4.1B – Probability Distribution
-
Author
dane-gordon -
Category
Documents
-
view
23 -
download
0
Embed Size (px)
description
Transcript of 4.1B – Probability Distribution

4.1B – Probability Distribution
• MEAN of discrete random variable:
µ = ΣxP(x)
• EACH x is multiplied by its probability and the products are added.
• µ = EXPECTED VALUE of discrete random variables

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24
2 33
3 42
4 30
5 21
Σ=

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24
2 33
3 42
4 30
5 21
Σ=150

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16
2 33
3 42
4 30
5 21
Σ=150

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16
2 33 .22
3 42 .28
4 30 .2
5 21 .14
Σ=150

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16
2 33 .22
3 42 .28
4 30 .2
5 21 .14
Σ=150 Σ=1.0

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16 1(.16)=.16
2 33 .22
3 42 .28
4 30 .2
5 21 .14
Σ=150 Σ=1.0

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16 1(.16)=.16
2 33 .22 2(.22)=.44
3 42 .28
4 30 .2
5 21 .14
Σ=150 Σ=1.0

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16 1(.16)=.16
2 33 .22 2(.22)=.44
3 42 .28 3(.28)=.84
4 30 .2
5 21 .14
Σ=150 Σ=1.0

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16 1(.16)=.16
2 33 .22 2(.22)=.44
3 42 .28 3(.28)=.84
4 30 .2 4(.2)=.80
5 21 .14
Σ=150 Σ=1.0

Example: Find the MeanScore,
xFrequency,
fP(x)f/Σf
xP(x)
1 24 24/150=.16 1(.16)=.16
2 33 .22 2(.22)=.44
3 42 .28 3(.28)=.84
4 30 .2 4(.2)=.80
5 21 .14 5(.14)=.70
Σ=150 Σ=1.0

Example: Find the MeanScore,
xFrequency, f P(x)
f/ΣfxP(x)
1 24 24/150=.16 1(.16)=.16
2 33 .22 2(.22)=.44
3 42 .28 3(.28)=.84
4 30 .2 4(.2)=.80
5 21 .14 5(.14)=.70
Σ=150 Σ=1.0 ΣxP(x)=2.94 = µ

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498
$248
$148
$73
$-2
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500
$248
$148
$73
$-2
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500
$248 1/1500
$148
$73
$-2
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500
$248 1/1500
$148 1/1500
$73
$-2
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500
$248 1/1500
$148 1/1500
$73 1/1500
$-2
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500
$248 1/1500
$148 1/1500
$73 1/1500
$-2 1496/1500
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500 498(1/1500)=498/1500
$248 1/1500
$148 1/1500
$73 1/1500
$-2 1496/1500
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500 498(1/1500)=498/1500
$248 1/1500 248(1/1500)=248/1500
$148 1/1500
$73 1/1500
$-2 1496/1500
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500 498(1/1500)=498/1500
$248 1/1500 248(1/1500)=248/1500
$148 1/1500 148(1/1500)=148/1500
$73 1/1500
$-2 1496/1500
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500 498(1/1500)=498/1500
$248 1/1500 248(1/1500)=248/1500
$148 1/1500 148(1/1500)=148/1500
$73 1/1500 73(1/1500)=73/1500
$-2 1496/1500
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500 498(1/1500)=498/1500
$248 1/1500 248(1/1500)=248/1500
$148 1/1500 148(1/1500)=148/1500
$73 1/1500 73(1/1500)=73/1500
$-2 1496/1500 -2(1/1500)=-2992/1500
Prize-$2 EV = µ=ΣxP(x)

Example: Find the EXPECTED VALUE of your gain.
• 1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain?Gain, x P(x) xP(x)
$498 1/1500 498(1/1500)=498/1500
$248 1/1500 248(1/1500)=248/1500
$148 1/1500 148(1/1500)=148/1500
$73 1/1500 73(1/1500)=73/1500
$-2 1496/1500 -2(1496/1500)=-2992/1500
Prize-$2 EV = µ=ΣxP(x)=-2025/1500 = -$1.35

