37 CH203 Fall 2014 Lecture 37 December 8.pdf

25
12/7/14 1 2 CH203 Lecture 37 December 8, 2014 Nucleophilic subs=tu=on βElimina=on

Transcript of 37 CH203 Fall 2014 Lecture 37 December 8.pdf

12/7/14  

1  

2  

CH203  Lecture  37  December  8,  2014    Nucleophilic  subs=tu=on  β-­‐Elimina=on  

12/7/14  

2  

3  

US 2006/0205953 A1

[0022] 0.14 mmol (12 Ci, carrier-free) ofl2C3H3l is sealed into a glass reaction bulb With silver nosylate (62 mg, 0.2 mmol) and 5 ml of anhydrous acetonitrile. The reaction is heated to 80° C. overnight. Labiles are removed, and the residue dissolves in ethyl acetate. The yield is 6.16 Ci (51%) of [methyl-12C3 H]methyl para-nitrobenZenesulfonate (V). The labeled material and authentic cold standard comi grated

on TLC (Whatman LK6DF, hexane-ethyl acetate, 10:3, Rf=0.5). Stored at 28.4 mCi/ml in hexane-ethyl acetate (8:2) at 25° C., the radiochemical purity as determined by TLC as above is unchanged after 4 months.

EXAMPLE 4

Synthesis of [Methyl Ester-3H]Carfentanil (V1) With [methyl-l2C3H]Methyl Para-nitrobenZene

sulfonate (V)

[0023]

(V1) N201,”

Z

[0024] 400 mCi (0.005 mmol) of [methyl-3 H]methyl para nitrobenZenesulfonate (V) and 1.5 mg (0.0036 mmol) of carfentanil sodium salt are stirred in 0.2 ml of anhydrous DMF at room temperature overnight. TLC of the reaction

(Whatman LK6DF, hydroxide, 100:2:1) shoW only product and unreacted nosy late. Analysis by HPLC on ODS shoW that 91% of the activity coeluted With cold standard. A portion is puri?ed on HPLC (Zorbax SB-C18, acetonitrile-0.1% tri?uoroacetic acid, gradient) to give [Methyl ester-I2C3H]carfentanil (V1). The speci?c activity is determined to be 80.0 Ci/mmol by

chloroform-methanol-ammonium

mass spectral analysis, and the radiochemical purity deter mined by HPLC as above is 99%.

Sep. 14, 2006

EXAMPLE 5

Preparation of [Methyl-3H]-Raclopride (V11)

[0025]

(v11)

OH 0 [3H]MeONs DMSO

Cl N 5N NaOH

gm 70° 0., 15min OH

01 CT3

\O O / 01

N N H

OH

01

[0026] Raclopride is prepared at 80.5 Ci/mmol by heating the reaction to 70° C. in DMSO. The methyl nosylate (V) is able to be dispensed by volume, and the solvent removed to leave the reagent ready for use in the reaction vessel. In the methylation of the raclopride precursor, the stoichiometry of the reaction is able to be carefully controlled to minimize dimethylation.

EXAMPLE 6

Methylating Comparison C3H3l and Methyl Nosylate (V)

[0027] The methylating ability of methyl iodide vs. methyl nosylate is compared in a competition experiment. The potassium salt of 2-naphthylacetic acid is stirred in dimethyl formamide With one equivalent of cold methyl iodide and one equivalent of tritiated methyl nosylate (V). The puri?ed material is determined to be 86 Ci/mmol. In this experiment, the nucleophile had been preferentially methylated by the tritiated methyl nosylate (V) With only a small fraction reacting instead With the unlabeled methyl iodide.

1.1, umol [3H]Methyl nosylate OK 1.1, umol CH31

DMF, 20° C., 18h

1.1,urnol

CT3

H3C O

O

H3C

H3C

H3C

H3C

H3C

H3C

O

O-

-

-

Strong base, good nucleophile

Strong base, bad nucleophile

Weak base, bad nucleophile

H3C I

H3C O S

O

O

CH3

H3C O S

O

O

N+

O-

O

Good leaving group

Better leaving group

Best leaving group

4  

NN

O-O O

CT3 O S

O

O

N+

O-

O

NN

OO OT3C

-O S

O

O

N+

O-

O

DMF

12/7/14  

3  

Nucleophilic  Subs=tu=on  –  SN1  mechanism  

5  

In  the  second  mechanism  for  nucleophilic  subs=tu=on,  the  carbon-­‐leaving  group  bond  is  en=rely  broken  before  the  nucleophile  approaches  to  make  a  new  bond.    This  mechanism  is  designated  SN1  :    

