194, 196Pt(α,np), E=15-40 MeV; measuredproduction σ(E) for 197, 195, 193Hg, 196, 198, 199Au.

  • 80SaZZ

    Journal: BAPSA 25 726, BB3,Satkowiak

    Nuclear Reactions: 12C(12C,X), E=10-40 MeV; measured Eγ, Iγ. 16O, 22, 23Na, 20Ne, 19F deduced yields. 24Mg deduced reso-nances, channel correlation.

  • 80Sc01 Systematics of Nuclear Charge Radii of the Stable Molybdenum Isotopes From Muonic Atoms

    L. Schellenberg, B. Robert-Tissot, K. Kaeser, L. A. Schaller, H. Schneuwly, G. Fricke, S. Gluckert, G. Mallot, E. B. Shera,Nucl. Phys. A333, 333 (1980).

    Atomic Physics: +92}, 94, 95, 96, 97, 98, 100Mo; measured muonic X-rays, isotope shift; deduced nuclear charge radii.

    Nuclear Moments: +97}Mo; deduced quadrupole moment.

  • 80Sc02 Effect of Pauli Blocking on Exchange and Dissipation Mechanisms Operating in Heavy-Ion Reactions

    W. U. Schroder, J. R. Birkelund, J. R. Huizenga, W. W. Wilcke, J. Randrup, Phys. Rev. Lett. 44, 308 (1980).

    Nuclear Reactions: 209Bi(136Xe,X), E=940, 1130 MeV; 209Bi(56Fe, X), E=465 MeV; calculated energy loss vs fragment Z distribu-tion variance. Exchange-induced dissipation mechanism, Pauli principle.

  • 80Sc03 K-Shell Ionization in the Electron and Positron Decays of 64Cu

    G. Schupp, M. S. Freedman, Phys. Rev. C21, 348 (1980).

    Radioactivity: 64Cu; measured E(K X-ray), γγ(X-ray)-coin, γγβ(X-ray)-coin; deduced K-ionization probabilities.

  • 80Sc04 Reply to ’Magnitude of Energy Dissipation in Fission’

    H. Schultheis, R. Schultheis, Phys. Rev. C21, 755 (1980).

    Radioactivity: 252Cf (SF); calculated energy dissipation.

  • 80Sc05 Spectroscopy of Beta-Delayed Neutrons in Coincidence with Gamma-Rays Depopulating Excited States in 93Sr

    A. Schroder, H. Ohm, W. Rudolph, K. Summerer, K. -L. Kratz, K. D. Wunsch, G. Jung, J. Crancon, C. Ristori, Phys. Lett. 90B,57 (1980).

    Radioactivity: 94Rb; measured β-delayed nγ(t). 94Sr deduced resonance in β-strength function. 93Sr levels deduced p-wave n-branching. Optical model analysis.

  • 80Sc06 Intermediate States with K = 2 Symmetry for the Electrofission of 28Si

    H. Schultheis, R. Schultheis, Phys. Lett. 90B, 185 (1980).

    Nuclear Reactions: 28Si(e,e’F), E=23-34 MeV; analyzed σ(fission) data. 28Si deduced intermediate state. Variational calcula-tion, Brink symmetry conditions.

  • 80Sc07 Efficiency Calibration of Germanium-Spectrometers in the Energy Range From 122-412 keV

    U. Schotzig, K. Debertin, K. F. Walz, Nucl. Instrum. Methods 169, 43 (1980).

    Radioactivity: 75Se, 152Eu, 182Ta; measured βγ-, γ(X-ray); deduced T1/2.

  • 80Sc08 On the Isospin-Dependence of Macroscopic Fission Barrier Heights

    B. Schroder, Phys. Lett. 90B, 339 (1980).

    Nuclear Structure: A 200; calculated isospin dependence of fission barrier. Macroscopic models.

  • 80Sc09 Alpha Decay of Neutron-Deficient Isotopes with 78 ≤ Z ≤ 83 Including the New Isotopes 183, 184Pb and 188Bi

    U. J. Schrewe, P. Tidemand-Petersson, G. M. Gowdy, R. Kirchner, O. Klepper, A. Plochocki, W. Reisdorf, E. Roeckl, J. L.Wood, J. Zylicz, R. Fass, D. Schardt, Phys. Lett. 91B, 46 (1980).

    Radioactivity: 183, 184, 185Pb, 182, 183, 184Hg, 178, 179Pt, 183Tl; measured Eα, T1/2, α-branching ratios, reduced Γα.188Bi; meas-

    ured E(α), T1/2.

    Nuclear Reactions: 142, 146Nd, 107Ag(48Ti,X), (84Kr,X), E=4. 6-6.3 MeV/nucleon; measured Eα, Iα, T1/2; deduced evidence for183, 184Pb, 188Bi.

  • 80Sc10 Charge-Drift and Dispersion in Deep Inelastic Collisions in an Equilibrium Model

    C. Schone, M. Diebel, U. Mosel, Z. Phys. A294, 351 (1980).

    Nuclear Reactions: 166Er(86Kr,X), E not given; calculated first, second moments of Z distribution. Equilibrium model.

  • 80Sc11 Direct Versus Thermal Particle Emission in High-Energy Heavy-Ion Collisions: Multiplicity-Selected Proton Inclusive Spectra

    B. Schurmann, M. Chemtob, Z. Phys. A294, 371 (1980).

    Nuclear Reactions: Al, U(Ne,p), E=400/nucleon; K, Cl(Ar,p), E=800 MeV/ nucleon; calculated inclusive σ(Ep,θp). Direct plusthermal model.

  • 80Sc12 Optical Potential for 6Li + 28Si Elastic Scattering at 154 MeV

    P. Schwandt, S. Kailas, W. W. Jacobs, M. D. Kaitchuk, W. Ploughe, P. P. Singh, Phys. Rev. C21, 1656 (1980).

    Nuclear Reactions: 28Si(6Li,6Li), E=154 MeV; measured σ(θ). Optical model analysis.

  • 80Sc13 Discovery of a Very Low-Lying 0+ State in 98Sr and Shape Coexistence Implication in 98Sr

    F. Schussler, J. A. Pinston, E. Monnand, A. Moussa, G. Jung, E. Koglin, B. Pfeiffer, R. V. F. Janssens, J. van Klinken, Nucl.Phys. A339, 415 (1980).

    Radioactivity: 98Rb [from 235U(n(th),F)]; measured T1/ 2, Eγ, Iγ, I(ce), γγ(t), γce(t), βγ(t).98Sr deduced levels, J, π. On-line separa-

    tion of fission products.

  • 80Sc14 Excitation of the 2- Twist Mode by Inelastic Electron Scattering

    B. Schwesinger, K. Pingel, G. Holzwarth, Nucl. Phys. A341, 1 (1980).

    Nuclear Reactions: 90Zr, 208Pb(e,e’), E not given; calculated form factors. 90Zr, 208Pb deduced condition for twist-mode excita-tion of 2- giant resonance. Collective modes, Fermi fluid, PWBA, DWBA.

    Nuclear Structure: 90Zr, 208Pb; calculated B(M2), splitting of 2-, T=0, 1 giant resonance.

  • 80Sc15 The Nature of M1 Admixtures in Intra-Band Transitions in the γ-Vibrational Band

    K. Schreckenbach, W. Gelletly, Phys. Lett. B94, 298 (1980).

    Nuclear Reactions: 167Er(n,e-), E=thermal; measured I(L X-ray), ICC ratios. 168Er levels deduced M1 admixtures, δ in intra-bandtransitions.

  • 80Sc16 The Neutron-Rich Barium Isotopes

    S. M. Scott, W. D. Hamilton, P. Hungerford, D. D. Warner, G. Jung, K. D. Wunsch, J. Phys. (London) G6, 1291 (1980).

    Radioactivity: 142, 144, 146Cs [from 235U(n, F), mass separation]; measured Eγ, Iγ, γγ(θ). 142, 144, 146Ba levels deduced J, π, δ.Interacting boson model.

  • 80Sc17 Mass Transport in Anharmonic Potentials

    R. Schmidt, G. Wolschin, Z. Phys. A296, 215 (1980).

    Nuclear Reactions: 238U(238U,X), E=7.42 MeV/nucleon; calculated mass distribution, transport coefficients. Focker-Planck equa-tion, shell correction effects.

  • 80Sc18 Nuclear Charge Radii from Muonic X-Ray Transitions in Beryllium, Boron, Carbon and Nitrogen

    L. A. Schaller, L. Schellenberg, A. Ruetschi, H. Schneuwly, Nucl. Phys. A343, 333 (1980).

    Atomic Physics: esic-Atoms 9Be, B, C, N; measured muonic X-Rays; deduced nuclear charge radii.

  • 80Sc19 Variational Study of the Electrofission of 28Si

    H. Schultheis, R. Schultheis, Phys. Rev. C22, 1588 (1980).

    Nuclear Reactions: Fission 28Si(e,e’), E=23-34 MeV; analyzed σ(E). 28Si level deduced 12C+16O cluster stucture. Alpha-clustermodel, variational procedure, angular momentum projection, Volkov, Brink-Boecker interactions.

  • 80Sc20 K-shell Ionisation in the Positron Decay Branch of 64Cu

    R. D. Scott, J. Phys. (London) G6, 1427 (1980).

    Radioactivity: 64Cu; measured γγ(X-ray)coin; deduced K-shell vacancies per positron.

  • 80Sc21 Shapes of Measured (p(pol),p’) Analyzing Powers at 160 MeV for Proton States in 90Zr and Neutron States in 92Zr

    A. Scott, F. T. Baker, M. A. Grimm, Jr., J. H. Johnson, V. Penumetcha, R. C. Styles, W. G. Love, W. P. Jones, J. D. Wiggins,Jr., Phys. Rev. Lett. 45, 1315 (1980).

    Nuclear Reactions: 90, 92Zr(polarized p,p’), E=160 MeV; measured analyzing power vs θ; deduced spin-orbit potential parame-ters. 90, 92Zr levels deduced configurations, β. DWIA, free nucleon-nucleon t-matrix.

  • 80Sc22 The Energy Dependence of Delbruck Scattering Investigated at Z = 73, 82 and 92

    M. Schumacher, P. Rullhusen, F. Smend, W. Muckenheim, H. G. Borner, Nucl. Phys. A346, 418 (1980).

    Nuclear Reactions: 181Ta, 206, 207, 208Pb, 238U(γ, γ), E=0.279, 0.412, 0.662, 0.889, 1.121, 1.173, 1.332, 4.291, 4.767 MeV;measured σ(θ) Delbruck. Natural targets.

  • 80Sc23 Neutron Pickup Reactions on the Even Palladium Isotopes and the Deeply Bound Hole-State Excitation

    O. Scholten, M. N. Harakeh, J. Van Der Plicht, L. W. Put, R. H. Siemssen, S. Y. Van Der Werf, M. Sekiguchi, Nucl. Phys.A348, 301 (1980).

