3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ...

23
φ 3 (γ) measurement by B 0 →[K S 0 π + π ] D K* 0 at Belle Kentaro Negishi 19 th February 2015 Lake Louise 1 Lake Louise Winter Ins/tute

Transcript of 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ...

Page 1: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

φ3(γ)  measurement  by  B0→[KS0π+π−]D  K*0  at  Belle

Kentaro Negishi 19th February 2015 Lake Louise

1

Lake  Louise  Winter  Ins/tute

Page 2: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Introduc?on

•  CKM  (Cabibbo-­‐Kobayashi-­‐Maskawa)  matrix  –  The  quark  mixing  matrix,  which  is  unitary.  

19th  Feb.  '15 LLWI’15  K.Negishi  

2

•  Unitary  triangle  

!2/"

!1/#!3/$

|VudV!ub|

|VcdV!cb|

|VtdV!tb|

|VcdV!cb|

Complex  phase

(0,0) (1,0)

(ρ,  η) _ _

Page 3: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Introduc?on

•  CKM  (Cabibbo-­‐Kobayashi-­‐Maskawa)  matrix  –  The  quark  mixing  matrix,  which  is  unitary.  

19th  Feb.  '15 LLWI’15  K.Negishi  

3

3q

2q

2q

dm6

K¡sm6 & dm6

ubV

1qsin 2

(excl. at CL > 0.95) < 0

1qsol. w/ cos 2

2q

1q

3q

l-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7ex

clud

ed a

rea

has

CL

> 0.

95

Summer 14

CKMf i t t e r

•  Unitary  triangle  

Complex  phase

CKMfiCer  2014  Summer

Page 4: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

φ3  Measurement

   B0  →  [  f  ]D  K*0

19th  Feb.  '15 LLWI’15  K.Negishi  

4

–  Access  φ3  with  interference  D0K*0  and  D0K*0  decays.  Weak  Int.  phase Strong  Int.  phase Amp.

Difference  between  D0K*0  and  D0K*0 φ3 δS rS

W!

b

d d

B0sK"0

u

cD0Vub

W!

b

d d

B0sK"0

c

uD0→  f →  f

(No  penguin)

rS  is  crucial  parameter  in  φ3  measurement.  (Expected  to  be  ~0.3.)

_ _

_ _ _

Ø  B  flavor  can  be  decided  by  the  charge  of  K  from  K*0.          Br(K*0  →  K+π−)  =  2/3

_

Page 5: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Dalitz  Analysis  Method

•  Measure  B0/B0  asymmetry  across  Dalitz  plot.  – D  is  required  to  decay  in  to  three  body  like  KS0π+π−.

19th  Feb.  '15 LLWI’15  K.Negishi

5

•  Sensi/vity  to  φ3  in  interference  term.  –  |f(m2

+,  m2−)|  from  flavor-­‐tagged  D*+→D0π+  events.  

–  Phase  difference(δD)  between  D0/D0  from  Charm-­‐Factory.

_

_

D0 _

D0

B

m+2 m+

2

m−2

m−2

Page 6: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Model-­‐Independent  Dalitz 19th  Feb.  '15 LLWI’15  K.Negishi

6

[A. Giri, Y. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)]

where observables

i

-i

Number  of  events  in  D0-­‐plot  :  Ki

Number  of  events  in  B-­‐plot  :  

From  Charm-­‐Factory

Page 7: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

 Belle  Experiments KEKB  accelerator

•  Asymmetric  energy  collision  –  (8.0 v.s. 3.5 GeV)

•  10.58  GeV  center  of  mass  energy  at  Υ(4S)  resonance;  It  is  suitable  for  BB  produc/on.  

•  772  ×  106  BB  pair

•  Charged  par/cle  momentum  (σpt/pt(%)  =  0.19pt  +  0.30β)

•  Good  par/cle  iden/fica/on  ((K/π)  Eff.  ~90%,  Fake  ~10%)  

•  Good  vertex  resolu/on  (~50  µm)  

19th  Feb.  '15 LLWI’15  K.Negishi

7

Belle  detector

Page 8: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Signal  and  Backgrounds 19th  Feb.  '15 LLWI’15  K.Negishi

8

Signal

•  Light  quark  jets  (u,d,s,c).  •  Random  mis-­‐reconstruc/on  

makes  fake  signal  candidate.    