Standard Deviation
• VARIANCE of discrete random variableσ² = Σ(x-µ)²P(x) ORσ² = [Σx²P(x)] - µ²
• STANDARD DEVIATION of discrete random variable
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16
2 33 .22 2(.22)=.44
3 42 .28 .84
4 30 .20 .80
5 21 .14 .70
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
2 33 .22 2(.22)=.44
3 42 .28 .84
4 30 .20 .80
5 21 .14 .70
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
2 33 .22 2(.22)=.44 2-2.94=-.94
3 42 .28 .84
4 30 .20 .80
5 21 .14 .70
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
2 33 .22 2(.22)=.44 2-2.94=-.94
3 42 .28 .84 .06
4 30 .20 .80
5 21 .14 .70
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
2 33 .22 2(.22)=.44 2-2.94=-.94
3 42 .28 .84 .06
4 30 .20 .80 1.06
5 21 .14 .70
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
2 33 .22 2(.22)=.44 2-2.94=-.94
3 42 .28 .84 .06
4 30 .20 .80 1.06
5 21 .14 .70 2.06
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
2 33 .22 2(.22)=.44 2-2.94=-.94
3 42 .28 .84 .06
4 30 .20 .80 1.06
5 21 .14 .70 2.06
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
3 42 .28 .84 .06
4 30 .20 .80 1.06
5 21 .14 .70 2.06
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
3 42 .28 .84 .06 .004
4 30 .20 .80 1.06
5 21 .14 .70 2.06
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
3 42 .28 .84 .06 .004
4 30 .20 .80 1.06 1.124
5 21 .14 .70 2.06
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
3 42 .28 .84 .06 .004
4 30 .20 .80 1.06 1.124
5 21 .14 .70 2.06 4.244
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
.16(3.764)=.602
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
3 42 .28 .84 .06 .004
4 30 .20 .80 1.06 1.124
5 21 .14 .70 2.06 4.244
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
.16(3.764)=.602
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
.22(.884)=.194
3 42 .28 .84 .06 .004
4 30 .20 .80 1.06 1.124
5 21 .14 .70 2.06 4.244
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
.16(3.764)=.602
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
.22(.884)=.194
3 42 .28 .84 .06 .004 .001
4 30 .20 .80 1.06 1.124
5 21 .14 .70 2.06 4.244
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
.16(3.764)=.602
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
.22(.884)=.194
3 42 .28 .84 .06 .004 .001
4 30 .20 .80 1.06 1.124 .225
5 21 .14 .70 2.06 4.244
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
.16(3.764)=.602
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
.22(.884)=.194
3 42 .28 .84 .06 .004 .001
4 30 .20 .80 1.06 1.124 .225
5 21 .14 .70 2.06 4.244 .594
Σ=150 Σ=1.0 Σ=2.94=µ
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
.16(3.764)=.602
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
.22(.884)=.194
3 42 .28 .84 .06 .004 .001
4 30 .20 .80 1.06 1.124 .225
5 21 .14 .70 2.06 4.244 .594
Σ=150 Σ=1.0 Σ=2.94=µ
Σ=1.616
σ = √σ²

Example: Find Variance & Standard Deviation
Score, x
Freq.f
P(x)f/Σf
xP(x) x-µx-ΣxP(x)
(x-µ)² P(x)(x-µ)²
1 24 24/150=.16 1(.16)=.16 1-2.94=-1.94
(-1.94)²=3.764
.16(3.764)=.602
2 33 .22 2(.22)=.44 2-2.94=-.94
(-.94)²=.884
.22(.884)=.194
3 42 .28 .84 .06 .004 .001
4 30 .20 .80 1.06 1.124 .225
5 21 .14 .70 2.06 4.244 .594
Σ=150 Σ=1.0 Σ=2.94=µ
Σ=1.616
σ = √σ² = √1.616 = 1.27