    Nuclear Reactions: 102, 104, 106, 108, 110Pd(d, t), E=50 MeV; measured σ(Et,θ). 101, 103Pd levels deduced L, J, π, C2S. 102, 104,106, 108, 110Pd; deduced deeply bound hole states, spectroscopic strength distributions. DWBA analysis. 102, 104, 106, 108,110Pd(3He,α), E=70 MeV; measured σ(Eα); deduced deeply bound hole states.

  • 80Sc24 Isotope Effects in Light Pionic Atoms

    I. Schwanner, R. Abela, G. Backenstoss, W. Kowald, P. Pavlopoulos, L. Tauscher, H. J. Weyer, P. Blum, M. Dorr, W.Fetscher, D. Gotta, R. Guigas, H. Koch, H. Poth, G. Schmidt, H. Ullrich, Phys. Lett. B96, 268 (1980).

    Atomic Physics: esic-Atoms 16, 18O, 7, 6Li, 3He; measured pionic E(X-ray), I(X-ray), strong interaction widths, shifts. 4, 3He, 6,7Li, 16, 18O deduced isotope effect. D2

    16O, D218O targets.

  • 80Sc25 Coincident High-Velocity DSA Lifetime Measurements on Excited States of Si Isotopes and Stopping Power Investigations

    D. E. C. Scherpenzeel, G. A. P. Engelbertink, H. J. M. Aarts, C. J. Van Der Poel, H. F. R. Arciszewski, Nucl. Phys. A349, 513(1980).

    Nuclear Reactions: 4He(28Si,αγ), E=53 MeV; 2H(28Si, pγ), E=29, 33 MeV; 3H(28Si,pγ), E=33 MeV; measured αγ-, pγ-coin, DSA;deduced electronic stopping power for Si in Mg. 28, 29, 30Si levels deduced T1/2.

  • 80Sc26 Systematics of Nuclear Level Properties in the Lead Region

    M. R. Schmorak, Nucl. Data Sheets 31, 283 (1980).

    Compilation: A=190-221; compiled, evaluated α-decay, nuclear level property systematics. Lead region.

  • 80Sc27 Cross Sections for the Reaction 16O(γ,p0)15N at Forward Angles for Eγ=80 MeV

    B. Schoch, H. Goringer, P. Jennewein, F. Klein, G. Luhrs, F. Zettl, Phys. Rev. C22, 2630 (1980).

    Nuclear Reactions: 16O(e,p), E=80 MeV; measured σ(Ep,θ); deduced σ(Eγ,θ). BeO target.

  • 80Sc28 Evidence for near Equality of Neutron and Proton Radii in the N=82 Isotones

    S. D. Schery, D. A. Lind, C. D. Zafiratos, Phys. Lett. B97, 25 (1980).

    Nuclear Reactions: 138Ba, 142Nd, 144Sm(p,n), E=26 MeV; measured σ(θ). 138Ba, 142Nd, 144Sm deduced neutron, proton rmsradii equality. DWBA, Lane potential, folding model, isovector component.

  • 80Sc29 Fission with Microscopic Energy Dissipation

    G. Schutte, P. Moller, J. R. Nix, A. J. Sierk, Z. Phys. A297, 289 (1980).

    Radioactivity: Fission 236U; calculated neutron, proton single particle energies, excitation of pair states, microscopic energy dissi-pation. Nonadiabatic BCS formalism.

  • 80Sc30 Diffusion des Pions sur le 13C dans la Region de la Resonance (3,3)

    E. Schwarz, J. L. Beveridge, J. -P. Egger, F. Goetz, P. Gretillat, C. Lunke, R. E. Mischke, C. Perrin, B. M. Preedom, Helv.Phys. Acta 53, 298 (1980).

    Nuclear Reactions: 13C(π+,π+), (π+,π+’), (π-,π-), (π-,π-’), E=148, 180, 230 MeV; measured σ(θ). High resolution pion spectrometer.

  • 80ScZK Recent Results Obtained Very Far from Stability at ISOLDE: Neutron deficient odd-A Iridium nuclei and triaxiality

    C. Schuck, A. Knipper, C. Richard-Serre, V. Berg, A. Zerrouki, J. Genevey-Rivier, and the ISOLDE Collaboration, Proc. Int.Symp. Future Directions in Studies of Nuclei Far from Stability, Nashville (1979), J. H. Hamilton, Ed., North-Holland, Publ. Co.,Amsterdam, p. 127 (1980).

    Nuclear Structure: 181, 183, 185, 187, 189, 191, 193Ir; analyzed data; deduced systematics. Lund model.

  • 80ScZL

    Conference proceedings: Kiev(Neutron Physics) Proc, Part1,P229,Schmidt

    Nuclear Reactions: 28Si(n,n’), E=8, 9, 10, 12, 14 MeV; measured σ(E,θ). 28Si levels deduced deformation parameters. Multi-angle detector. Statistical theory, coupled-channels method.

  • 80ScZM Isovector Magnetic Dipole States in 20Ne and 28Si

    K. W. Schmid, JUL-Spez-72, p. 83 (1980).

    Nuclear Structure: 20Ne, 28Si; calculated T=1 magnetic dipole state distribution. Angular momentum projected deformed particlemodel.

  • 80ScZN Does an Electric Isoscalar Giant Monopole Resonance Exist in 20Ne or 28Si ( Question )

    K. W. Schmid, JUL-Spez-72, p. 82 (1980).

    Nuclear Structure: 20Ne, 28Si; calculated isoscalar giant monopole resonance, B(E0) distribution. Angular momentum projecteddeformed particle model.

  • 80ScZO The Electric Giant Quadrupole Resonances in 20Ne and 28Si

    K. W. Schmid, JUL-Spez-72, p. 81 (1980).

    Nuclear Structure: 20Ne, 28Si; calculated T=0, T=1, B(E2) distribution. Angular momentum projected deformed particle model.

  • 80ScZP Structure of Some Low Excited States in 20Ne and 28Si within the Angular Momentum Projected Deformed Particle-HoleApproximation

    K. W. Schmid, JUL-Spez-72, p. 80 (1980).

    Nuclear Structure: 20Ne, 28Si; calculated levels. Angular momentum projected deformed particle model.

  • 80ScZQ Etude des Antimoines Impairs, Produits de Fission

    F. Schussler, J. A. Pinston, J. Blachot, E. Monnand, CEA-N-2176, p. 16 (1980).

    Radioactivity: 129, 131Sn [from fission product mass separation]; measured γγ-coin. 131, 129Sb deduced levels, γ-branching.

  • 80ScZR

    Private communication: K Schrekenbach, June 1980

    Nuclear Reactions: 113Cd(n,γ), E=2, 24 keV; measured Eγ. 114Cd deduced levels, J, π.

  • 80ScZS

    Journal: BAPSA 25 730, BD3,Scott

    Nuclear Reactions: 90, 92Zr(polarized p,p’), E=160 MeV; measured σ(θ), analyzing power vs θ. 90, 92Zr levels deducedconfiguration dependence. DWIA.

  • 80ScZT

    Journal: BAPSA 25 727, BB7,Schloemer

    Nuclear Reactions: 16O(16O,α), E(cm)=15.5-16.3 MeV; measured σ(Eα), σ(Eγ). 28Si deduced resonances.

  • 80ScZU

    Conference proceedings: Rhodes(Struct Medium-Heavy Nuclei) Proc, P294,Scott

    Radioactivity: 142, 144, 146Ba [from fission product mass separation]; measured γγ(θ). 142, 144Ba levels deduced J, π, δ.

  • 80ScZV

    Preprint: M R Schmorak, 10/16/80

  • 80ScZW

    Journal: BAPSA 25 559, GG4,Schumacher

    Nuclear Reactions: Cu(γ,p), E=300 MeV bremsstrahlung; measured inclusive σ(Ep).

  • 80ScZX Alpha Decay of very Neutron-Deficient Nuclei with 78 ≤ Z ≤ 83

    U. J. Schrewe, P. Tidemand-Petersson, G. M. Gowdy, R. Kirchner, O. Klepper, A. Plochocki, W. Reisdorf, E. Roeckl, J. L.Wood, J. Zylicz, R. Fass, D. Schardt, Bull. Am. Phys. Soc. 25, No. 4, 486, AG1 (1980)

    Nuclear Reactions: 142, 146Nd, 107Ag(48Ti,X), (84Kr,X), E=4. 6-6.6 MeV/nucleon; measured Eα, T1/2, α-branching ratios; deducedevidence for 183, 184Pb, 188Bi.

    Radioactivity: 183, 184, 185Pb, 183Tl; measured T1/2, Eα.182, 183, 184Hg, 178, 179Pt; measured α-branching ratios.

  • 80ScZY

    Preprint: NUPAB GP-399, Schaller,6/9/80

  • 80ScZZ Der Zerfall Neutronenreicher Zirkoniumisotope

    A. Schmitt, N. Kaffrell, N. Trautmann, und die LOHENGRIN Kollaboration, Inst. fur Kernchemie, Univ. Mainz, Jahresbericht1979, p. 34 (1980).

    Radioactivity: 101, 102, 103, 104Zr [from 235U(n,X), E=th]; measured Eγ, Iγ, γγ(t). 103, 104Zr deduced T1/2.

  • 80Se01 Determination of Relative Probability of K-Capture in Decay of 151Gd → 151Eu and 153Gd → 153Eu

    V. A. Sergienko, Ts. Vylov, S. M. Sergeev, S. L. Smolskii, Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 125 (1980); Bull. Acad. Sci.USSR, Phys. Ser. 44, No. 1, 100 (1980).

    Radioactivity: 151, 153Gd [from Ta(p,X)]; measured Eγ, Iγ, I(K X-ray); deduced Q(ε), K-capture probability.

  • 80Se02 The Neutron Zero-Energy Total Cross Section and Scattering Lengths for Tritium

    J. D. Seagrave, B. L. Berman, T. W. Phillips, Phys. Lett. 91B, 200 (1980).

    Nuclear Reactions: 3H(n,n), E=0-1.2 MeV; measured σ(total); deduced singlet, triplet, coherent, incoherent scattering lengths.

  • 80Se03 Asymptotic Form of Monopole Vibrations

    F. E. Serr, G. F. Bertsch, J. Borysowicz, Phys. Lett. 92B, 241 (1980).

    Nuclear Structure: 208Pb; calculated monopole vibration velocity fields. RPA, Tassie, liquid drop models.

  • 80Se04 Compressibility and the Monopole Collective Field

    F. Serr, G. Bertsch, J. P. Blaizot, Phys. Rev. C22, 922 (1980).

    Nuclear Structure: 208Pb; calculated ground state density, transition potential, densities; deduced relation to compressiblity.RPA, Hartree-Fock, Tassie models.

