7 μm, ultrafast, sub-millijoule-level mid-infrared optical ...

6
Title: 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm Authors: D. SANCHEZ, M. HEMMER, M. BAUDISCH, S. L. COUSIN, K. ZAWILSKI, P. SCHUNEMANN, O. CHALUS, C. SIMON-BOISSON, AND J. BIEGERT Final manuscript The original publication may be found at: Journal: Optica, Vol. 3, Issue 2, pp. 147-150 (2016) DOI: http://dx.doi.org/10.1364/OPTICA.3.000147

Transcript of 7 μm, ultrafast, sub-millijoule-level mid-infrared optical ...

Title: 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm Authors: D. SANCHEZ, M. HEMMER, M. BAUDISCH, S. L. COUSIN, K. ZAWILSKI, P. SCHUNEMANN, O. CHALUS, C. SIMON-BOISSON, AND J. BIEGERT

Final manuscript The original publication may be found at: Journal: Optica, Vol. 3, Issue 2, pp. 147-150 (2016) DOI: http://dx.doi.org/10.1364/OPTICA.3.000147

7-micron, ultrafast, sub-mJ-level mid-IR OPCPA pumped at 2 micron D.SANCHEZ1,*,M.HEMMER1,#,M.BAUDISCH1,S.L.COUSIN1,K.ZAWILSKI2,P.SCHUNEMANN2,O.CHALUS3,C.SIMON-BOISSON3ANDJ.BIEGERT1,41ICFO-InstitutdeCienciesFotoniques,TheBarcelonaInstituteofScienceandTechnology,08860Castelldefels(Barcelona),Spain2BAESystems,MER15-1813,P.O.Box868,Nashua,NewHampshire03061,USA3THALESOptroniqueS.A.S.,LaserSolutionsUnit,2avenueGay-Lussac,78995ElancourtCedex,France4InstitucióCatalanadeRecercaiEstudisAvançats(ICREA),PasseigLluisCompanys23,Barcelona08010,Spain#presentaddress:CenterforFree-ElectronLaserScience,DeutschesElektronenSynchrotron(DESY),Hamburg,Germany

*Correspondingauthor:[email protected]

ReceivedXXMonthXXXX;revisedXXMonth,XXXX;acceptedXXMonthXXXX;postedXXMonthXXXX(Doc.IDXXXXX);publishedXXMonthXXXX

Wepresentanovelall-fiberpumpedOPCPAarchitectureto generate self-CEP stable, sub-8optical cycledurationpulses at 7-micron wavelength approaching millijoule-levelpulseenergyat100Hzrepetitionrate.Thesystemyields a peak power of 1.1 GW and, if focused to thediffraction limit,would reachapeak intensityof7x1014W/cm2. The OPCPA is pumped by a 2-micron Ho:YLFchirped pulse amplifier to leverage the highly efficientand broadband response of the nonlinear crystal ZGP.The7-micronseedat100MHzisgeneratedviaDFGfroman Er:Tm:Ho multi-arm fiber frequency comb and afraction of its output optically injects the Ho:YLFamplifier. While the pulse bandwidth at 7 micron isperfectly suited for nonlinear and spectroscopicapplications,currentparametersoffer,forthefirsttime,the possibility to explore strong field physics in anentirely new wavelength range with a ponderomotiveforce77 times larger than froman800nmsource.Theoverall OPCPA system is very compact and provides anew tool for investigations directly in the molecularfingerprintregionoftheelectro-magneticspectrumortodrive high harmonic generation to produce fullycoherent X-rays in the multi-keV range and possiblyzeptosecondtemporalwaveforms.

©2015OpticalSocietyofAmerica

OCIScodes:(140.3070)Infraredandfarinfraredlasers;(190.4970)Parametricoscillatorsandamplifiers;(320.7090)Ultrafastlasers;

http://dx.doi.org/10.1364/optica.99.099999

Thedevelopmentofcoherentlightsourceswithemissioninthemid-IRiscurrentlyundergoingaremarkablerevolution.Themid-IRspectralrange has always been of tremendous interest, mainly to