•  Other  B  decay  modes.  •  Difficult  to  dis/nguish  from  signal.  

•  D  true  BB  BG  •  D  fake  BB  BG  

•  1  mis-­‐PID  π  as  K  •  D0ρ0  

•  1mis-­‐PID  and  1  lost  π •  D0a1+  

Rejec/on Use  decay  shape  difference.  Signal  :  spherical  decay  qq  BG    :  2  jet-­‐like  decay  Neural  network  is  used  for  mul/  variable  analysis.

qq  BG

BB  BG

Peaking  BG

B0 K*0

D

K+

KS π−

π− π+

(B  flavor  specific)

resonant  π+

π−

e+e−  →  qq    q  =  u,d,s,c

_

BB  event qq  event

Page 9: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

3D  Fit  for  Signal  Extrac?on 19th  Feb.  '15 LLWI’15  K.Negishi  

9

E (GeV)6-0.1 -0.05 0 0.05 0.1 0.15

Even

ts /

( 0.0

0625

)

0

2

4

6

8

10

12

14

16

18

E (GeV)"6A RooPlot of " E (GeV)"6A RooPlot of "

TRANSNB-10 -8 -6 -4 -2 0 2 4 6 8 10

Even

ts /

( 0.5

)

0

10

20

30

40

50

60

"TRANSA RooPlot of "NB "TRANSA RooPlot of "NB

bcM5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

Even

ts /

( 0.0

02 )

0

5

10

15

20

25

"bcA RooPlot of "M "bcA RooPlot of "M

C’NB

Energy  difference  btw.  beam  energy  and  B  candidate.

Modified  distribu/on  of  Neural  network  output  used  qq  suppression.

Mass  of  B  candidate  from  beam  energy    and  B’s  momentum.

BB  like qq  like

[GeV] [GeV]

Ayer  reconstruc/on  and  BG  rejec/on,  3-­‐D  fit  (ΔE,  C’NB,  Mbc)  is  done  without  Dalitz  informa/on.  Each  component  yield  is  free.  Shapes  are  fixed.

Yield  is  Ntotal  =  44.2                        (sta/s/c  significance  2.8  σ),    which  are  used  for  the  (x,y)  fit.

+  13.3  −  12.1

Red  :  Signal    Green  :  D0a1+ Blue  :  D  fake  BB Light  blue  :  D  true  BB Magenta  :  qq

Page 10: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

E (GeV)6-0.1 -0.05 0 0.05 0.1 0.15

Even

ts /

( 0.0

0625

)

0

2

4

6

8

10

12

14

16

18

E (GeV)"6A RooPlot of " E (GeV)"6A RooPlot of "

TRANSNB-10 -8 -6 -4 -2 0 2 4 6 8 10

Even

ts /

( 0.5

)

0

10

20

30

40

50

60

"TRANSA RooPlot of "NB "TRANSA RooPlot of "NB

bcM5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

Even

ts /

( 0.0

02 )

0

5

10

15

20

25

"bcA RooPlot of "M "bcA RooPlot of "M

E (GeV)6-0.1 -0.05 0 0.05 0.1 0.15

Even

ts /

( 0.0

0625

)

0

2

4

6

8

10

12

14

16

18

20

E (GeV)"6A RooPlot of " E (GeV)"6A RooPlot of "

TRANSNB-10 -8 -6 -4 -2 0 2 4 6 8 10

Even

ts /

( 0.5

)

0

10

20

30

40

50

60

70

"TRANSA RooPlot of "NB "TRANSA RooPlot of "NB

bcM5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

Even

ts /

( 0.0

02 )

0

5

10

15

20

25

"bcA RooPlot of "M "bcA RooPlot of "M

0

1

2

3

4

5

6

7

8

2+m0.5 1 1.5 2 2.5 3

2 -m

0.5

1

1.5

2

2.5

3

Phase binsPhase bins

From  CLEO

 (x,y)  Fit 19th  Feb.  '15 LLWI’15  K.Negishi

10

N1.  

N2.  

Ki  from  D*+→D0π+,  D0  decay

y

x

(x!, y!)

(x+, y+)

!3!3

"

rS

rS

PRD  82,  112006  (2010)

Obtain  the  signal    number,

Obtain  the  signal    number,

Page 11: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

 (x,  y)  Result BG  frac/ons  btw  bins  for  each  component  are  fixed  from  MC.  