S  =  Subs=tu=on  N  =  Nucleophilic  1  =  Unimolecular  (only  one  species  is  involved  in  the  rate-­‐determining  step)  

C Lv C + Lv:-+slow

Nucleophilic  Subs=tu=on  –  SN2  mechanism  

6  

There  are  two  mechanisms  for  nucleophilic  subs=tu=on.  The  fundamental  difference  between  them  is  the  =ming  of  the  bond-­‐breaking  and  the  bond-­‐forming  steps.    If  the  two  processes  take  place  simultaneously  the  reac=on  is  designated  SN2  :  

S  =  Subs=tu=on  N  =  Nucleophilic  2  =  Bimolecular  (two  species  are  involved  in  the  rate-­‐determining  step)  

12/7/14  

4  

Nucleophilic  Subs=tu=ons  -­‐  variables  

7  

Several  experimental  parameters  govern  whether  a  nucleophilic  subs=tu=on  proceeds  via  an  SN1  or  an  SN2  pathway  and  at  what  rate  that  subs=tu=on  will  occur.  These  are:    1.  The  structure  of  the  molecule  containing  the  leaving  group.  2.  The  structure  of  the  leaving  group.  3.  The  reac=on  solvent.  4.  The  structure  of  the  nucleophile.  

Nucleophilic  Subs=tu=ons  –  variables  

8  

SN1   SN2  

Electrophile   2o,  3o,  allylic,  benzylic   Methyl,  1o,2o  

Leaving  group   Good   Good  

Solvent   Polar  pro=c   Polar  apro=c  

Nucleophile   Can  be  weak   Must  be  good  

Op=mizing  condi=ons  for  a  subs=tu=on  reac=on  

12/7/14  

5  

Nucleophilic  Subs=tu=ons  –  examples  

9  

Variable   Proper1es   SN1   SN2  

1   Electrophile   2o  allylic  halide,  two  β  groups  (=ed  back  in  a  ring)   ++   +  

2   Leaving  group   Bromide,  good     +   +  

3   Solvent   Moderately  polar  pro=c   +   -­‐  

4   Nucleophile   Ace=c  acid,  poor   +   -­‐  

Nucleophilic  Subs=tu=ons  –  examples  

10  

Predicted  product:  allyl  acetates  with  racemiza=on  of  the  chiral  center.    

Br

12/7/14  

6  

Nucleophilic  Subs=tu=ons  –  examples  

11  

Variable   Proper1es   SN1   SN2  

1   Electrophile   Primary  halide,  one  β  group   -­‐   +  

2   Leaving  group   Bromide,  good     +   +  

3   Solvent   Nonpolar  apro=c   -­‐   +  

4   Nucleophile   R3P,  moderately  good  (same  as  or  beaer  than  R3N)   +   +  

Nucleophilic  Subs=tu=ons  –  examples  

12  

Predicted  product:  a  phosphonium  bromide  

12/7/14  

7  

β-­‐Elimina=on  

13  

All  nucleophiles  are  also  bases.  The  same  molecule  which  acts  as  a  nucleophile  in  a  subs=tu=on  reac=on  might  also  act  as  a  base  to  cause  an  elimina=on  reac=on.  In  many  substrates,  there  is  a  compe==on  between  the  two  possible  pathways  of  reac=on.  Which  pathway  predominates  will  depend  on  some  of  the  same  factors  which  governed  whether  a  reac=on  went  by  an  SN1  or  an  SN2  mechanism:  structure  of  the  electrophile,  nature  of  the  leaving  group,  solvent,  and  structure  of  the  nucleophile.    

β-­‐Elimina=on  

14  

β-­‐Elimina=on  of  the  elements  of  HX  is  called  dehydrohalogena=on.  It  is  formally  the  reverse  of    hydrohalogena=on.  β-­‐Elimina=on  is  oden  done  by  using  a  strong  base.  