spectroscopists,duetotheabilityofmid-IRlighttoaccessrotationaland vibrational resonances of molecules which give rise to superbsensitivity upon optical probing [1-3]. Previously, high energyresolution was achieved with narrowband lasers or parametricsources,buttheadventoffrequencycombsourceshasrevolutionizedspectroscopybyprovidinghighenergyresolutionwithinthefrequencycomb structure of the spectrum and at the same time broadbandcoverage and short pulse duration [4-6]. Such carrier to envelopephase (CEP)controlled lightwaveforms,whenachievedatultrahighintensity,giverisetoextremeeffectssuchasthegenerationofisolatedattosecondpulses in thevacuumtoextremeultravioletrange(XUV)[7].Motivatedlargelybythevastpotentialofattosecondscience,thedevelopment of ultraintense few-cycle and CEP stable sources hasintensified[8],anditwasrecognizedthatcoherentsoftX-rayradiationcould be generated when driving high harmonic generation (HHG)withlongwavelengthsources[9-11].Recently,basedonthisconcept,the highest waveform controlled soft X-ray flux [12] and isolatedattosecondpulseemissionat300eV[13]wasdemonstratedviaHHGfroma1850nm,sub-2-cyclesource[14].Withinstrongfieldphysics,longwavelengthscalingmayleadtofurtherinterestingphysicssuchasthedirectreshapingofthecarrierfield[15],scalingofquantumpathdynamics [16], the breakdown of the dipole approximation [17] ordirect laseracceleration[18].Theexperimentaldevelopmentof longwavelengthlightsourcesthereforeholdsgreatpromiseinmanyfieldsofscienceandwillleadtonumerousapplicationsbeyondstrongfieldphysicsandattosecondscience.Here, we present the first mid-IR optical parametric chirped pulseamplifier (OPCPA) operating at a center wavelength of 7 μm withoutputparameterssuitablealreadyforstrong-fieldexperiments.It isalsothefirstdemonstrationofOPCPAusinga2μmlaserpumpsourcewhichenables theuseofnon-oxidenonlinearcrystalswith typicallylimitedtransparencyat1μm wavelength.ThisnewOPCPAsystemisall-optically synchronized and generates 0.55mJ energy, CEP stableopticalpulses.Thepulsessupportasub-4cyclepulsedurationandarecurrentlycompressed tosub-8opticalcyclesdue touncompensated

optica Letter

higher order phase from the grating compressor which will beaddressedinthefuture.AschematicrepresentationoftheOPCPAisshowninFig.1andfollowsthepreviouslyprovenconceptofour3µmOPCPAsystem[19].Thefront-end of the system, which seeds both the pump and opticalparametricamplifier(OPA)stages,isamulticolorall-fibrelaser(MenloSystemsGmbH)[20].Theseederisbasedonamode-lockedEr:fibreoscillator and power amplifier which deliver 1.55-μm wavelength,nanojoule-levelpulsesatarepetitionrateof100MHz.Theoutputissplitintotwoarms,thefirstofwhichiscompressedinfibreto72fswith3nJpulseenergy.Thesecondoutputiscoupledintoahighlynon-linearfibrewherethespectrumisbroadenedtoanopticaloctaveviasuper-continuumgeneration.Theportionofthebroadenedspectrumaround2μmissubsequentlysplitintotwoarms.Thefirstisusedtoseedachainofbroad-bandTm:Hofibreamplifiersanddelivers3nJenergypulsescenteredat2040nm,whichwecompressinfree-spaceto 130 fs. The second arm is spectrally narrowed to 1.5 nmbeforeseedingachainofTm:Hofibreamplifiers.Attheoutputweobtain4nJ,fewpicosecondpulses.

Fig.1.a)LayoutoftheOPCPAconceptfeaturinganall-fibreseeder,aDFGstage,a2µmHo:YLFpumplaser,achainofthreeconsecutiveZGPOPAs and a reflective grating-based compressor; HNLF, highlynonlinearfibre;NBF,narrow-bandwidthfilter,Stretch.,stretcher;PM,pick-off mirror; Comp., compressor. b) Layout of the Ho:YLF CPAfeaturing a CVBG stretcher, a pulse picker, a ring regenerativeamplifier, a single-pass cryogenically cooled booster amplifier and aCVBGcompressor;QWP,quarter-waveplate;CVBG;chirpedvolumeBragggrating;PC,Pockelscell;TFP,thin-filmpolarizer.

Fig.2.Spectrumofthemid-IRpulsesamplifiedintheZGPOPAs(blackline,shaded)measuredusingascanningmonochromatorandseedspectrumfrom the CSPDFG stage (grey line)measuredwith a Fourier transforminfrared spectrometer. The spectral width of the OPCPA output at the13.5%pointis1360nm–correspondingto85fstransformlimit.