19th  Feb.  '15 LLWI’15  K.Negishi

11

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 1.4iN0Bbin -8

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

1

2

3

4

5

6

= 1.9iN0Bbin -7

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.5

1

1.5

2

2.5

3 = 0.5iN

0Bbin -6

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 1.0iN0Bbin -5

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 0.6iN0Bbin -4

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 0.3iN0Bbin -3

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.5

1

1.5

2

2.5

3 = 0.6iN

0Bbin -2

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 0.5iN0Bbin -1

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 2.0iN0Bbin +1

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 2.7iN0Bbin +2

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 2.9iN0Bbin +3

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

1

2

3

4

5

6

7

= 1.4iN0Bbin +4

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.51

1.52

2.53

3.54

4.5

= 0.5iN0Bbin +5

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.5

1

1.5

2

2.5

3 = 1.0iN

0Bbin +6

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

1

2

3

4

5

6

7

= 2.8iN0Bbin +7

E (GeV)6-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1333

33 )

0.5

1

1.5

2

2.5

3 = 0.9iN

0Bbin +8

x−  =  +  0.4                            ±  0.0  y−  =  −  0.6                            ±  0.1  x+  =  +  0.1                            ±  0.1  y+  =  +  0.3                            ±  0.1

+  1.0    +  0.0  −  0.6    −  0.1 +  0.8    +  0.1  −  1.0    −  0.0 +  0.7    +  0.0  −  0.4    −  0.1 +  0.5    +  0.0  −  0.8    −  0.1

stat. syst. ci,  si

Page 12: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

 (x,  y)  Result 19th  Feb.  '15 LLWI’15  K.Negishi

12

X-2 -1.5 -1 -0.5 0 0.5 1 1.5 2Y-2

-1.5-1

-0.50

0.51

1.52

CL

CO

MB.

0

0.2

0.4

0.6

0.8

1

X-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x−  =  +  0.4                            ±  0.0  y−  =  −  0.6                            ±  0.1  x+  =  +  0.1                            ±  0.1  y+  =  +  0.3                            ±  0.1

+  1.0    +  0.0  −  0.6    −  0.1 +  0.8    +  0.1  −  1.0    −  0.0 +  0.7    +  0.0  −  0.4    −  0.1 +  0.5    +  0.0  −  0.8    −  0.1

stat. syst. ci,  si

B0

_

B0

Dot  :  Most  probable  point  Line  :  1σ  contour

Page 13: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

 (x,  y)  Result 19th  Feb.  '15 LLWI’15  K.Negishi

13

X-2 -1.5 -1 -0.5 0 0.5 1 1.5 2Y-2

-1.5-1

-0.50

0.51

1.52

CL

CO

MB.

0

0.2

0.4

0.6

0.8

1

X-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

δS 2φ3

x−  =  +  0.4                            ±  0.0  y−  =  −  0.6                            ±  0.1  x+  =  +  0.1                            ±  0.1  y+  =  +  0.3                            ±  0.1

+  1.0    +  0.0  −  0.6    −  0.1 +  0.8    +  0.1  −  1.0    −  0.0 +  0.7    +  0.0  −  0.4    −  0.1 +  0.5    +  0.0  −  0.8    −  0.1

stat. syst. ci,  si

B0

_

B0

Dot  :  Most  probable  point  Line  :  1σ  contour

(x+,  y+)  (B0)  is  0  consistent.

Page 14: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Sr0 0.5 1 1.5 2

1 - C

.L.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 rS  Result •  rS  is  crucial  parameter  in  φ3  measurement.  

–  φ3  uncertainty  is  scaled  as  1/r.  

19th  Feb.  '15 LLWI’15  K.Negishi

14

rS  <  0.87  @  68  %  C.L. rD2  =  (3.79±0.18)10-­‐3 rD  is  small.

rS  <  0.4 →  RDK*  ~  rS2

B0→[Kπ]DK*0 PRD  86  ,  011101  (2012)

  Blue  :  B0  (x−,  y−)    Red  :  B0  (x+,  y+)    Black  :  Combine

_

rS

Page 15: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

 Conclusion

•  New  result  of  B0→[KS0π+π−]DK*0  Mod.-­‐Ind.  Dalitz  analysis.