  • 80Se05 Effects of Inelastic Multistep Processes on (p,t) Reactions in a Transition Region between Rare-Earth Nuclei and Double-Magic208Pb

    N. Sekine, T. Tohei, T. Nakagawa, Y. Ishizaki, Nucl. Phys. A346, 329 (1980).

    Nuclear Reactions: 188Os, 194, 196Pt, 200, 202Hg(p, t), E=51.9 MeV; measured σ(Et,θ); deduced reaction mechanism. Enrichedtargets. DWBA, coupled-channel Born approximation analyses.

  • 80Se06 Deeply Inelastic Collisions and Fusion in the 20Ne + 40Ca System

    Nguyen Van Sen, J. C. Gondrand, F. Merchez, R. Darves-Blanc, Phys. Rev. C22, 2424 (1980).

    Nuclear Reactions: 40Ca(20Ne,20Ne), (20Ne,X), E=151 MeV; measured σ(θ), σ(evaporation residue θ), σ(fragment θ,Z); deducedoptical model parameters, σ(reaction), fragment kinetic energies. Deep inelastic collisions, rotating double nucleus system. E-∆Ecounters.

  • 80Se07 Inclusion of Pre-Compound Scattering in Evaluation Formulae for σ(n,2n)(E) and σ(n,3n)(E)

    M. Segev, Y. Fahima, Ann. Nucl. Energy 7, 577 (1980).

    Nuclear Reactions: 169Tm(n,2n), (n,3n), E=16-23 MeV; 175Lu(n, 2n), E=14.25-20 MeV; 175Lu(n,3n), E=15-20 MeV; 181Ta(n,2n),E=14.25-24 MeV; 181Ta(n,3n), E=15-24 MeV; 191Ir(n,2n), (n,3n), E=16-22 MeV; 197Au(n,2n), E=15-22 MeV; 197Au(n,3n), E=16-22MeV; 209Bi(n,2n), E=14.5-23 MeV; 209Bi(n, 3n), E=16-23 MeV; calculated σ(E); deduced precompound scattering effects.

  • 80Se08 Kernphysik bei Mittleren Energien Beobachtung von 4H nach π--Absorption in 7Li

    U. Sennhauser, F. W. Schleputz, Helv. Phys. Acta 53, 302 (1980).

    Nuclear Reactions: 7Li(π-,nt), E at rest; measured tt-coin. 4H deduced possible resonance. Different kinematic arrangements.

  • 80Se09 Vibrational Excitations in 151Pm

    T. Seo, S. Yamada, T. Hayashi, Ann. Rep. Res. Reactor Inst., Kyoto Univ. 13, 167 (1980).

    Nuclear Structure: 151Pm; calculated levels, J, B(λ), vibrational state configurations. Rotation-vibration coupling model.

  • 80Se10 Elastic and Quadrupole Vibrations

    F. E. Serr, Phys. Lett. 97B, 180 (1980).

    Nuclear Structure: 208Pb; calculated quadrupole energies. Coherent quadrupole vibrations, elastic medium, classical equations.

  • 80Se11 A Unified Analysis of Pionic Atoms and Low-Energy Pion-Nucleus Scattering

    R. Seki, K. Masutani, M. Oka, K. Yazaki, Phys. Lett. 97B, 200 (1980).

    Nuclear Reactions: 12C(π+,π+), E=50 MeV; calculated σ(θ). Modified Kisslinger potential, Pauli blocking effect.

    Atomic Physics: esic-Atoms 12C, 16O, 40Ca, 90Zr, 208Pb; analyzed pionic interaction shift, width data; deduced modified Kiss-linger potential parameters.

  • 80Se12 Penetrability of Double-Humped Barrier by a Variable-Mass Particle

    A. A. Seregin, Yad. Fiz. 32, 1296 (1980).

    Nuclear Structure: 236U; calculated double-humped fission barrier penetrability. Liquid drop model, intrinsic structure relatedmass components.

  • 80SeZW

    Conference proceedings: Leningrad, P64,Sergienko

    Radioactivity: 88Y(β+), (EC), 152Eu(β-), (β+), (EC); measured(K X-ray)γ-coin. 88Sr, 152Sm deduced fluorescence yield.

  • 80SeZX

    Conference proceedings: Berkeley(Int Conf on Nucl Phys) Proc, P164,Seth

    Nuclear Reactions: 9Be(π-,π+), E=194 MeV; measured 9He mass excess. 10He deduced mass excess.

  • 80SeZY

    Journal: BAPSA 25 723, AC3,Segel

    Nuclear Reactions: 12C(p,p’), E=155, 200 MeV; measured σ(θ). 12C level deduced nuclear opalescence effects. DWIA.

  • 80SeZZ

    Journal: BAPSA 25 505, BF13,Seth

    Nuclear Reactions: 9Be(π-,π+), E=194 MeV; measured breakup σ. 9He deduced mass, neutron decay, B(n).

  • 80Sh01 Study of n + 12C Elastic Scattering Using the Resonating Group Method

    O. D. Sharma, B. B. Srivastava, J. Phys. (London) G6, 209 (1980).

    Nuclear Reactions: 12C(n,n), E(cm)=0-17 MeV; calculated L=0-5 phase shifts, σ(θ). Shell model description of target, resonatinggroup method.

  • 80Sh02 Proton Yields from Quasielastic Pion Scattering on 27Al and 208Pb

    T. C. Sharma, L. W. Swenson, K. S. Krane, P. Varghese, D. K. McDaniels, H. A. Thiessen, N. Tanaka, R. R. Silbar, M.Greenfield, C. F. Moore, Nucl. Phys. A333, 461 (1980).

    Nuclear Reactions: 27Al, 208Pb(π+,π+p), (π-,π-p), E=255 MeV; measured σ(Ep, θp); deduced σ ratio. Semi-classical nucleoncharge exchange model.

  • 80Sh03 (t,α) Reaction on 124Te, 126Te, 128Te, and 130Te Nuclei

    M. A. M. Shahabuddin, A. A. Pilt, J. A. Kuehner, Phys. Rev. C21, 1116 (1980).

    Nuclear Reactions: 124, 126, 128, 130Te(t,α), E=16 MeV; measured σ(Eα,θ). 123, 125, 127, 129Sb levels deduced C2S. DWBA.

  • 80Sh04 Mechanism of the Reaction 14N(10B,3α)12C

    S. N. Shumilov, A. P. Klyucharev, N. Ya. Rutkevich, Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 185 (1980); Bull. Acad. Sci. USSR,Phys. Ser. 44, No. 1, 154 (1980).

    Nuclear Reactions: 14N(10B,3α), E=15-95 MeV; measured σ(θ,E(12C)); deduced reaction mechanism.

  • 80Sh05 Nuclear Resonance Photon Scattering from 15N in the Form of BN and NH4Cl

    O. Shahal, R. Moreh, M. Pazi, Nucl. Phys. A339, 157 (1980).

    Nuclear Reactions: 15N(γ,γ), E=6.324 MeV; measured temperature dependence of σ; deduced effective temperatures. Natural,enriched targets.

  • 80Sh06 Atomic Mass of 180Ta, a Naturally Occurring Isomer

    K. S. Sharma, R. J. Ellis, V. P. Derenchuk, R. C. Barber, H. E. Duckworth, Phys. Lett. 91B, 211 (1980).

    Atomic Physics: , Ta, W; measured isotope mass differences, mass-spectroscopic doublet method. 180Ta deduced long-livedisomer is excited state.

  • 80Sh07 Character of the Low-Lying 0- and 0+ States in the Even Rn, Ra, Th, U, and Pu Isotopes

    R. K. Sheline, Phys. Rev. C21, 1660 (1980).

    Nuclear Structure: 220, 222, 224, 226Ra, 218, 220, 222Rn, 224, 226, 228, 230, 232Th, 232, 234, 236, 238U, 238, 240, 242Pu; compared sys-tematics of energies, inverse moments of inertia; deduced structural relation of excited K=0+, K=0- band.

  • 80Sh08 The (t,p) Reaction Across the Shape Transitional Gd Nuclei

    M. A. M. Shahabuddin, D. G. Burke, I. Nowikow, J. C. Waddington, Nucl. Phys. A340, 109 (1980).

    Nuclear Reactions: 152Gd(t,p), E=15 MeV; measured σ(Ep,θ). 154Gd deduced levels, J, π. Enriched target. DWBA.

  • 80Sh09 High-Spin Precursors of the Jπ = 19/2- Isomer in 43Sc

    H. M. Sheppard, P. A. Butler, R. Daniel, P. J. Nolan, N. R. F. Rammo, J. F. Sharpey-Schafer, J. Phys. (London) G6, 511(1980).

    Nuclear Reactions: 29Si(16O,pn), E=40, 42 MeV; measured γγ-coin, γγ(t), Doppler recoil, DSA, γ(θ), Eγ, Iγ, linear polarizations.43Sc deduced levels, T1/2, J, π, δ, γ-branching. Ge(Li) detectors, enriched targets. Shell model.

  • 80Sh10 Backward Angle Cross Sections for 27Al + 16O Reaction Products

    D. Shapira, J. L. C. Ford, Jr., J. Gomez del Campo, P. H. Stelson, Phys. Rev. C21, 1824 (1980).

    Nuclear Reactions: 16O(27Al,X), E=105, 145 MeV; measured σ(θ); deduced evaporation residue, damped event σ.

  • 80Sh11 Velocity Dependence of the Dynamic Magnetic Field Acting on Swift O and Sm Ions

    N. K. B. Shu, D. Melnik, J. M. Brennan, W. Semmler, N. Benczer-Koller, Phys. Rev. C21, 1828 (1980).

    Nuclear Reactions: 150, 152Sm(16O,16O’), E 40 MeV; 150, 152Sm(32S,32S’), E 70-80 MeV; 16O(α,α’), E=17.55 MeV; measured(particle)γ(θ,H) in polarized Fe, Coulomb excitation; deduced dynamic magnetic field on 150, 152Sm, 16O recoils in Fe vs ion velo-city.

    Compilation: 20Ne, 24Mg, 28Si, 56Fe, 82Se, 106Pd, 110Cd, 134Ba, 148Nd, 194Pt; compiled data, parametrized dynamic magnetic fieldvs ion velocity through ion foils.

  • 80Sh12 Photon-Absorption Cross Sections between 3 and 30 MeV

    N. K. Sherman, C. K. Ross, K. H. Lokan, Phys. Rev. C21, 2328 (1980).

    Nuclear Reactions: 27Al, 181Ta, 209Bi(γ,γ), E=3-30 MeV; measured absorption σ; deduced electron pair production. 27Al, 181Ta,209Bi deduced GDR. 209Bi deduced Coulomb, screening corrections.

  • 80Sh13 X-Ray Production by 5 MeV amu-1 Deuterons and Oxygen Ions: Projectile Z Dependence

    W. Shearer-Izumi, M. Sasagase, M. Sato, T. Mikumo, J. Phys. (London) B13, 493 (1980).

    Atomic Physics: r, Fe, Cu, Ag, In, Sm(d,X), (16O,X), E=5 MeV/ nucleon; measured E(K X-ray), E(L X-ray), I(K X-ray), I(L X-ray).Cr, Fe, Cu, Ag, In, Sm deduced subshell intensity ratios, K X-ray energy shifts, projectile Z dependence.