Themid-IR seed for theOPA chain is generated through differencefrequencygeneration (DFG)of the femtosecondoutputsof the fibrelaser.SeedgenerationusingDFGwasdemonstratedtogeneratelargebandwidthsinthemid-IR[21]andfurthermore,iftheinputpulsesforthe DFG originate from a common oscillator, the output will beintrinsicallyCEPstable[22,23].PassiveCEPstabilizationhasproventoberobustandreducestheoverallcomplexityofthelasersystem[24].WechosethenonlinearcrystalCdSiP2(CSP)asthegenerationmediumdue to its unique combinationof high effectivenonlinear coefficient(deff~84.5pm/V),broadphase-matchingcharacteristicsinthemid-IRandwidetransmissionwindow[25].UsinganARcoated1.5mmthickCSPcrystal(BAESystems),theDFGstageproducesCEPstableopticalpulseswithup to150pJofenergyat100MHz[26].Thegeneratedspectrum,whichisshownasthegreylineinFig.2,iscentredaround6.5μmandspanstherangebetween5.5and8μm.The pump laser is a central component of an OPCPA as it largelydetermines the performance of the overall system. Currently, themajorityofhigh-intensitymid-IRsourcesrelyonparametricamplifierspumped by laser systems operating at 1 μm [19,27,28]. However,extendingtheoperatingwavelengthofOPCPAtolongerwavelengthshas so farbeenhinderedby an increasinglyunfavourablepump-to-idler photon ratio as well as a scarcity of nonlinear crystals withsuitable optical and mechanical properties or transparency [29].Scaling the pump laser to longer wavelengths circumvents theseobstacles and has recently been achievedwith pump laser systemsbasedonHo-dopedgainmediadeliveringhighenergy, femtosecond[30]andpicosecond[31,32]pulsesaround2µm,suitableforpumpingOPAs.ThepumplaseroftheOPCPAdescribedinthisworkreliesonchirpedpulseamplification(CPA)usingHo:YLFasgainmedium[31].TheCPAlineisseededwiththenarrow-band,2μmpulsesfromthefibrefront-end.Thefewpicosecond2μmpulsesaretemporallystretchedusingachirpedvolumeBragggrating(CVBG;OptiGrateCorp.)toameasuredduration of 170 ps, suitable for seeding the high gain amplifierswithoutriskofopticaldamage.Uponstretching,thepulsesarepickedat 100 Hz repetition rate and directed towards a Ho:YLF ringregenerativeamplifier (RA). Injectionandejection fromthecavity isachieved using a rubidium titanyle phosphate (RTP) Pockels celloperatedathalf-wavevoltage.ThenJseedpulsesareamplifiedto4mJ

intheRAandthensenttoasinglepass,cryogenicallycooledHo:YLF[33]amplifier.BoththeRAandsinglepassamplifierarepumpedbyaCWTm:fibrelaseroperatingatawavelengthof1940nm.AttheoutputoftheCPAwemeasure40mJenergywithpowerfluctuationsoflessthan0.8%rmsandpeak-to-peakfluctuationsoflessthan3%overhalfa million of shots. The compressor is based on a CVBG (OptiGrateCorp.),withan25x27mm2aperture.Thecompressorhasanoverallefficiencyof85%andisusedtotemporallycompresstheoutputtoameasureddurationof11ps.Thetemporalseedstretchfactor,whichdeterminesthepumptoseedpulsedurationratio,isanimportantdesignaspectofanOPCPAsinceithas a large impact on efficiency, amplifiable bandwidth andsuperfluorescence generation. There is a trade-off, since in generalone-to-onematchingofthepumpandseedpulsedurationsleadstoagreater efficiency, while a shorter seed pulse leads to broaderamplification bandwidths. We used a nonlinear wave propagationcode[34]tonumericallysimulatetheDFGandOPAprocessesinordertochoosethestretchfactorfortheseed.Oursimulationssuggestthataseedpulsedurationof6pstogetherwithan11pspumppulsepermitsamplifying sufficient bandwidth to support a sub-100 fs pulse; notethatoneoptical cycleat7μmequals23 fs.WechosebulkBaF2 forstretchingdueitslowFresnellossesandhighGVDinthemid-IR(700fs2/mmat6.5μm).Accordingtoourcalculations, themid-IRseed isstretchedto6psafterpropagatingthrough12cmofBaF2.Thestretched,picojoule-levelseedpulsesareamplified inachainofthree consecutive non-collinear OPA stages. Due to the largebandwidthsandhighintensitiesinvolved,thenonlinearcrystalfortheamplifiersneedstobechosencarefully.Theuseofa2μmpumplaserallowsustousethehighlynon-linearcrystalZnGeP2(ZGP)(deff~75pm/V), which for transparency reasons cannot be pumped at awavelengthshorterthan2μm[29].Thefirstparametricamplificationstagesconsistsofa5mmARcoatedZGPcrystal(BAESystems).Usingapproximately200μJofpumpenergy, focused toan intensityof20GW/cm2,andseedingwith100pJ,thefirstamplifierexhibitsagainof~104, yielding2μJ of energy in themid-IR.An identical5mmZGPcrystalisusedinthesecondamplificationstage,whichispumpedwith4mJofenergyandproduces100μJpulses.Finally,theoutputofthesecondOPAstageiscollimatedandlooselyfocusedintothethirdOPA,which consists of a 3mmZGP crystal and is pumpedwith 8mJ ofenergy.Thislastamplificationstagebooststhemid-IRenergyto0.55mJ.ByblockingtheseedoftheOPAchainwewereabletoestablishanupper limit of superfluorescence contributing to parametricbackgroundofmaximally5%.