19th  Feb.  '15 LLWI’15  K.Negishi

15

x−  =  +  0.4                            ±  0.0  y−  =  −  0.6                            ±  0.1  x+  =  +  0.1                            ±  0.1  y+  =  +  0.3                            ±  0.1

+  1.0    +  0.0  −  0.6    −  0.1 +  0.8    +  0.1  −  1.0    −  0.0 +  0.7    +  0.0  −  0.4    −  0.1 +  0.5    +  0.0  −  0.8    −  0.1

rS  <  0.87  at  68  %  C.L.

φ3  measurement  with  neutral  B          is  promising  for  Belle  II!!

stat. syst. ci,  si

Page 16: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

BACK  UP

19th  Feb.  '15 LLWI’15  K.Negishi

16

Page 17: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Event  Selec?on

•  Primary  track  –  IP  |Δr|  <  5  mm,  |Δz|  <  5  cm  

•  KS  reconstruc/on  –  NIS  KS  Finder  

•  D0  reconstruc/on  –  KS  and  opposite  charge  2  π(LR(K/π)  <  0.6)  –  |MKsππ  −  mD0|  <  0.015  GeV  

•  K*0  reconstruc/on  –  Opposite  charge  K(LR(K/π)  >  0.7)  and  π(LR(K/π)  <  0.6)  –  |MKπ  −  mK*0|  <  0.050  GeV  

•  B0  reconstruc/on  –  Best  candidate  is  selected  by  D0  mass  and  B0  vertex  –  Δm  >  0.15  GeV  for  real  D0  BG  from  D*±  

–  |MK*0π−  −  mD0|  >  0.04  GeV  for  [K+π−π−]D−[KSπ+]K*+

19th  Feb.  '15 LLWI’15  K.Negishi

17

Page 18: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

qq  suppression

•  qq  events  are  suppressed  by  using  following  12  parameters  as  NeuroBayes  inputs.  

19th  Feb.  '15 LLWI’15  K.Negishi

18

1.  LR(KSFW) 2.  cosθthr 3.  Δz 4.  dist. DK* 5.  |qr| 6.  |cosθB| 7.  cosθD

B 8.  v1_z 9.  v1_v1 10. v2_v2 11. v3_v3 12.  thru_oth

NB output-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Nor

mal

ized

num

ber o

f eve

nts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

NB output-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Nor

mal

ized

num

ber o

f eve

nts

-310

-210

-110 Red : Signal Blue : qq BG

Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bac

kgro

und

reje

ctio

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NB-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

Probability

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TransNB-10 -8 -6 -4 -2 0 2 4 6 8 10

Probability

00.010.020.030.040.050.060.070.080.090.1

NBlow = − 0.6 NBhigh = 0.9992

Red : Signal Blue : qq Green : BB

Page 19: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

PDF 19th  Feb.  '15 LLWI’15  K.Negishi

19

E (GeV)6-0.1 -0.05 0 0.05 0.1 0.15

Even

ts /

( 0.0

0625

)

0

10000

20000

30000

40000

50000 E Projection6 /ndf = 91.862r E Projection6

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.5

)0

2000400060008000

1000012000140001600018000

ProjectionTRANSNB /ndf = 6.342r ProjectionTRANSNB

bcM5.22 5.24 5.26 5.28

Even

ts /

( 0.0

02 )

0

10000

20000

30000

40000

50000

60000

ProjectionbcM /ndf = 19.202r ProjectionbcM

E (GeV)6-0.1 -0.05 0 0.05 0.1 0.15

Even

ts /

( 0.0

0625

)

0200400600800

10001200140016001800200022002400

E Projection6 /ndf = 1.682r E Projection6

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.5

)

0

2000

4000

6000

8000

10000

ProjectionTRANSNB /ndf = 17.422r ProjectionTRANSNB

bcM5.22 5.24 5.26 5.28

Even

ts /

( 0.0

02 )

0

500

1000

1500

2000

2500

ProjectionbcM /ndf = 3.882r ProjectionbcM

E (GeV)6-0.1 -0.05 0 0.05 0.1 0.15

Even

ts /

( 0.0

0625

)

050

100150200250300350400450

E Projection6 /ndf = 1.722r E Projection6

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.5

)