  • 80Sh14 The 170Er(t,p)172Er Reaction at 15 MeV

    M. A. M. Shahabuddin, D. G. Burke, Can. J. Phys. 58, 832 (1980).

    Nuclear Reactions: 170Er(t,p), E=15 MeV; measured σ(Ep,θp); deduced Q. 172Er deduced levels, L, J, π.

  • 80Sh15 Precision Energy and Intensity Measurements in 152Sm, 152Gd and 154Gd

    A. K. Sharma, R. Kaur, H. R. Verma, P. N. Trehan, J. Phys. Soc. Jpn. 48, 1407 (1980).

    Radioactivity: 152, 154Eu; measured Eγ, Iγ. 152Sm, 152, 154Gd deduced levels, J, π. Ge(Li) detector.

  • 80Sh16 The Pionic Disintegration of the Deuteron and the Absorptive Pion-Nucleus Optical Potential

    K. Shimizu, A. Faessler, H. Muther, Nucl. Phys. A343, 468 (1980).

    Nuclear Reactions: 2H(π+,p), E=142 MeV; calculated σ, pion-nucleus potential absorptive term. Microscopic model, singlenucleon absorption, s-wave, isobar state rescattering effects.

  • 80Sh17 Elastic and Inelastic Breakup of the 3He Particle

    R. Shyam, G. Baur, F. Rosel, D. Trautmann, Phys. Rev. C22, 1401 (1980).

    Nuclear Reactions: 51V, 90Zr(3He,d), E=90MeV; calculated σ(θd,Ed), elastic, inclusive breakup; 51V, 90Zr(3He,dp), E=90 MeV;calculated σ(θd, θp,Ed); deduced reaction mechanism. DWBA breakup theory.

  • 80Sh18 (n,xγ) and (n,xn) Cross Sections of Molybdenum, Titanium and Nickel for 15-MeV Neutrons

    K. Shin, T. Hasegawa, T. Hyodo, J. Nucl. Sci. Technol. (Tokyo) 17, 531 (1980).

    Nuclear Reactions: Mo, Ti, Ni(n,γ), (n,xn), E=15 MeV; measured σ(θ, Eγ), σ(θ,En).

  • 80Sh19 Fusion Cross-Section

    M. A. Sharaf, Lett. Nuovo Cim. 28, 429 (1980).

    Nuclear Reactions: 12C, 16, 18O, 19F(12C, X), E=10-30 MeV; calculated fusion σ(E).

  • 80Sh20 Effects of Deformation on Neutron Total Cross Sections of Even-A Nd and Sm Isotopes

    R. E. Shamu, E. M. Bernstein, J. J. Ramirez, Ch. Lagrange, Phys. Rev. C22, 1857 (1980).

    Nuclear Reactions: 142, 144, 146, 148, 150Nd(n, n), E=0.75-13. 89 MeV; 148, 150, 152, 154Sm(n,n), E=0.75-14.49 MeV; measuredtotal σ(E); deduced deformation effects, isotopic dependence. 142, 144, 146, 148, 150Nd, 148, 150, 152, 154Sm(n,n’), E=4, 7 MeV;analyzed data; 142, 144, 146, 148, 150Nd, 148, 150, 152, 154Sm level deduced β2. Coupled-channels calculation.

  • 80Sh21 92Zr(p,α)89Y Reaction at 17 MeV

    M. A. M. Shahabuddin, J. C. Waddington, Phys. Rev. C22, 2248 (1980).

    Nuclear Reactions: 92Zr(polarized p,α), E=17 MeV; measured σ(Eα, θ), analyzing power iT11(Eα,θ).89Y levels deduced S.

    DWBA calculations, microscopic form factors.

  • 80Sh22 Electroproduction of π+ from 12C Leading to Low-Lying Residual States in 12B

    K. Shoda, H. Ohashi, K. Nakahara, Nucl. Phys. A350, 377 (1980).

    Nuclear Reactions: 12C(e,π+), E=195 MeV; measured σ(E(π+), θ); deduced evidence for surface pion production. 12B deducedlevels, transition strength. Natural target. Helm model, shell model calculations.

  • 80Sh23 Microscopic Description of the High-Spin Yrast Spectra in Some Doubly Even Zinc, Germanium, and Selenium Isotopes

    S. K. Sharma, Phys. Rev. C22, 2612 (1980).

    Nuclear Structure: 62, 64, 66, 68Zn, 72, 74, 76, 78Se, 70, 72, 74, 76Ge; calculated yrast levels, static quadrupole moments, B(E2), p tog-shell occupation numbers. HFB, angular momentum projection.

  • 80Sh24 Long-Range Alpha-Particle Detection in a Cellulose Nitrate Track Detector

    S. C. L. Sharma, G. K. Mehta, Nucl. Instrum. Methods 178, 217 (1980).

    Radioactivity: Fission 252Cf(SF); measured long range Eα, emission probability. Rear etching technique.

  • 80Sh25 Continuous Radiation Spectra of Positron Annihilation in Flight

    K. Shizuma, S. Hamanaka, Y. Yoshizawa, J. Phys. Soc. Jpn. 49, 847 (1980).

    Radioactivity: 22Na, 68Ga; measured Eγ, Iγ, β+ annihilation in flight; deduced E(β+), I(β+) dependence on stopping material Z.Ge(Li) detector, β+ stopped in Al, Cu, Pb.

  • 80Sh26 Geometrical Aspects of High Energy Inelastic Hadron Reactions

    A. Shimizu, S. Suzuki, Prog. Theor. Phys. (Kyoto) 64, 984 (1980).

    Nuclear Reactions: 1H(p,p), (p,X), E(cm)=25.3, 53 GeV; calculated total, inelastic σ. Geometrical models, black disc limit.

  • 80Sh27 The Use of the Reaction 93Nb(n,n’)93mNb for Fast Neutron Flux Measurement

    G. Shani, Nucl. Technology 51, 83 (1980).

    Nuclear Reactions: 93Nb(n,n’), E=1-7 MeV; measured E(X-ray), I(X-ray); deduced fast neutron flux. 93Nb level deduced γ-branching. Si-Li detector, 252Cf neutron spectrum.

  • 80Sh28 Decay of 56Co to Levels in 56Fe

    A. K. Sharma, Ravinder Kaur, H. R. Verma, K. K. Suri, P. N. Trehan, Proc. Indian Natl. Sci. Acad. 46A, 181 (1980).

    Radioactivity: 56Co; measured Eγ, Iγ, γγ(θ). 56Fe deduced levels, J, π, δ.

  • 80ShZD

    Conference proceedings: Kiev(Neutron Physics) Proc, Part3,P35,Shpak

    Nuclear Reactions: 233, 235U(n,F), E=0.06-3.28 MeV; measured fission σ(E) ratio. Glass detectors, enriched targets.

  • 80ShZE

    Conference proceedings: Kiev(Neutron Physics) Proc, Part2,P67,Shubin

    Nuclear Reactions: 181Ta(α,γ), (α,n), E=45 MeV; calculated σ. Cascade evaporation model.

  • 80ShZF

    Conference proceedings: Leningrad, P321,Shebeko

    Nuclear Reactions: 54Cr(p,γ), E=1.5-2.3 MeV; measured partial σ(E).

  • 80ShZG

    Conference proceedings: Berkeley(Int Conf on Nucl Phys) Proc, P212,Shibata

    Nuclear Reactions: 165Ho(α,xnp), E=110 MeV; measured γp-coin; deduced neutron multiplicity, reaction mechanism. Excitonmodel.

  • 80ShZH

    Conference proceedings: Berkeley(Int Conf on Nucl Phys) Proc, P128,Shamu

    Nuclear Reactions: 208Pb, 232Th, 238U(n,n), (n,X), E=5-150 MeV; measured σ(E,total). NE 110 scintillator, Tof.

  • 80ShZI Measurement of Spectra of Gamma-rays from Capture of keV-Neutrons by 197Au and 181Ta

    H. Shirayanagi, T. Hayashi, M. Igashira, N. Yamamuro, NEANDC(J)-67/U, p. 70 (1980).

    Nuclear Reactions: 197Au, 181Ta(n,γ), E=1.5-75 keV; measured Eγ. Monte Carlo calculation.

  • 80ShZJ The Pionic Disintegration of the Deuteron

    K. Shimizu, A. Faessler, H. Muther, JUL-Spez-72, p. 134 (1980).

    Nuclear Reactions: 2H(π+,p), E resonance; calculated σ(disintegration).

  • 80ShZK Spin-Parity Determinations from the 42Ca(d(pol), α)40K Reaction near 00

    R. -C. Shang, J. A. Kuehner, A. A. Pilt, M. A. M. Shahabuddin, A. Trudel, McMaster University, Ann. Rept., 1979-1980, p. 32(1980).

    Nuclear Reactions: 42Ca(polarized d,α), E=7-9.5 MeV; measured σ(Eα,θ 00), T20(θ).40K levels deduced J, π.

  • 80ShZL The 160Gd, 170Er(p,α) Reaction

    M. A. M. Shahabuddin, J. C. Waddington, McMaster University, Ann. Rept., 1979-1980, p. 25 (1980).

    Nuclear Reactions: 160Gd, 170Er(p,α), E=17 MeV; measured σ(Eα). 157Eu, 167Ho deduced levels, configuration.

  • 80ShZM A Study of the γ-Ray Continuum Feeding High Spin States in 151, 152Dy

    J. F. Sharpey-Schafer, A. J. Ferguson, H. R. Andrews, O. Hausser, H. -E. Mahnke, D. Ward, Univ. Liverpool, 1979-1980 Ann.Rept., p. 90 (1980)

    Nuclear Reactions: 124Sn(32S,xn), E=135, 155 MeV; measured Eγ, Iγ, γ(t), γ-multiplicities, γγ-coin. 151, 152Dy deduced direct con-tinuum γ-feeding of yrast line, no shape change at high spins. Pulsed beam.

  • 80ShZN Progress in the Study of 43Sc

    H. M. Sheppard, P. A. Butler, R. Daniel, P. J. Nolan, N. R. F. Rammo, J. F. Sharpey-Schafer, Univ. Liverpool, 1979-1980 Ann.Rept., p. 12 (1980)

    Nuclear Reactions: 40Ca(α,p), E not given; measured pγ-coin, Eγ, Iγ, γ(θ), linear polarization, DSA. 43Sc deduced levels, J, π.

  • 80ShZO Correlation of Neutron Multiplicity and Protons following the 165Ho(α,pxn) Reaction

    T. Shibata, K. Okada, K. Maeda, H. Sakai, A. Shimizu, H. Ejiri, RCNP (Osaka), Ann. Rept. 1979, p. 97 (1980).

    Nuclear Reactions: 165Ho(α,xnp), E=109 MeV; analyzed proton, neutron multiplicity correlation data. Exciton model.