Fig. 3. Autocorrelation trace from a background free intensityautocorrelation.Shownisthecompressedpulses(bluecircle)withthebestfittedpulseshapewhichisaLorentzianprofile(solidredline).Thedeconvolutionresultsinapulsedurationof180fs.Measuredspatialprofile(inset)ofthecompressedpulseattheoutputoftheOPCPA.

Fig.4. Thegraph shows theOPCPAoutputpulseenergymeasuredsingle shot and over a period of 30 minutes. We find an excellentstabilitycorrespondingto2.5%rms.

TheamplifiedspectrumattheoutputoftheOPCPAisshowninFig.2andwasmeasuredusingascanningmonochromatorequippedwithaliquid N2 cooled mercury cadmium telluride (MCT) detector. Thespectrum is centredat7μmwithabandwidthof1360nmat1/e2whichsupportsa85fspulseduration(sub-4cycles).Consideringthattheamplificationisultrabroadband,themeasuredenergyconversionefficiencyof18%intosignalplusidlerinthelastOPAstageisexcellent.Afteramplification,forafirsttestofcompressibility,themid-IRpulsesare directed towards a Martinez-style compressor consisting of areflectiveAl-coateddiffractiongratingwith150l/mmandanuncoatedCaF2 lens. The total energy throughput of the compressor is 35%whichyieldsacompressedenergyof200µJ.Weexpecttosignificantlyenhance the low energy throughputwith custommade and coatedcompressor components which should result in throughputefficienciesof60to80%.Upon compression, the temporal profile of the optical pulses wascharacterizedusingbackground free intensity autocorrelationbasedonaZGPcrystalandallreflectiveoptics.Figure3showsthemeasuredtrace,whichexhibitsanautocorrelationwidthof360 fs. Inorder toevaluatethepulseduration,wefitvariouslineshapes(sech2,Gaussianand Lorentzian) to the measured autocorrelation trace for itsdeconvolution.WefindthattheautocorrelationtracesarebestfittedwithaLorentziantemporalprofile,whichissensibleconsideringthatpulse propagation suffers from residual absorption of small watercontentinthepurgedboxwhichwouldgiverisetomodificationofthesech2autocorrelationprofileinfavorofaLorentzianshape.Underthisassumption, theAC tracecorresponds toapulsedurationof180 fs,which isshorter than8opticalcycles.Ascomparison, themeasuredpulsedurationwouldcorrespondtothesamenumberofopticalcyclesasa20-fs-durationpulseattheTi:Sapphirewavelengthof800nm.Inorder to leveragethe fullpotentialof thesource togenerate few-cycle pulses, advanced pulse diagnostics capabilities are warrantedthatcanmeasurethepulseamplitudeandphaseat7micronrapidly.AstraightforwardimplementationofmethodssuchasFROGorSPIDERis however stymied by the absence of mid-IR array detectors withsufficientspatialorspectralresolutionthusresultinginunrealistically