12/7/14  

8  

β-­‐Elimina=on  

15  

As  in  subs=tu=on  reac=ons,  there  are  two  main  types  of  β-­‐elimina=on  reac=ons.  In  the  reac=on  above,  bonds  are  broken  and  formed  in  one  simultaneous  step.  The  reac=on  below  goes  in  two  steps.  First  the  C-­‐X  bond  cleaves  to  leave  a  carboca=on,  then  a  base  removes  a  β hydrogen  to  form  the  alkene  double  bond.  

C C

H

X

B:

C C

B-H

X-

C C

H

X

C C

H

X-

+ C C

H

B:

+ C C

B-H

Step 1 Step 2

β-­‐Elimina=on  

16  

When  isomeric  alkenes  are  possible  products,  the  major  product  is  usually  the  more  subs=tuted  (and  therefore  more  stable)  alkene.  Note  that  in  the  reac=on  above,  there  are  6  hydrogens  whose  abstrac=on  would  lead  to  the  minor  product  and  only  two  hydrogens  whose  abstrac=on  would  lead  to  the  major  product.  

12/7/14  

9  

β-­‐Elimina=on  

17  

The  product  of  a  β-­‐elimina=on  is  oden  predicted  by  Zaitsev’s  Rule:    The  alkene  formed  in  greatest  amount  is  the  one  that  corresponds  to  removal  of  the  hydrogen  from  the  β-­‐carbon  having  the  fewest  hydrogen  subs1tuents.    Historical  footnote:  Zaitsev  and  Markovnikov  worked  for    the  same  professor  and  ended  up  biaer  enemies  ader    figh=ng  over  the  expected  products  of  β-­‐elimina=on.  

18  

β-­‐Elimina=on  –  regioselec=vity  

12/7/14  

10  

β-­‐Elimina=on  

19  

Zaitsev's  Rule  predicts  that  in  an  elimina=on  reac=on,  the  most  stable  alkene,  which  is  usually  the  most  subs=tuted  one,  will  be  the  favored  product.      While  effec=ve  at  predic=ng  the  favored  product  for  many  elimina=on  reac=ons,  Zaitsev's  Rule  is  subject  to  many  excep=ons.  

20  

An  E1  done  with  a  strong  base  will  tend  to  give  the  more  stable  subs=tuted  alkene  in  its  more  stable  stereoisomeric  form  (here  the  trans  isomer).  

β-­‐Elimina=on  

Br EtO-K+EtOH

+ +

51% 18% 31%

12/7/14  

11  

β-­‐Elimina=on  –  E1  mechanism  

21  

The  E1  (E  for  Elimina=on  and  1  for  Unimolecular)  is  one  of  the  two  main  types  of  β-­‐elimina=on  reac=ons.  In  this  mechanism,  the  carbon-­‐leaving  group  bond  breaks  in  a  slow  step  to  leave  a  carboca=on.  This  step  is  rate-­‐determining,  and  as  in  the  SN1  reac=on,  the  stability  of  the  carboca=on  will  govern  how  fast  the  overall  reac=on  goes.  In  the  second  step,  a  base  abstracts  a  hydrogen  to  generate  the  alkane  double  bond.  

22  

The  E1  is  one  of  the  main  types  of  β-­‐elimina=on  reac=ons.  In  this  mechanism,  the  carbon-­‐leaving  group  bond  breaks  in  a  slow  step  to  leave  a  carboca=on.  This  step  is  rate-­‐determining,  and  as  in  the  SN1  reac=on,  the  stability  of  the  carboca=on  will  govern  how  fast  the  overall  reac=on  goes.  In  the  second  stop,  a  base  abstracts  a  hydrogen  to  generate  the  alkane  double  bond.  

β-­‐Elimina=on  –  E1  mechanism  

12/7/14  

12  

β-­‐Elimina=on  –  E2  mechanism  

23  

The  E2  (E  for  Elimina=on  and  2  for  Bimolecular)  is  the  other  main  type  of  β-­‐elimina=on  reac=on.  In  this  mechanism,  bonds  are  broken  and  formed  in  one  simultaneous  step.  

C C

H

X

B:

C C

B-H

X-

24  

The  E2  (E  for  Elimina=on  and  2  for  Bimolecular)  is  the  other  main  type  of  β-­‐elimina=on  reac=on.  In  this  mechanism,  bonds  are  broken  and  formed  in  one  simultaneous  step.  