  • 80ShZP Analyzing Powers in d - 4He Elastic Scattering at 56 MeV

    H. Shimizu, K. Hatanaka, K. Imai, T. Saito, K. Nisimura, RCNP (Osaka), Ann. Rept. 1979, p. 34 (1980).

    Nuclear Reactions: 4He(polarized d,d), E=56 MeV; measured σ(θ), vector, tensor analyzing powers vs θ. Optical modelanalysis.

  • 80ShZQ Analyzing Powers in the Final-State Interaction Region of the Reaction d(pol) + d → d + d*

    H. Shimizu, K. Hatanaka, K. Imai, T. Matsusue, T. Saito, J. Shirai, K. Nisimura, RCNP (Osaka), Ann. Rept. 1979, p. 30(1980).

    Nuclear Reactions: 2H(polarized d,d), E=56 MeV; measured vector, tensor, analyzing powers vs θ. Final state interactioneffects.

  • 80ShZR

    Journal: BAPSA 25 746, ED5,Sherif

    Nuclear Reactions: 4He(3He,α), E(cm)=60, 113 MeV; calculated σ(θ). Modified DWBA, heavy particle stripping exchange ampli-tude.

  • 80ShZS

    Journal: BAPSA 25 594, JG1,Shepard

    Nuclear Reactions: 11B(3He,d), E=43.6 MeV; measured σ(θd, Ed). 12C deduced overlapping resonance structure.

  • 80ShZT

    Journal: BAPSA 25 592, JE12,Shkolnik

    Nuclear Reactions: 28Si(16O,16O), E=41.23, 50, 55 MeV; analyzed σ(θ); deduced parity-dependent term in optical potential.

  • 80ShZU

    Journal: BAPSA 25 575, HF12,Sherman

    Nuclear Reactions: Al, Ta, Bi(γ,γ), (γ,n), (γ,p), E=3-30 MeV bremsstrahlung; analyzed absorption σ. Al, Bi deduced photonuclearstructure.

  • 80ShZV

    Journal: BAPSA 25 543, EG14,Shahal

    Nuclear Reactions: 173Yb(n,γ), E=17.6-782 eV; measured Eγ, Iγ. 174Yb deduced levels, J, Γn, Γγ.

  • 80ShZW

    Journal: BAPSA 25 483, AE9,Shapira

    Nuclear Reactions: 16O(27Al,X), E not given; measured evaporation residue yield, targetlike recoil vs Q at backward θ.

  • 80ShZX

    Journal: PHCAA 36 No3 41, ED6,Shahabuddin

    Nuclear Reactions: 124, 126, 128, 130Te(t,d), E=16 MeV; measured σ(θd,Ed). 125, 127, 129, 131Te deduced levels. DWBA. Engesplit-pole spectrograph.

  • 80ShZY

    Journal: BAPSA 25 741, DD4,Shepard

    Nuclear Reactions: 13C(polarized p,d), E=65-400 MeV; analyzed σ(θ), analyzing power vs θ. Geometrical model.

  • 80ShZZ

    Journal: DABBB 40 3236, Sharma

    Atomic Physics: +174}, 176, 177, 178, 179, 180Hf, 180, 181Ta, 180, 182, 183, 184, 186W, 185, 187Re; measured masses, mass differ-ences. Precision mass spectrometer.

    Nuclear Structure: 174, 176, 177, 178, 179, 180Hf, 180, 182, 184, 186W, 185, 187Re; calculated two-neutron separation energies. Nilssonmodel.

  • 80Si01 Absolute Electron-Proton Cross Sections at Low Momentum Transfer Measured with a High Pressure Gas Target System

    G. G. Simon, C. Schmitt, F. Borkowski, V. H. Walther, Nucl. Phys. A333, 381 (1980).

    Nuclear Reactions: 1H(e,e), E=150-321 MeV; measured σ(θ). 1H deduced electromagnetic form factors, rms charge radius.

  • 80Si02 Gamma-Ray Studies in 64Zn: Levels Above 3.1 MeV

    D. N. Simister, L. P. Ekstrom, G. D. Jones, F. Kearns, T. P. Morrison, O. M. Mustaffa, H. G. Price, P. J. Twin, R. Wadsworth,N. J. Ward, J. Phys. (London) G6, 81 (1980).

    Nuclear Reactions: 61Ni(α,nγ), E=8.6, 9.35 MeV; 56Fe(11B, 2npγ), E=30 MeV; measured γγ-, nγ-coin, Eγ, Iγ(θ), DSA, linear polari-zation. 64Zn deduced levels, J, π, δ, T1/2, γ-branching. Shell model, cluster vibration, interacting boson models. Ge(Li) detectors,enriched targets.

  • 80Si03 Pion-Nucleus Scattering Using Finite Binding Potentials

    M. Silver, N. Austern, Phys. Rev. C21, 272 (1980).

    Nuclear Reactions: 16O(π,π), E=50-250 MeV; calculated σ(θ). Three body π-nucleon interaction model.

  • 80Si04 Comparisons of Experimental and Theoretical Nucleus-Nucleus Potentials for Heavy-Ion Reactions

    B. Sikora, M. Blann, W. Scobel, J. Bisplinghoff, M. Beckerman, Phys. Rev. C21, 614 (1980).

    Nuclear Reactions: 24Mg, 27Al, 40Ca(32S,X), E=67-132 MeV; 27Al, 58, 62, 64Ni, 90Zr, 116Sn(35Cl,X), E=70-170 MeV; 116Sn,141Pr(35Cl,X), E=135-170 MeV; analyzed fusion σ(E); deduced fusion barriers, radii. Proximity potential, Yukawa-plus-exponentialmodel, modified Woods-Saxon potential.

  • 80Si05 Nuclear Data Sheets for A = 77

    B. Singh, D. A. Viggars, Nucl. Data Sheets 29, 75 (1980).

    Compilation: 77Zn, 77Ga, 77Ge, 77As, 77Se, 77Br, 77Kr, 77Rb, 77Sr; compiled, evaluated structure data.

  • 80Si06 Fission in a Wall-and-Window One-Body-Dissipation Model

    A. Sierk, J. R. Nix, Phys. Rev. C21, 982 (1980).

    Radioactivity: 236U (SF); calculated most probable fission-fragment kinetic E. Wall, window one-body dissipation model.

  • 80Si07 Role of Gamow-Teller Suppression and M1 Radiative Widths on π- Photoproduction from 14N

    M. K. Singham, F. Tabakin, Phys. Rev. C21, 1039 (1980).

    Nuclear Reactions: 14N(γ,π-), E=145-325 MeV; calculated σ(θ), total σ; deduced structure effects, pion distortions, Blomqvist-Laget operator.

  • 80Si08 Influence of Angular Momentum Dependence of Charge Transfer in Deeply Inelastic Collisions on Fragment Kinetic Energies

    M. H. Simbel, A. Y. Abul-Magd, Z. Phys. A294, 277 (1980).

    Nuclear Reactions: 197Au, 181Ta, 159Tb(86Kr,X), E=620 MeV; 107, 109Ag(86Kr,X), E=606 MeV; 64Ni(40Ca,X), E=182 MeV; 107,109Ag(40Ar,X), E=288-340 MeV; 58Ni(20Ne, X), E=164 MeV; calculated fragment E; deduced L-dependence of Z-transfer. Classi-cal model for deep-inelastic collisions.

  • 80Si09 Transition from Light to Heavy Ions

    B. Sinha, Phys. Rev. Lett. 44, 1207 (1980).

    Nuclear Reactions: 208Pb(3He,3He), (α,α), (6Li, 6Li), (16O,16O), 16O(16O, 16O), E not given; calculated real, imaginary parts ofnucleus-nucleus potential; deduced light to HI transition is due to effective interaction saturation.

  • 80Si10 Scission-Point Configuration of 252Cf

    A. K. Sinha, G. K. Mehta, Phys. Rev. C21, 2467 (1980).

    Radioactivity: 252Cf (SF); calculated σ(θα) vs fragment kinetic energy; deduced scission-point configuration characteristics.

  • 80Si11 Asymmetry in Polarized e-d Inelastic Scattering

    S. K. Singh, S. A. Khan, Nucl. Phys. A340, 307 (1980).

    Nuclear Reactions: 2H(polarized e,e’), E=200, 400, 600, 800, 1000 MeV; calculated asymmetry vs θ. Impulse approximation,parity violating effects.

  • 80Si12 Non-Orthogonality Effects in Heavy-Ion Transfer Reactions

    S. J. Singleton, V. Managoli, L. J. B. Goldfarb, Nucl. Phys. A342, 312 (1980).

    Nuclear Reactions: 13C(16O,17O), E=30-60 MeV; 29Si(16O, 17O), E=73.5 MeV; calculated σ(θ). Coupled channel treatment,channel nonorthogonality.

  • 80Si13 Continuum Effects in Pion-Nucleus Inelastic Scattering

    E. R. Siciliano, D. L. Weiss, Phys. Lett. 93B, 371 (1980).

    Nuclear Reactions: 12C(π+,π+’), (π-, π-’), E=180 MeV; calculated σ(θ); deduced enhancement in negative pion channel, contin-uum effects. 12C levels deduced isospin mixing. DWIA.

  • 80Si14 Collinear Fast Beam-Laser Spectroscopy on 5d2D3/ 2, 5/2 Barium Ions

    R. E. Silverans, G. Borghs, G. Dumont, J. M. Van den Cruyce, Z. Phys. A295, 311 (1980).

    Nuclear Moments: +138}, 137, 136, 135, 134, 132, 130Ba; measured optical isotope shift, hfs. 138, 137, 136, 135, 134, 132, 130Badeduced differences of rms charge radii. 135, 137Ba deduced hfs constants.

  • 80Si15 Fluctuations in 12C(16O,α)24Mg and 12C(16O,8Be(g.s.))20Ne Reactions

    R. Singh, K. A. Eberhard, R. G. Stokstad, Phys. Rev. C22, 1971 (1980).

    Nuclear Reactions: 12C(16O,α), E=13.17-23.09 MeV; 12C(16O, 8Be), E(cm)=14.07-23.09 MeV; measured σ(E, θ); deducedfluctuation component of σ. Statistical model analysis.

  • 80Si16 Rotational Band Crossings in the Actinides

    R. S. Simon, F. Folkmann, C. Briancon, J. Libert, J. P. Thibaud, R. J. Walen, S. Frauendorf, Z. Phys. A298, 121 (1980).

    Nuclear Reactions: 237Np(84Kr,84Kr’), E=5.36 MeV/nucleon; 235U(208Pb,208Pb’), E=4.8 MeV/nucleon; measured 84Kr γ-coin,recoil, Eγ, Iγ, Coulomb excitation. 237Np, 235U deduced levels, J, π, yrast bands, band crossing effects.