long scan times or insufficient resolution.We believe thatmethodssuchaselectrooptical samplingwillbe ideally suited fordirect andrelatively fast waveformmeasurements in themid-IR [35]. Furtherreduction inpulsedurationshouldbestraightforwardto implementbased on methods using spectral broadening and subsequentcompression[36,37]ordirectpulsecompressioninthemid-IR[38].Lastly,wemonitored the stability of the compressed outputwith apyroelectricdetectorandwemeasuredanexcellent systemstabilitywithenergyfluctuationsoflessthan2.5%rmsover30minutes(Fig.4).Inconclusion,wehavedemonstratedthefirstultrafastmid-IROPCPAdirectlyoperatingatacentrewavelengthof7μmwithanewOPCPAarchitectureleveragingnon-oxidecrystalswhicharedirectlypumpedat2μm.Theentiresystemisfiberpumpedandbasedonamulti-armfiber front-endwith different emissionwavelengthswhich providestheopticalseedandopticalsynchronizationwithoutanyelectronics.TheOPCPAseedisderivedviaDFGfromtwoofthosefiberoutputswhichleadstoapassivelyCEP-stablemid-IRfrequencycomboutputat100MHzrepetitionrate.ThepumplaserisdirectlyseededbythesamefiberfrontendandconsistsofaHo:YLFregenerativeamplifierfollowedby a cryogenically cooled Ho:YLF single pass amplifier. The 200 µJoutputat180fsleadstoapeakpowerof1.1GWand,iffocusedtothediffractionlimit,toapeakintensityof7x1014W/cm2whichissufficientfor strong field experiments. Simulations indicate that the OPCPAarchitecture should be scalable to pump energies close to the joulelevelandtopulseenergiesinthetensofmillijoulerangeat7micron.Furtherongoingstepsincludeincreasingpulseenergythroughscalingof the Ho:YLF amplifier, careful tailoring of pump and seed pulsedurationsandchirpoftheOPCPAstages,andfurtherreductionofthepulsedurationat7micron.WebelievethatthedemonstratedpumpandOPCPAarchitecturesareattractiveduetothecompactnessoftheoverallsystemandthefactthatitisentirelyfiberlaserpumpedwhichreducesoperatingcostsdrastically.Moreover,thesystem’soperatingcharacteristicsnowenableaccesstothefullmid-IRspectralrangetoultrafast,nonlinearandstrongfieldphysics.Funding. We acknowledge financial support from the SpanishMinistryofEconomyandCompetitiveness,throughFIS2014-56774-R,FIS2014-51478-ERC, the “Severo Ochoa” Programme for Centres ofExcellence in R&D (SEV-2015-0522), the Catalan Agencia de Gestiód’Ajuts Universitaris i de Recerca (AGAUR) with SGR 2014-2016,Fundació Cellex Barcelona, the European Union’s Horizon 2020research and innovation programme under grant agreement No654148 Laserlab-Europe, the Marie Sklodowska-Curie grantagreements No. 641272 and 264666, and the German BMBF forfundingundertheEurostarsprojectMIRANDUS(E!6698)

REFERENCES1. Woutersen,U.Emmerichs,andH.J.Bakker,Science278,658(1997).2. F.K.Tittel,D.Richter,andA.Fried,Top.Appl.Phys.89,458(2003).3. B.JeanandT.Bende,Top.Appl.Phys89,530(2003).4. J.Reichert,R.Holzwarth, T.Udem,andT.W.Hänsch,Opt.Commun.

172,59(1999).5. S.A.Diddams,J.Opt.Soc.Am.B27,B51(2010).6. A.Schliesser,N.Picqué,andT.W.Hänsch,Nat.Photonics6,440(2012).7. M.Hentschel,R.Kienberger,Ch.Spielmann,G.A.Reider,N.Milosevic,T.

Brabec,P.Corkum,U.Heinzmann,M.Drescher,andF.Krausz,Nature414,509(2001).

8. J. Biegert, Philip K. Bates,O. Chalus, IEEE J. Sel. Top.Quant. Electron.UltrafastSci.Technol.,invitedreviewpaper,18,531(2012).