β-­‐Elimina=on  –  E2  mechanism  

12/7/14  

13  

25  

The  E2  pathway  is  more  likely  to  dominate  in  the  presence  of  strong  bases  such  as  hydroxides,  alkoxides,  or  amide  anions.  

β-­‐Elimina=on  –  E2  mechanism  

C C

H

X

C C

HO-

RO-

H2N-R2N-

26  

Alkyl  halide  +  base    alkene      E1  mechanism:  

"   The  reac=on  occurs  in  two  steps.  "   The  rate-­‐determining  step  is  carboca=on  forma=on.  "   The  reac=on  rate  (first  order)  depends  only  on  the  concentra=on  of  

substrate.    

RateE1  =  k[alkyl  halide]      E2  mechanism:  

"   The  reac=on  occurs  in  one  step.  "   The  reac=on  rate  (second  order)  depends  on  the  concentra=on  of  the  

substrate  and  the  base.    

RateE2  =  k[alkyl  halide][base]  

β-­‐Elimina=on  –  kine=cs  

12/7/14  

14  

27  

E1:  major  product  is  the  more  stable  alkene.  Zaitsev  Product.    E2:  with  strong  base,  the  major  product  is  the  more  stable  (more  subs=tuted)  alkene.  Zaitsev  Product.    

Double  bond  character  is  highly  developed  in  the  transi5on  state,  so  the    transi5on  state  of  lowest  energy  is  the  one  that  leads  to  the  most  stable  (the  most  highly  subs5tuted)  alkene.  

 E2:  with  a  strong,  sterically  hindered  base  such  as  tert-­‐butoxide,  the  major  product  is  oden  the  less  stable  (less  subs=tuted)  alkene.  Non-­‐Zaitsev  Product.    

Steric  interac5ons  prevent  the  base  from  removing  the  hydrogen  which  would  lead  to  the  most  stable  alkene.  

β-­‐Elimina=on  –  regioselec=vity  

28  

β-­‐Elimina=on  –  regioselec=vity  

H

H3C Br

CH3

CH3

H

H3C CH3Br

CH3H3C

H3C

=

small base:

H3C

H3C CH3

CH3 H3C

H3C CH2

CH3

+

80% Zaitsev : 20% non-Zeitsev

CH3O-Na+

CH3OH

H

H3C Br

CH2

CH3H3C

large base:H3C

H3C CH3

CH3 H3C

H3C CH2

CH3

+

25% Zaitsev : 75% non-Zeitsev

(CH3)3CO-Na+

(CH3)3COHH

O

H3C

H3C

H3C -

12/7/14  

15  

29  

β-­‐Elimina=on  –  stereoselec=vity  

The  E2  reac=on  finds  its  lowest-­‐energy  transi=on  state  in  the  conforma=on  where  the  hydrogen  being  abstracted  and  the  leaving  group  are  an=  coplanar.  

30  

β-­‐Elimina=on  –  stereoselec=vity  

To  predict  the  stereochemistry  of  the  alkene,  find  the  conformer  where  the  hydrogen  being  abstracted  and  the  leaving  group  are  an=  coplanar.  

12/7/14  

16  

31  

β-­‐Elimina=on  –  stereoselec=vity  

An  an=  coplanar  configura=on  maximizes  overlap  between  the  breaking  C-­‐H  sigma  bonding  orbital,  which  retains  two  electrons  on  losing  H  to  the  base,  and  the  empty  C-­‐Lv  sigma  an=bonding  orbital.  The  adjacent  carbons  rehybridize  from  sp3  to  sp2  in  order  to  share  the  two  electrons  in  p  orbitals,  forming  the  new  alkene  double  bond.  

32  

β-­‐Elimina=on  –  stereoselec=vity  H

Br

H

Br

H

Br

H

Br

H

Br

H

Br

12/7/14  

17  

33  

β-­‐Elimina=on  –  summary  

34  

β-­‐Elimina=on  –  cyclic  substrates  

In  the  more  stable  chair  conformer  of  this  cis  cyclohexane  deriva=ve,  the  chloride  is  axial.  There  are  two  β  hydrogens  which  are  trans  and  axial  to  the  chloride  and  thus  also  an=  coplanar.  The  alkene  might  be  formed  by  elimina=on  to  give  two  different  alkenes.  The  more  subs=tuted  alkene  is  observed  as  the  major  (Zaitsev)  product.  