  • 80Si17 Angular Correlation Measurements of 207Bi

    G. P. Singh, R. K. Mishra, A. K. Singh, A. Kumar, Czech. J. Phys. 30, 870 (1980).

    Radioactivity: 207Bi; measured γγ(θ). 207Pb transition deduced δ.

  • 80SiZS Multipolarity of Certain Transitions in 194Ir

    L. I. Simonova, N. D. Kramer, P. T. Prokofev, Program and Theses, Proc. 30th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei,Leningrad, p. 143 (1980).

    Nuclear Reactions: 193Ir(n,γ), E=thermal; measured Eγ, Iγ, I(ce). 194Ir transitions deduced γ-multipolarity, δ.

  • 80SiZT Multipolarity of Certain Transitions in 192Ir

    L. I. Simonova, N. D. Kramer, P. T. Prokofev, Program and Theses, Proc. 30th Ann. Conf. Nucl. Spectrosc. At. Nuclei, Len-ingrad, p. 140 (1980).

    Nuclear Reactions: 191Ir(n,γ), E=reactor; measured I(ce). 192Ir deduced transition γ-multipolarity.

  • 80SiZU Pion-Nucleus Inelastic Scattering

    E. R. Siciliano, G. E. Walker, Bull. Amer. Phys. Soc. 25, No. 7, 741, DD1 (1980)

    Nuclear Reactions: 12C(π,π’), E not given; analyzed data. 12C deduced natural, unnatural parity excitations. DWIA formalism,energy, 3-momentum transfer, scattering angle dependence.

  • 80SiZV

    Conference proceedings: Rhodes(Struct Medium-Heavy Nuclei) Proc, P207,Sieminski

    Nuclear Reactions: 52Cr(3He,α), E=12, 16 MeV; measured σ(θ). 51Cr deduced analog states, S, Coulomb displacement ener-gies. DWBA.

  • 80SiZW

    Conference proceedings: Rhodes(Struct Medium-Heavy Nuclei) Proc, P258,Sistemich

    Radioactivity: 98, 100Zr, 102, 104Mo [from fission product separator]; measured not given; deduced E0/E2 systematics. 98, 100Zrlevels deduced T1/2, structure, deformation characteristics.

    102, 104Mo levels deduced deformation characterictics.

  • 80SiZX

    Conference proceedings: Rhodes(Struct Medium-Heavy Nuclei) Proc, P219,Simister

    Nuclear Reactions: 61Ni(α,n), E=8.6, 9.35 MeV; 56Fe(11B, 2np), E=30 MeV; measured γγ-, nγ-coin, γ(θ), linear polarization, DSA.64Zn deduced high-spin states, π, T1/2, B(E2). Cluster-vibration, interacting boson approximation, shell models.

  • 80SiZY

    Journal: BAPSA 25 575, HF5,Singhal

    Nuclear Reactions: 15N(e,e), (e,e’), E=90-210 MeV; measured transverse scattering σ. Enriched target.

  • 80SiZZ

    Report: JINR-E4-80-8, 6/5/80,Silisteanu

    Radioactivity: 210, 211Bi, 204, 206, 208, 210Po, 207, 209, 210At; calculated α-decay rates. Shell model, resonant α form factors.

  • 80Sj01 Spectroscopy of 213At, 212Po, and 210Pb Following 208Pb + 7Li

    T. P. Sjoreen, U. Garg, D. B. Fossan, Phys. Rev. C21, 1838 (1980).

    Nuclear Reactions: 208Pb(7Li,2n), (7Li,t), (7Li, αp), E=30-34 MeV; measured σ(Eα), αγ-, γγ-coin, γ(θ), Liγ(t). 213At, 212Po, 210Pbdeduced levels, J, π, T1/2, B(E2), γ-multipolarity. Shell model.

  • 80Sj02 Negative-Pion Production from the Bombardment of 9Be with 200-MeV Polarized Protons

    T. P. Sjoreen, M. C. Green, W. W. Jacobs, R. E. Pollock, F. Soga, R. D. Bent, T. E. Ward, Phys. Rev. Lett. 45, 1769 (1980).

    Nuclear Reactions: 9Be(polarized p,π-), E=200 MeV; measured σ(θ), analyzing power vs θ.

  • 80SjZZ

    Journal: BAPSA 25 724, AD5,Sjoveen

    Nuclear Reactions: 9Be(polarized p,π-), E=200.3 MeV; measured σ(θ), analyzing power vs θ.

  • 80Sk01 56Fe(e,α) Reaction and its Relevance to the E2 Isoscalar Sum Rule

    D. M. Skopik, J. Asai, J. J. Murphy II, Phys. Rev. C21, 1746 (1980).

    Nuclear Reactions: 56Fe(e,α), E=35, 100 MeV; measured σ(E, Eα,θα); deduced σ(γ,α). 56Fe deduced E1, E2 resonances, Γ.

  • 80Sk02 Differential Angular Distribution of Prompt Gamma Rays from Spontaneous Fission of 252Cf

    K. Skarsvag, Phys. Rev. C22, 638 (1980).

    Radioactivity: Fission 252Cf(SF); measured σ(Eγ,θ); deduced fragment J distribution rms value, statistical E1, E2, stretched E2yields.

  • 80Sk03 High-Spin Selectivity in the 27Al(α,p)30Si Reaction

    I. Skwirczynska, A. Budzanowski, J. Ploskonka, A. Strzalkowski, E. Witkos, Nucl. Phys. A348, 288 (1980).

    Nuclear Reactions: 27Al(α,p), E=26.2, 26.45, 26.7 MeV; measured σ(Ep,θ). 30Si deduced levels, J, S. DWBA, Hauser-Feshbachanalysis.

  • 80SkZY

    Conference proceedings: Leningrad, P325,Skakun

    Nuclear Reactions: 86, 87Sr(p,n), E=4-9.1 MeV; measured 86, 87Y isomeric σ ratios vs E. Enriched targets. Statistical theory.

  • 80SkZZ

    Conference proceedings: Leningrad, P324,Skakun

    Nuclear Reactions: 77, 80, 82Se(p,n), E=3.6-9.1 MeV; measured 77, 80, 82Br isomeric σ ratios vs E. Enriched targets. Statisticaltheory.

  • 80Sl01 O(1/m2) and Nuclear Effects in Radiative Muon Capture in 40Ca

    R. S. Sloboda, H. W. Fearing, Nucl. Phys. A340, 342 (1980).

    Nuclear Reactions: 40Ca(µ-,γ), E at rest; calculated σ(Eγ), photon asymmetry. GDR, closure harmonic oscillator, Hartree Fockmodels.

  • 80Sl02 Threshold and Coulomb Effects in p-d Bremsstrahlung

    R. J. Slobodrian, Phys. Lett. B94, 9 (1980).

    Nuclear Reactions: 1H(d,d), E=6.3-7.1 MeV; analyzed bremsstrahlung σ(E); deduced threshold, Coulomb effects.

  • 80Sm01 Scattering of MeV Neutrons from Elemental Iron

    A. Smith, P. Guenther, Nucl. Sci. Eng. 73, 186 (1980).

    Nuclear Reactions: Fe(n,n), (n,n’), E=1.5-4.0 MeV; measured σ(θ). Optical, statistical models, coupled-channel analysis.

  • 80Sm02 Neutron-Hole States in 204Tl

    P. A. Smith, R. J. Peterson, R. A. Emigh, R. E. Anderson, Nucl. Phys. A342, 437 (1980).

    Nuclear Reactions: 205Tl(p,d), E=26.1 MeV; measured σ(Ed,θ). 204Tl deduced levels, L, J, π, S. Enriched target, magnetic spec-trometer.

  • 80Sm03 Analysis of the (p,2p) Reaction in an Asymmetric Energy-Sharing Mode

    R. Smith, I. Morrison, K. Amos, Aust. J. Phys. 33, 1 (1980).

    Nuclear Reactions: 12C(p,2p), E=98.7 MeV; analyzed symmetric, asymmetric energy-sharing data. Central, tensor T-matrixoperators, intermediate giant resonance excitation.

  • 80Sm04 Cross Section Measurement for the 52Cr(n,p)52V Reaction near Threshold

    D. L. Smith, J. W. Meadows, Nucl. Sci. Eng. 76, 43 (1980).

    Nuclear Reactions: 52Cr(n,p), E=5.3-9 MeV; measured σ(E). Activation method.

  • 80Sm05 Activation Cross Sections for 66Zn(n,p)66Cu

    D. L. Smith, J. W. Meadows, Nucl. Sci. Eng. 76, 61 (1980).

    Nuclear Reactions: 66Zn(n,p), E=4.2-10 MeV; measured σ(E). Activation techniques.

  • 80Sm06 Note on the Prompt-Fission-Neutron Spectra of Uranium-233 and -235 and Plutonium-239 and -240 Relative to that ofCalifornium-252

    A. Smith, P. Guenther, G. Winkler, R. McKnight, Nucl. Sci. Eng. 76, 357 (1980).

    Nuclear Reactions: Fission 235, 233U(n,F), E=525 keV; 239, 240Pu(n,F), E=850 keV; measured prompt σ(En) relative to 252Cf(SF).Tof.

  • 80Sm07 Proton-proton Bremsstrahlung at 42 MeV: measurement of cross sections and comparison with a theoretical calculation

    C. A. Smith, J. V. Jovanovich, L. G. Greeniaus, Phys. Rev. C22, 2287 (1980).

    Nuclear Reactions: 1H(p,pγ), E=42 MeV; measured σ(θp1, θp2,θγ) bremsstrahlung. Hamada-Johnston potential calculation, glo-bal analysis. Gaseous target, wire chamber spectrometer, broad polar angle range.

  • 80SmZX γ-Ray Spectroscopy in 61Zn

    P. J. Smith, L. P. Ekstrom, F. Kearns, P. J. Twin, N. J. Ward, Univ. Liverpool, 1979-1980 Ann. Rept., p. 25 (1980)

    Nuclear Reactions: 58Ni(α,nγ), E=10.75-16 MeV; measured γγ-, nγ-coin, γ(θ), nγ(θ), DSA, linear polarization. 61Zn deduced lev-els, J, π, γ-branching. Shell model.

  • 80SmZY

    Journal: DABBB 40 5319, Smith

    Nuclear Reactions: 6, 7Li, 12, 13C, 40Ca(π+, p), E=resonance; 6, 7Li, 12, 13C, 40Ca(p,d), E=800 MeV; measured σ(E,θ). Largemomentum transfer, neutron pickup mechanism.

  • 80SmZZ

    Conference proceedings: Rhodes(Struct Medium-Heavy Nuclei) Proc, P265,Smith

    Nuclear Reactions: 108Pd(n,γ), E=thermal, 2.96 eV; measured Eγ, Iγ, γ(θ), ne-coin; 109Pd deduced levels, J, π.