9. J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F.DiMauro,Phys.Rev.Lett.98,013901(2007).

10. T. Popmintchev, M. Chen, O. Cohen, M. Grisham, J. Rocca, M.Murnane,andH.Kapteyn,Opt.Lett.33,2128(2008).

11. M.V. Frolov,N. L.Manakov, andA. F. Starace,Phys.Rev. Lett.100,173001(2008).

12. S. L. Cousin, F. Silva, S. Teichmann, M. Hemmer, B. Buades, and J.Biegert,Opt.Lett.39,5383(2014).

13. F. Silva, S. Teichmann, S. L.Cousin,M.Hemmer, and J.Biegert,Nat.Commun.6,6611(2015).

14. F. Silva, P. K. Bates, A. Esteban-Martin, M. Ebrahim-Zadeh, and J.Biegert,Opt.Lett.37,933(2012).

15. P.Whalen, P. Panagiotopoulos,M.Kolesik, and J. V.Moloney, Phys.Rev.A89,023850(2014).

16. T.Auguste,P.Salières,A.S.Wyatt,A.Monmayrant,I.A.Walmsley,E.Cormier, A. Zaïr,M. Holler, A. Guandalini, F. Schapper, J. Biegert, L.Gallmann,andU.Keller,Phys.Rev.A80,033817(2009).

17. H.R.Reiss,Phys.Rev.Lett.101,043002(2008).18. I.Jovanovic,G.Xy,andS.Wandel,Phys.Proc.52,68(2014).19. O.Chalus,P.K.Bates,M.Smolarski,andJ.Biegert,Opt.Exp.17,3587

(2009).20. H. Hoogland, A. Thai, D. Sanchez, S. L. Cousin, M. Hemmer, M.

Engelbrecht, J. Biegert, and R. Holzwarth, Opt. Express 21, 31390(2013).

21. C.Erny,K.Moutzouris,J.Biegert,D.Kühlke,F.Adler,A.Leitenstorfer,andU.Keller,Opt.Lett.32,1138(2007).

22. A.Baltuska,T.Fuji,andT.Kobayashi,Phys.Rev.Lett.88,133901(2002).23. T.Fuji,A.Apolonski,andF.Krausz,Opt.Lett.29,632(2004).24. A.Thai,M.Hemmer,P.K.Bates,O.Chalus,andJ.Biegert,Opt.Lett.36,

3918(2011).25. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C.

Fernelius,andF.K.Hopkins,J.Cryst.Growth312,1127(2010).26. D.Sánchez,M.Hemmer,M.Baudisch,K.Zawilski,P.Schunemann,H.

Hoogland,R.Holzwarth,andJ.Biegert,Opt.Lett.39,6883(2014).27. B.W.Mayer,C.R.Phillips,L.Gallmann,andU.Keller,Opt.Express22,

20798(2014).28. G.Andriukaitis, T. Balciunas, S. Alisauskas, A. Pugzlys, A. Baltuska, T.

Popmintchev,M. Chen,M.Murnane, andH. Kapteyn,Opt. Lett.36,2755(2011).

29. V.Petrov,Opt.Materials34,536(2012).30. P.Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S.

Ališauskas,A.Pugžlys,A.Baltuška,L.H.Tan,C.F.Chua,andP.B.Phua,Opt.Lett.38,2746(2013).

31. M. Hemmer, D. Sánchez, M. Jelínek, V. Smirnov, H. Jelinkova, V.Kubeček,andJ.Biegert,Opt.Lett.40,451(2015).

32. L. von Grafenstein, M. Bock, U, Griebner, and T. Elsaesser, Opt.Express23,14744(2015).

33. H. Fonnum, E. Lippert, and M. W. Haakestad, Opt. Lett. 38, 1884(2013).

34. G.Arisholm,J.Opt.Soc.Am.B14,2543(1997).35. I.Pupeza,D.Sánchez,J.Zhang,N.Lilienfein,M.Seidel,N.Karpowicz,T.

Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V.Pervak,E.Fill,O.Pronin,Z.Wei,F.Krausz,A.ApolonskiandJ.Biegert,Nat.Photonics9,721(2015).

36. M.Nisoli,S.DeSilvestri,andO.Svelto,Appl.Phys.Lett.68,2793(1996).37. T.Balciunas,C.Fourcade-Dutin,G.Fan,T.Witting,A.A.Voronin,A.M.

Zheltikov, F.Gerome,G.G. Paulus,A. Baltuska, and F. Benabid,Nat.Commun.6,6117(2015).

38. M.Hemmer,M. Baudisch, A. Thai, A. Couairon, and J. Biegert, Opt.Express21,28095(2013).

REFERENCES1. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond Mid-IR

Pump-Probe Spectroscopy of Liquid Water: Evidence for a Two-ComponentStructure,”Science278,658(1997).

