7-10 REVERSIBLE STEADY-FLOW WORKvps/ME321/TABLES/29.pdf · 7-10 REVERSIBLE STEADY-FLOW WORK δ δq...

1
7-10 REVERSIBLE STEADY-FLOW WORK rev rev q w dh dke dpe δ δ - = + + Energy balance rev q Tds dh vdP δ = = - nd 2 Gibbs equation rev w vdP dke dpe δ = - - - 2 rev ,net ,out 1 w vdP ke pe Δ Δ =- - - ( ) 7-51 = - 2 rev ,out 1 w vdP ( ) 7-52 turbine = 2 rev ,in 1 w vdP compressor rev ,out act ,out w w rev ,in act ,in w w 7-11 Compression work for ideal gas (p.364) ( ) k 1 k 1 2 comp ,in 2 1 1 kRT P k w RT T 1 k 1 k 1 P - = - = - - - ( ) n 1 n 1 2 comp ,in 2 1 1 nRT P n w RT T 1 n 1 n 1 P - = - = - - - 2 comp ,in 1 P w RT ln P = Incompressible fluid ( v const = , 7-51) ( ) rev 2 1 w vP P ke pe Δ Δ = - - - - ( ) 7-54 Bernoulli equation (steady flow of incompressible fluid through the simple pipe without friction) ( ) 2 2 2 1 2 1 2 1 P P V V g z z 0 2 ρ - - + + - = ( ) 7-55 ( ) Danila Bernoulov 1700 1782 - act act rev rev act rev act rev rev act rev act Tds rev act act gen q w dh dke dpe q w dh dke dpe q q w w 0 w w q q w w q ds s 0 T T δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ - = + + - = + + - - + = - = - - = - = pipe inlet state w 0 = outlet state 1 2 q δ inlet state w δ outlet state 1 2 k Isentropic process Pv const = Isothermal process Pv const = n Polytropic process Pv const = - = 1 k v cP - = 1 n v cP 1 v cP - = P v 1 P 2 P ( ) isothermal n 1 = ( ) polytropic 1 n k < < ( ) isentropic n k = Flow through the pipe which involves no work interaction Pv RT = Ideal gas Reversible work output for steady-flow and closed systems ( ) for ke pe 0 Δ Δ = = Equations 7-57 a,b,c out Q maximum heat transfer Q 0 = T const = rev ,out act ,out w w reversible actual turbine compression P v 1 v 2 v 1 2 1 P 2 P turbine in derivation, we assume that both processes are between the same states turbine compression Steady-flow devices deliver the most and consume the least work when the process is reversible rev ,net ,out act ,net ,out w w δ δ rev act w w Eq.7-9 minimum heat transfer comp ,in w By cooling compressor, the requiered work input can be minimized to achive the same pressure increase temperature is increased P v 1 v 2 v 1 2 1 P 2 P rev ,out w turbine

Transcript of 7-10 REVERSIBLE STEADY-FLOW WORKvps/ME321/TABLES/29.pdf · 7-10 REVERSIBLE STEADY-FLOW WORK δ δq...

7-10 REVERSIBLE STEADY-FLOW WORK

rev rev

q w dh dke dpeδ δ− = + + Energy balance

rev

q Tds dh vdPδ = = − nd2 Gibbs equation

rev

w vdP dke dpeδ = − − −

2

rev ,net ,out

1

w vdP ke pe∆ ∆= − − −∫ ( )7-51

= − ∫2

rev ,out

1

w vdP ( )7-52 turbine

= ∫2

rev ,in

1

w vdP compressor

rev ,out act ,out

w w≥

rev ,in act ,in

w w≤

7-11 Compression work for ideal gas (p.364)

( )

k 1

k1 2

comp ,in 2 1

1

kRT Pkw R T T 1

k 1 k 1 P

− = − = − − −

( )

n 1

n1 2

comp ,in 2 1

1

nRT Pnw R T T 1

n 1 n 1 P

− = − = − − −

2

comp,in

1

Pw RT ln

P=

Incompressible fluid ( v const= , 7-51) ⇒ ( )rev 2 1w v P P ke pe∆ ∆= − − − − ( )7-54

Bernoulli equation (steady flow of incompressible fluid through the simple pipe without friction)

( )2 2

2 1 2 1

2 1

P P V Vg z z 0

− −+ + ⋅ − = ( )7-55

( )

Danila Bernoulov

1700 1782−

act act

rev rev

act rev act rev

rev act rev act

Tds

rev act act

gen

q w dh dke dpe

q w dh dke dpe

q q w w 0

w w q q

w w qds s 0

T T

δ δ

δ δ

δ δ δ δ

δ δ δ δ

δ δ δ

− = + +

− = + +

− − + =

− = −

−= − = ≥

pipe

inlet state

w 0=

outlet state

1 2

qδinlet state

outlet state

1 2

k

Isentropic process

Pv const=

Isothermal process

Pv const=

n

Polytropic process

Pv const=

=1

kv cP

=1

nv cP

1v cP

−=

P

v

1P

2P

( )isothermal n 1=

( )polytropic 1 n k< <

( )isentropic n k=

Flow through the pipe which involves no work interaction

Pv RT=Ideal gas

Reversible work output for

steady-flow and closed systems

( )for ke pe 0∆ ∆= =

Equations 7-57 a,b,c

outQ maximum

heat transfer

Q 0=

T const=

rev ,out act ,outw w≥

reversible

actual

turbine

compression

P

v1

v2

v

1

2

1P

2P

turbine

in derivation, we assume that both

processes are between the same states

turbine

compression

Steady-flow devices

deliver the most and

consume the least work

when the process is

reversible

≥rev ,net ,out act ,net ,out

w w

δ δ≥rev act

w w

Eq.7-9

minimum

heat transfercomp ,in

w

By cooling compressor, the requiered work input

can be minimized to achive the same pressure increase

temperature

is increased

P

v1

v2

v

1

2

1P

2P

rev ,outw

turbine