12/7/14  

18  

35  

β-­‐Elimina=on  –  cyclic  substrates  

In  the  trans  isomer,  the  chloride  is  axial  only  in  the  less  stable  chair  conformer  where  the  isopropyl  group  is  forced  to  be  axial  as  well.  In  this  conformer  there  is  only  one  β  hydrogen  which  is  trans  and  axial  to  the  chloride  and  thus  also  an=  coplanar.  The  only  alkene  which  can  be  formed  is  the  less  subs=tuted  (non-­‐Zaitsev)  product.  

36  

Subs=tu=on  vs.  Elimina=on  

Nucleophilic  subs=tu=on  and  β-­‐elimina=on  pathways  oden  are  in  compe==on  with  each  other.  The  ra=o  of  products  will  depend  on  which  mechanism  is  faster.  

12/7/14  

19  

37  

Subs=tu=on  vs.  Elimina=on  

Nucleophilic  subs=tu=on  and  b-­‐elimina=on  pathways  oden  are  in  compe==on  with  each  other.  The  ra=o  of  products  will  depend  on  which  mechanism  is  faster.  

38  

Subs=tu=on  vs.  Elimina=on  

Nucleophilic  subs=tu=on  and  b-­‐elimina=on  pathways  oden  are  in  compe==on  with  each  other.  The  ra=o  of  products  will  depend  on  which  mechanism  is  faster.  

12/7/14  

20  

39  

Subs=tu=on  vs.  Elimina=on  

Nucleophilic  subs=tu=on  and  b-­‐elimina=on  pathways  oden  are  in  compe==on  with  each  other.  The  ra=o  of  products  will  depend  on  which  mechanism  is  faster.  

40  

Subs=tu=on  vs.  Elimina=on  examples  

Variable   Proper1es   SN1   SN2   E1   E2  

1   Electrophile   Primary   -­‐-­‐   -­‐-­‐  

2   Nucleophile   Good  nucleophile,  strong  base,  not  sterically  hindered  

+   -­‐  

3   Solvent   Pro=c  medium  polarity  

12/7/14  

21  

41  

Subs=tu=on  vs.  Elimina=on  examples  

Variable   Proper1es   SN1   SN2   E1   E2  

1   Electrophile   Ter=ary   -­‐-­‐  

2   Nucleophile   Weak  base,  weak  nucleophile   -­‐  

3   Solvent   Polar  pro=c   +   +  

42  

Subs=tu=on  vs.  Elimina=on  examples  

Variable   Proper1es   SN1   SN2   E1   E2  

1   Electrophile   Secondary   -­‐-­‐  

2   Nucleophile   Weak  base,  moderate  nucleophile   +   -­‐  

3   Solvent   Polar  pro=c   +   +  

12/7/14  

22  

43  

Subs=tu=on  vs.  Elimina=on  examples  

Variable   Proper1es   SN1   SN2   E1   E2  

1   Electrophile   Secondary  

2   Nucleophile   Weak  base,  good  nucleophile   +   -­‐  

3   Solvent   Polar  apro=c   +   +  

44  

Subs=tu=on  vs.  Elimina=on  examples  

Variable   Proper1es   SN1   SN2   E1   E2  

1   Electrophile   Ter=ary   -­‐  

2   Nucleophile   Weak  base   -­‐  

3   Solvent   Polar  apro=c   -­‐   -­‐  

12/7/14  

23  

45  

Neighboring  group  par=cipa=on  

46  

Neighboring  group  par=cipa=on  

ClS

Cl

Cl Cl

ClS

OH

Cl OH

H2O

H2O

slow, rate = k[alkyl halide][H2O]

fast, rate = k[alkyl halide]

The  hydrolysis  of  a  primary  alkyl  chloride  is  slow  in  water.  The  rate  is  second  order  as  expected  for  an  SN2  reac=on.    The  hydrolysis  of  a  sulfur  mustard  is  rapid  in  water.  The  rate  is  first  order  in  the  mustard  only.  

12/7/14  

24  

47  

Neighboring  group  par=cipa=on  

48  

Neighboring  group  par=cipa=on  

Two  chemotherapy  drugs  based  on  nitrogen  mustards.  

12/7/14  

25  

49  

Neighboring  group  par=cipa=on  

The  mustards  cause  cell  death  by  chemically  altering  the  DNA  bases  and  interrup=ng  DNA  replica=on.  

50