  • 80Sn01 Unique Determination of the Amplitude and Phase for the Population of The Giant-Dipole Resonance in the Reaction12C(p(pol),γ0)

    13N

    K. A. Snover, P. G. Ikossi, E. G. Adelberger, K. T. Lesko, Phys. Rev. Lett. 44, 927 (1980).

    Nuclear Reactions: 12C(polarized p,γ), E=5-30 MeV; measured σ(E). 13N deduced GDR, T=3/2 M1(E2) interference.

  • 80So01 Coupled Channel Analysis of Inner-Shell Vacancy Formation in Superheavy Quasimolecules

    G. Soff, J. Reinhardt, B. Muller, W. Greiner, Z. Phys. A294, 137 (1980).

    Nuclear Reactions: Sn, Pb(Pb,X), E=4.7 MeV/nucleon, Cm(Pb,X), E=5.9 MeV/ nucleon; calculated quasimolecular 1sσ ioniza-tion probability. Coupled channel analysis, multistep processes.

  • 80So02 Analysis of Inelastic Proton Scattering from 56Fe, 58Fe with the Help Of a Simple Collective Model

    A. I. Sorokin, Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 150 (1980); Bull. Acad. Sci. USSR, Phys. Ser. 44, No. 1, 122 (1980).

    Nuclear Reactions: 56, 58Fe(p,p’), E=6-8 MeV; analyzed σ(E, θ). Collective model, T-matrix.

  • 80So03 Absorption in Flight of Positive Pions in Carbon

    D. I. Sober, W. J. Stapor, W. J. Briscoe, P. E. Burt, H. Crannell, J. T. O’Brien, Phys. Rev. C21, 1495 (1980).

    Nuclear Reactions: 12C(π+,X), E=91-143 MeV; measured absorption σ(E).

  • 80So04 The Description of the Fragmentation of One-Quasiparticle States in Spherical Nuclei

    V. G. Soloviev, C. Stoyanov, A. I. Vdovin, Nucl. Phys. A342, 261 (1980).

    Nuclear Structure: 57Ni, 115, 117, 119Sn, 123Te, 143Pm; calculated fragmentation of hole states. Quasiparticle-phonon model.

  • 80So05 (p,π+) Reaction on 1p Shell Nuclei at Ep=200 MeV

    F. Soga, R. D. Bent, P. H. Pile, T. P. Sjoreen, M. C. Green, Phys. Rev. C22, 1348 (1980).

    Nuclear Reactions: 10, 11B, 12, 13C(p,π+), E=200 MeV; measured σ(E(π+)); deduced reaction mechanism.

  • 80So06 Level Structure of 82Kr

    S. S. Sooch, H. R. Verma, R. Kaur, A. K. Sharma, N. Singh, P. N. Trehan, J. Phys. Soc. Jpn. 49, 1222 (1980).

    Radioactivity: 82mBr [from 81Br(n,γ)]; measured Eγ, Iγ, γγ(θ). 82Kr deduced levels, δ. Ge(Li), NaI(Tl) detectors.

  • 80So07 Quasiparticle Numbers in Ground States of Spherical and Transitional Nuclei

    V. G. Solovev, O. Stoyanova, Ch. Stoyanov, Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 1938 (1980)

    Nuclear Structure: 144, 146, 148, 150Sm, 126Te, 118Sn; calculated B(E2), B(E3). Quasiparticle formalism, ground state correlations.

  • 80SoZR

    Conference proceedings: Leningrad, P157,Soloviev

    Nuclear Structure: 144, 146, 148, 150Sm; calculated ground state quasiparticle number. RPA.

  • 80SoZS

    Journal: BAPSA 25 724, AD1,Soga

    Nuclear Reactions: 12C(p,π+), E=156-200 MeV; measured σ(E,θ); deduced σ(total). 13C levels deduced configuration.

  • 80SoZT

    Journal: DABBB 40 3811, Sofianos

    Nuclear Structure: A=4; calculated binding energies. Separable interactions, four-boson approximation.

  • 80SoZU

    Report: JINR-E4-80-75, Soloviev

    Nuclear Structure: 118Sn, 126Te, 144, 146, 148, 150Sm; calculated energies, B(λ), number of quasiparticles in ground states. RPAphonons, multipole, spin-multipole forces.

  • 80SoZV

    Report: JINR-E4-80-132, Soloviev

    Nuclear Structure: 119Sn, 123Te, 57Ni calculated fragmentation of neutron-hole states. Quasiparticle, collective-state interactionmodel.

  • 80SoZW

    Report: JINR-E4-80-149, Soloviev

    Nuclear Structure: 57Ni, 115, 117, 119Sn, 123Te, 143Pm; caculated spreading of deeply-bound states. Quasiparticle-phonon model.

  • 80SoZX

    Journal: BAPSA 25 502, BE5,Sommermann

    Nuclear Structure: 16O; calculated particle-hole gap energies. Folded diagrams, microscopic theory.

  • 80SoZY

    Journal: PHCAA 36 No3 6, AE7,Sofia

    Radioactivity: 121Cs [from 124Xe(p,4n)]; measured Eβ, Iβ, T1/2.121Xe deduced levels.

  • 80SoZZ

    Report: JINR-E4-12500, 1/18/80,Soloviev

    Nuclear Structure: 54Cr, 62Ni, 74Ge, 88Sr, 92Zr, 96, 98Mo, 145Nd; calculated s-, p-wave strength functions. Quasiparticle-phononnuclear model.

  • 80Sp01 Nuclear Orientation Study of 182W in the Decay of 182Re Isomers

    R. Spanhoff, M. J. Canty, H. Postma, G. Mennenga, Phys. Rev. C21, 361 (1980).

    Radioactivity: 182mRe [from Ta(α,3n), E=40 MeV]; measured γγ-coin, Iγ(θ), oriented nuclei. 182Re levels deduced µ, Nilssonassignments. 182W levels deduced J, π, δ, two-quasiparticle character.

  • 80Sp02 The g-Factor of the First Excited 4+ State in Backbending 20Ne

    K. -H. Speidel, G. J. Kumbartzki, W. Knauer, V. Mertens, P. N. Tandon, N. Ayres de Campos, J. Gerber, M. B. Goldberg,Phys. Lett. 92B, 289 (1980).

    Nuclear Reactions: 12C(12C,α), E=32.6 MeV; measured γγ(θ, H) in Fe, γα-coin. 20Ne level deduced g.

  • 80Sp03 Hyperfine Interaction and g-Factor Measurements in Er Isotopes

    K. -H. Speidel, G. J. Kumbartzki, W. Kauner, R. Kuhnen, G. Kraft, J. Gerber, M. B. Goldberg, G. Goldring, A. Zemel, Nucl.Phys. A344, 176 (1980).

    Nuclear Reactions: 28Si(136Xe,xn), E=630 MeV; measured σ(θ, γ) vs product flight time; deduced hyperfine field, correlation time.159Er level deduced g. Plunger technique, H2 gas pressure.

  • 80Sp04 The Influence of the π- and ρ-Exchange Potential on Magnetic Properties of Nuclei

    J. Speth, V. Klemt, J. Wambach, G. E. Brown, Nucl. Phys. A343, 382 (1980).

    Nuclear Structure: 12C, 16O, 207Tl, 207, 208, 209Pb, 209Bi; calculated levels, µ, B(λ); deduced π-, ρ-meson exchange effects.Landau-Migdal theory.

  • 80Sp05 Static Quadrupole Moments of the First Excited States of 200Hg and 202Hg

    R. H. Spear, M. T. Esat, M. P. Fewell, D. C. Kean, T. H. Zabel, A. M. Baxter, S. Hinds, Nucl. Phys. A345, 252 (1980).

    Nuclear Reactions: 200, 202Hg(α,α’), E=13.5-16.5 MeV; 200, 202Hg(12C,12C’), E=40-60 MeV; 202, 200Hg(16O,16O’), E=59-65 MeV;measured Coulomb excitation probabilities. 200, 202Hg level deduced B(E2), quadrupole moment. Enriched targets.

  • 80Sp06 Evaporation Residue and Total Reaction Cross Sections for the System 36S + 48Ca

    P. Sperr, H. J. Korner, W. A. Mayer, W. Wagner, Z. Phys. A297, 355 (1980).

    Nuclear Reactions: 48Ca(36S,X), E=117, 131, 147 MeV; measured σ(evaporation residue), σ(reaction).

  • 80Sp07 Calibration of the Isomer Shift of 83Kr

    W. J. J. Spijkervet, F. Pleiter, H. de Waard, Hyperfine Interactions 8, 173 (1980).

    Nuclear Reactions: 83Kr(γ,γ), E=9.4, 32.16 keV; measured Mossbauer, Auger spectra, I(ce) ratio in Al, W, Au, Ir, Pt, Pb. 83Krdeduced subshell ICC ratios, isomer shift, change of rms charge radius, contact charge density. Double focussing β-spectrometer, 83Rb source implated in Al, W, Au, Ir, Pt, Pb.

  • 80Sp08 Messung von Polarisationstransferkoeffizienten der Elastischen Proton-Deuteron-Streuung bei Ep=10 MeV

    F. Sperisen, W. Gruebler, V. Konig, K. Elsener, C. Schweizer, B. Jenny, P. A. Schmelzbach, Helv. Phys. Acta 53, 315 (1980).

    Nuclear Reactions: 2H(polarized p,p), E=10 MeV; measured polarization transfer coefficents vs θ.

  • 80Sp09 Static Quadrupole Moment of the First Excited State of 28Si

    R. H. Spear, M. P. Fewell, Aust. J. Phys. 33, 509 (1980); Corrigendum Aust. J. Phys. 34, 609 (1981).

    Nuclear Reactions: 208Pb(28Si,28Si’), E=94.88-104.86, 109.85-139.81 MeV; measured σ(E(28Si’),θ), reorientation effect inCoulomb excitation. 28Si level deduced B(E2), static quadrupole momement. Si surface barrier detectors. Hartree-Fock, shellmodel interpretation.

  • 80Sp10 Determinacao do Alcance Efectivo de Fragmentos de Fissao no UO2 e da Constante de Desintegracao para a Fissao Espon-tanea do Uranio-238

    E. R. V. Spaggiari, Ann. Acad. Brasil. Cienc. 52, 213 (1980).

    Nuclear Structure: 238, 235U; measured not abstracted; deduced fission characteristics.

  • 80SpZY

    Conference proceedings: Berkeley(Int Conf on Nucl Phys) Proc, P97,Spear

    Nuclear Reactions: 200, 202Hg(α,α’), (12C,12C’), (16O,16O’), E not given; measured reorientation effect in Coulomb excitation. 200,202Hg level deduced quadrupole moment, B(E2).

  • 80SpZZ

    Preprint: NUPAB GP-423, Speidel,6/23/80

  • 80Sr01 A Study of Whether the Woods-Saxon or the Woods-Saxon Square Parametrization is Appropriate for the PhenomenologicalRepresentation of Different α-Particle Nucleus Folding Potentials

    T. Srokowski, Z. Majka, K. Grotowski, Acta Phys. Pol. B11, 439 (1980).

    Nuclear Reactions: 90Zr(α,α), E=26.2, 40, 59.1, 79.5, 99.5, 118, 166 MeV; calculated α-nucleus folding potentials; deducedWoods-Saxon squared parametrization appropriate for single, double folding.