2. F.K.Tittel,D.Richter,andA.Fried,“Mid-Infrared laserapplications inspectroscopy,”Top.Appl.Phys.89,458(2003).

3. B.JeanandT.Bende,“Mid-IRlaserapplicationsinmedicine,”Top.Appl.Phys89,530(2003).

4. J.Reichert,R.Holzwarth,T.Udem,andT.W.Hänsch,“Measuringthefrequency of lightwithmode-locked lasers,” Opt. Commun. 172, 59(1999).

5. S.A.Diddams,“Theevolving frequencycomb,” J.Opt.Soc.Am.B27,B51(2010).

6. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequencycombs,”Nat.Photonics6,440(2012).

7. M.Hentschel,R.Kienberger,Ch.Spielmann,G.A.Reider,N.Milosevic,T.Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz,“Attosecondmetrology,”Nature414,509(2001).

8. J. Biegert, Philip K. Bates, O. Chalus, “The Generation andCharacterisation of Ultrashort Mid-Infrared Pulses,” IEEE J. Sel. Top.Quant.Electron.UltrafastSci.Technol., invitedreviewpaper,18,531(2012).

9. J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F.DiMauro,“ScalingofWave-PacketDynamicsinanIntenseMidinfraredField,”Phys.Rev.Lett.98,013901(2007).

10. T. Popmintchev, M. Chen, O. Cohen, M. Grisham, J. Rocca, M.Murnane, and H. Kapteyn, “Extended phase matching of highharmonicsdrivenbymid-infraredlight,”Opt.Lett.33,2128(2008).

11. M.V.Frolov,N.L.Manakov,andA.F.Starace,“WavelengthScalingofHigh-Harmonic Yield: Threshold Phenomena and Bound StateSymmetryDependence,”Phys.Rev.Lett.100,173001(2008).

12. S. L. Cousin, F. Silva, S. Teichmann, M. Hemmer, B. Buades, and J.Biegert,“High-fluxtable-topsoftx-raysourcedrivenbysub-2-cycle,CEPstable, 1.85-µm 1-kHz pulses for carbon K-edge spectroscopy,” Opt.Lett.39,5383(2014).

13. F. Silva, S. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert,“SpatiotemporalisolationofattosecondsoftX-raypulsesinthewaterwindow,”Nat.Commun.6,6611(2015).

14. F. Silva, P. K. Bates, A. Esteban-Martin, M. Ebrahim-Zadeh, and J.Biegert,“High-average-power,carrier-envelopephase-stable,few-cyclepulsesat2.1μmfromacollinearBiB3O6opticalparametricamplifier,”Opt.Lett.37,933(2012).

15. P. Whalen, P. Panagiotopoulos, M. Kolesik, and J. V. Moloney,“Extreme carrier shocking of intense long-wavelength pulses,” Phys.Rev.A89,023850(2014).

16. T.Auguste,P.Salières,A.S.Wyatt,A.Monmayrant,I.A.Walmsley,E.Cormier, A. Zaïr,M. Holler, A. Guandalini, F. Schapper, J. Biegert, L.Gallmann, and U. Keller, “Theoretical and experimental analysis ofquantumpathinterferencesinhigh-orderharmonicgeneration,”Phys.Rev.A80,033817(2009).

17. H.R.Reiss, “LimitsonTunnelingTheoriesofStrong-Field Ionization,”Phys.Rev.Lett.101,043002(2008).

18. I. Jovanovic, G. Xy, and S. Wandel, “Mid-Infrared Laser SystemDevelopment for Dielectric Laser Accelerators,” Phys. Proc. 52, 68(2014).

19. O.Chalus,P.K.Bates,M.Smolarski,andJ.Biegert,“Mid-IRshort-pulseOPCPAwithmicro-Jouleenergyat100kHz,”Opt.Exp.17,3587(2009).

20. H. Hoogland, A. Thai, D. Sanchez, S. L. Cousin, M. Hemmer, M.Engelbrecht, J. Biegert, and R.Holzwarth, “All-PM coherent 2.05 µmThulium/Holmiumfiberfrequencycombsourceat100MHzwithupto0.5Waveragepowerandpulsedurationdownto135fs,”Opt.Express21,31390(2013).

21. C.Erny,K.Moutzouris,J.Biegert,D.Kühlke,F.Adler,A.Leitenstorfer,and U. Keller, “Mid-infrared difference-frequency generation ofultrashortpulsestunablebetween3.2and4.8µmfromacompactfibersource,”Opt.Lett.32,1138(2007).

22. A.Baltuska,T.Fuji,andT.Kobayashi,“ControllingtheCarrier-EnvelopePhase of Ultrashort Light Pulseswith Optical Parametric Amplifiers,”Phys.Rev.Lett.88,133901(2002).

23. T. Fuji, A. Apolonski, and F. Krausz, “Self-stabilization of carrier-envelopeoffsetphasebyuseofdifference-frequencygeneration,”Opt.Lett.29,632(2004).

24. A.Thai,M.Hemmer,P.K.Bates,O.Chalus,andJ.Biegert,“Sub-250-mrad, passively carrier–envelope-phase-stable mid-infrared OPCPAsourceathighrepetitionrate,”Opt.Lett.36,3918(2011).

25. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C.Fernelius, and F. K. Hopkins, “Growth and characterization of largeCdSiP2singlecrystals,”J.Cryst.Growth312,1127(2010).

26. D.Sánchez,M.Hemmer,M.Baudisch,K.Zawilski,P.Schunemann,H.Hoogland,R.Holzwarth,andJ.Biegert,“Broadbandmid-IRfrequencycombwithCdSiP2andAgGaS2fromanEr,Tm:Hofiberlaser,”Opt.Lett.39,6883(2014).

27. B.W.Mayer,C.R.Phillips, L.Gallmann, andU.Keller, “Mid-infraredpulse generation via achromatic quasi-phase-matched OPCPA,” Opt.Express22,20798(2014).

28. G.Andriukaitis, T. Balciunas, S. Alisauskas, A. Pugzlys, A. Baltuska, T.Popmintchev,M.Chen,M.Murnane, andH. Kapteyn, “90GWpeakpower few-cycle mid-infrared pulses from an optical parametricamplifier,”Opt.Lett.36,2755(2011).

29. V.Petrov,“Parametricdown-conversiondevices:Thecoverageofthemid-infraredspectralrangebysolid-statelasersources,”Opt.Materials34,536(2012).

30. P.Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S.Ališauskas,A.Pugžlys,A.Baltuška,L.H.Tan,C.F.Chua,andP.B.Phua,“High energy and averagepower femtosecond laser for drivingmid-infraredopticalparametricamplifiers,”Opt.Lett.38,2746(2013).

31. M. Hemmer, D. Sánchez, M. Jelínek, V. Smirnov, H. Jelinkova, V.Kubeček, and J. Biegert, “2-µm wavelength, high-energy Ho:YLFchirped-pulse amplifier for mid-infrared OPCPA,” Opt. Lett. 40, 451(2015).

32. L.vonGrafenstein,M.Bock,U,Griebner,andT.Elsaesser,“High-energymulti-kilohertzHo-doped regenerativeamplifiers around2µm,”Opt.Express23,14744(2015).

33. H.Fonnum,E.Lippert,M.W.Haakestad,“550mJQ-switchedcryogenicHo:YLFoscillatorpumpedwitha100WTm:fiberlaser,”Opt.Lett.38,1884(2013).

34. G.Arisholm,“Generalnumericalmethodsforsimulatingsecond-ordernonlinear interactions in birefringentmedia,” J. Opt. Soc. Am. B 14,2543(1997).

35. I.Pupeza,D.Sánchez,J.Zhang,N.Lilienfein,M.Seidel,N.Karpowicz,T.Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V.Pervak,E.Fill,O.Pronin,Z.Wei,F.Krausz,A.ApolonskiandJ.Biegert,“High-powersub-two-cyclemid-infraredpulsesat100MHzrepetitionrate,”Nat.Photonics9,721(2015).

36. M.Nisoli,S.DeSilvestri,andO.Svelto,“Generationofhighenergy10fspulses by a new pulse compression technique,” Appl. Phys. Lett.68,2793(1996).

37. T.Balciunas,C.Fourcade-Dutin,G.Fan,T.Witting,A.A.Voronin,A.M.Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “Astrong-fielddriverinthesingle-cycleregimebasedonself-compressioninakagomefibre,”Nat.Commun.6,6117(2015).

38. M.Hemmer,M.Baudisch,A.Thai,A.Couairon,and J.Biegert, “Self-compression to sub-3-cycledurationofmid-infraredopticalpulses indielectrics,”Opt.Express21,28095(2013).