  • 80St01 Tensor Analyzing Powers in 4He(d,d)4He Elastic Scattering between 17 and 45 MeV

    E. J. Stephenson, H. E. Conzett, R. M. Larimer, B. T. Leemann, R. Roy, P. von Rossen, Phys. Rev. C21, 44 (1980).

    Nuclear Reactions: 4He(d,d), E=17-45 MeV; measured σ(θ), tensor analyzing power.

  • 80St02 Medium Energy Collisions of Heavy Nuclei in the Three-Dimensional Nuclear Fluid Dynamical-(NFD) and Time-DependentHartree-Fock (TDHF) Models

    H. Stocker, R. Y. Cusson, J. A. Maruhn, W. Greiner, Z. Phys. A294, 125 (1980).

    Nuclear Reactions: Kr(Kr,X), E=20-200 MeV/nucleon; calculated σ for density isomers. time-dependent Hartree-Fock, three-dimensional nuclear fluid dynamic model.

  • 80St03 Collective Sideward Flow of Nuclear Matter in Violent High-Energy Heavy-Ion Collisions

    H. Stocker, J. A. Maruhn, W. Greiner, Phys. Rev. Lett. 44, 725 (1980).

    Nuclear Reactions: U(Ne,X), E=250, 400, 800 MeV/nucleon; calculated σ(fragment θ,E); deduced nuclear matter sideward flow.

  • 80St04 Level Structure and Lifetimes of Low Excitation States in 54Cr

    A. E. Stuchbery, I. Morrison, D. L. Kennedy, H. H. Bolotin, Nucl. Phys. A337, 1 (1980).

    Nuclear Reactions: 51V(α,pγ), E=10 MeV; measured Eγ, pγ-coin, DSA. 54Cr deduced levels, J, π, T1/2. Shell-model calculations.

  • 80St05 Search for Naturally Occurring Superheavy Element Z = 110, A = 294

    W. Stephens, J. Klein, R. Zurmuhle, Phys. Rev. C21, 1664 (1980).

    Nuclear Structure: 294110; searched for superheavy; deduced T1/ 2. Pt placer sample, Tandem accelerator as mass spectrome-ter.

  • 80St06 Phenomenological and Microscopic Optical Potentials for 88 MeV 7Li Scattering

    M. F. Steeden, J. Coopersmith, S. J. Cartwright, M. D. Cohler, N. M. Clarke, R. J. Griffiths, J. Phys. (London) G6, 501 (1980).

    Nuclear Reactions: 24, 26Mg, 40, 48Ca(7Li, 7Li), E=88 MeV; measured σ(θ); deduced energy dependence of optical potentials.Phenomenological, double-folding microscopic potentials.

  • 80St07 Interpretation of Quasielastic Pion Scattering Coincidence Experiments

    M. M. Sternheim, R. R. Silbar, Phys. Rev. C21, 1974 (1980).

    Nuclear Reactions: 12C, 27Al, 208Pb(π+,π+p), (π-,π-p), E=180, 190, 255 MeV; analyzed pion-nucleon coin data. Impulse approxi-mation, recoil nucleon charge exchange.

  • 80St08 The 26Mg(p,n)26Al Reaction and the Energy Dependence of the Spin-Isospin Effective Interaction

    W. A. Sterrenburg, S. M. Austin, U. E. P. Berg, R. DeVito, Phys. Lett. 91B, 337 (1980).

    Nuclear Reactions: 26Mg(p,n), E=24.6, 35, 45 MeV; measured σ(En, θ); deduced energy dependence of spin-isospin effectiveinteraction. DWBA with, without knockon exchange amplitude, shell model S.

  • 80St09 Fusion of 16O + 148, 150, 152, 154Sm at Sub-Barrier Energies

    R. G. Stokstad, Y. Eisen, S. Kaplanis, D. Pelte, U. Smilansky, I. Tserruya, Phys. Rev. C21, 2427 (1980).

    Nuclear Reactions: 148, 150, 152, 154Sm(16O, X), E=60-75 MeV; measured evaporation residue Eγ, E(K X-ray), I(K X-ray);deduced fusion σ(E).

  • 80St10 Proton States in 143Pm and 145Pm Populated in the (3He,d) Reaction

    O. Straume, G. Lovhoiden, D. G. Burke, Z. Phys. A295, 259 (1980).

    Nuclear Reactions: 142, 144Nd, Nd(3He,d), E=24 MeV; measured σ(Ed,θ); deduced Q. 143, 145Pm levels deduced L, S. Enrichedtargets, magnetic spectrograph. Shell model, pairing theory.

  • 80St11 The Sub-Barrier Fusion of 40Ar with 144, 148, 154Sm

    R. G. Stokstad, W. Reisdorf, K. D. Hildenbrand, J. V. Kratz, G. Wirth, R. Lucas, J. Poitou, Z. Phys. A295, 269 (1980).

    Nuclear Reactions: 144, 148, 154Sm(40Ar,X), E=3.6-4.5 MeV/nucleon; measured I(K X-ray)(t,fragment E); deduced evaporation-residue production σ, fusion-fission σ. ∆E-E ionization chamber.

  • 80St12 Study of Stripping to Levels of 21Ne

    A. R. Stanford, P. A. Quin, Nucl. Phys. A342, 283 (1980).

    Nuclear Reactions: 20Ne(polarized d,d), E=10 MeV; measured σ(θ), iT11(θ); deduced optical-model parameters.20Ne(polarized

    d,p), E=10 MeV; measured σ(Ep, θ), iT11(Ep,θ).21Ne levels deduced S, J, π. Enriched target.

  • 80St13 The Behavior of High-Energy Neutron Pairing Strength in the Samarium Isotopes

    G. L. Struble, L. G. Mann, R. G. Lanier, W. M. Buckley, J. Kern, G. Crawley, S. Gales, D. Mueller, F. Girshick, Phys. Lett.93B, 26 (1980).

    Nuclear Reactions: 144, 148, 150, 152, 154Sm(p, t), E=42 MeV; measured σ(θ,Et). 142Sm deduced structure. 146, 148Sm deducedtwo-neutron transfer strength localization. Shell model. Q3D spectrograph, Enge split-pole spectrometer.

  • 80St14 Variational Approach to the Moment of Inertia

    S. Stringari, E. Lipparini, Phys. Rev. C22, 884 (1980).

    Nuclear Structure: 20Ne; calculated irrotational, rigid moments of inertia. Cranked Hartree-Fock method.

  • 80St15 Experimental Test of Virtual Photon Theory for Pion Electroproduction on Light Nuclei

    P. Stoler, E. J. Winhold, F. O’Brien, P. F. Yergin, D. Rowley, K. Min, J. LeRose, A. M. Bernstein, K. I. Blomqvist, G. Franklin,N. Paras, M. Pauli, Phys. Rev. C22, 911 (1980).

    Nuclear Reactions: 16O(e,π+), E=180.4 MeV; 9Be(e, π+), E=184.8 MeV; 1H(e,π+), E=230 MeV; measured σ(E(π+),θ) relative toσ(photoproduction). PWBA, virtual photon theory.

  • 80St16 Backward πd Scattering between 140 and 260 MeV

    A. Stanovnik, G. Kernel, N. W. Tanner, T. Bressani, E. Chiavassa, S. Costa, G. Dellacasa, M. Gallio, A. Musso, M. Panighini,K. Bos, E. G. Michaelis, W. van Doesburg, J. D. Davies, Phys. Lett. B94, 323 (1980).

    Nuclear Reactions: 2H(π+,π+), E=141, 177, 260 MeV; 2H(π-,π-), E=151, 185, 189 MeV; measured σ(θ). Three-body theories.

  • 80St17 Backward-Angle High-Resolution Inelastic Electron Scattering on 40, 42, 44, 48Ca and Observation of a Very Strong MagneticDipole Ground-State Transition in 48Ca

    W. Steffen, H. -D. Graf, W. Gross, D. Meuer, A. Richter, E. Spamer, O. Titze, W. Knupfer, Phys. Lett. B95, 23 (1980).

    Nuclear Reactions: 40, 42, 44, 48Ca(e,e’), E=39 MeV; 48Ca(e,e’), E=30, 50 MeV; measured σ(E(e’)). 40, 42, 48Ca deduced 1+ state,B(M1). Enriched targets.

  • 80St18 Determination of the Asymptotic Ratio of the Deuteron D- and S-State Amplitudes

    K. Stephenson, W. Haeberli, Phys. Rev. Lett. 45, 520 (1980).

    Nuclear Reactions: 208Pb(polarized d,p), E=7, 8, 9 MeV; measured tensor analyzing power vs θ. 2H deduced asymptotic d- tos-state amplitude ratio. DWBA, different deuteron wave functions.

  • 80St19 A Microscopic Multishell-Coupled-Channels Description of Inelastic Deuteron Scattering on 58Ni at Ed = 10 MeV

    J. Stumm, A. Hofmann, J. Phys. (London) G6, 875 (1980).

    Nuclear Reactions: 58Ni(d,d’), E=10 MeV; measured σ(θ), dγ(θ). Multishell form factors, coupled channels calculation.

  • 80St20 Low Lying Energy Levels of 56Fe from γ-γ Coincidences

    N. M. Stewart, A. M. Shaban, Z. Phys. A296, 165 (1980).

    Radioactivity: 56Co [from 56Fe(p,n)]; measured Eγ, Iγ, γγ-coin; deduced log ft. 56Fe deduced levels, ICC, J, π, γ-multipolarity.

  • 80St21 Isotope Shift in Ni I and Changes in Mean-Square Nuclear charge Radii of the Stable Ni Isotopes

    A. Steudel, U. Triebe, D. Wendlandt, Z. Phys. A296, 189 (1980).

    Nuclear Moments: +58}, 60, 61, 62, 64Ni; measured optical isotope shift, hfs; deduced rms nuclear charge radii, electron chargedensity at nucleus. Fabry-Perot spectrometer.

  • 80St22 Double-Foldng Model Potentials for 6Li Elastic Scattering at 99 MeV

    D. P. Stanley, F. Petrovich, P. Schwandt, Phys. Rev. C22, 1357 (1980).

    Nuclear Reactions: 12C, 28Si, 40Ca, 58Ni, 90Zr, 208Pb(6Li,6Li), E=99 MeV; calculated σ(θ). Double-folding potentials, realisticnucleon-nucleon interaction.

  • 80St23 MO X-Ray Angular Distribution from 1 GeV 208Pb+208Pb and 209Bi+209Bi Collisions

    Ch. Stoller, E. Morenzoni, W. Wolfli, W. E. Meyerhof, F. Folkmann, P. Vin