0

200

400

600

800

1000

1200

ProjectionTRANSNB /ndf = 11.672r ProjectionTRANSNB

bcM5.22 5.24 5.26 5.28

Even

ts /

( 0.0

02 )

0

50

100

150

200

250

300

350

400

ProjectionbcM /ndf = 1.482r ProjectionbcM

MCから  分布の形状を得る

ピーキング背景事象

MC MC MC

MC MC MC

MC MC MC

•  シグナルは3次元(ΔE,  NB’,  Mbc)の分布をフィットして得る

•  同時に(コンティニュアム,  BB,  ピーキング)背景事象もフィットする コン

ティ

ニュ

アム

BB

イベ

ント

ΔE ΝΒ’   Mbc

ΔE ΝΒ’   Mbc

ΔE ΝΒ’   Mbc

MCから  分布の形状を得る

Dが真 Dが真

Dが偽 Dが偽

_

_ +  ピ

ーキ

ング

Page 20: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Dπ  control  sample  analysis 19th  Feb.  '15 LLWI’15  K.Negishi

20

•  We  obtain  Dπ  (x,y)  consistent  with  previous  result.

Error contours are stat. err. only. (1, 2 and 3 σ)

     x−  =  −  0.0130  ±  0.0077        y−  =  +  0.0018  ±  0.0076        x+  =  −  0.0169  ±  0.0083        y+  =  +  0.0225  ±  0.0076  

     x−  =  −  0.0045  ±  0.0087  ±  0.0056        y−  =  −  0.0231  ±  0.0107  ±  0.0077        x+  =  −  0.0172  ±  0.0089  ±  0.0065        y+  =  +  0.0129  ±  0.0103  ±  0.0088  

•  Anton  (Previous  study,    605  �-­‐1)

•  KS selection •  qq suppression •  D0 mass selection •  BGs Dalitz distributions •  Cross-feed between bins •  Efficiency correction.

Difference of my and previous study

•  To  check  (x,y)  fit,  we  use  B+→Dπ+  as  control  sample.  •  B+→Dπ+  is  also  analyzed  as  control  sample  of  

B+→DK+  (PRD  85,112014(2012))

Page 21: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Sta?s?cal  uncertainty 19th  Feb.  '15 LLWI’15  K.Negishi

21

•  We  decide  to  not  use  normal  error  of  likelihood  distribu/on  on  (x,y)  because  of  unreliable  of  (x,y)  likelihood  due  to  small  sta/s/cs.  

•  To  obtain  sta/s/c  uncertainty,  we  use  Feldman-­‐Cousin  method.  

Feldman-­‐Cousin  method 1.  Generate  >20,000  (x,y)  fit  result  with  toy  MC  at  1600  points.  2.  Dist.  of  (x,y)obt.  fit  results  at  (x,y)true  space  are  obtained.  

(  PDF(xobt.,yobt.|xtrue,ytrue)  )  3.  We  define  confidence  level  as  integral  of  the  PDF  

in  a  region  Ω  which  sa/sfy  PDF(x,y)  >  PDF(xmeas.,ymeas.).  (  We  call  it  “CL(xtrue,ytrue)”.  )  

4.  Draw  contours  of    e.g.)  α  =  0.393  (1σ),  0.865  (2σ)  and  so  on.  

P(xobt., yobt.)

CL(xtrue, ytrue) Fit result = (xmeas., ymeas.)

(xtrue, ytrue)

Ω

(x(-2., 2.), y(-2., 2.)) 0.1 step

(BN#564 appendix D)

Total signal number = 44.2 +13.3 −12.1

Statistic significance = 2.8 σ

Page 22: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Systema?c  uncertainty 19th  Feb.  '15 LLWI’15  K.Negishi

22

We  combine  the  uncertainty  from  stat.  and  syst.  with  assump/on  of  (x,y)  2D  Gauss.  for  syst.  err.

•  Δx−  =                ±  0.0  •  Δy− = ± 0.1

•  Δx+  =                ±  0.1  •  Δy+ = ± 0.1

+  0.0  −  0.1 +  0.1  −  0.0

+  0.0  −  0.1 +  0.0  −  0.1

w/o  ci,si ci,si

Page 23: 3 )measurementbyB S π DK* atBelleepx.phys.tohoku.ac.jp/eeweb/meeting/201502_LLWI_negishi.pdf · φ 3 (γ)measurementbyB 0→[KS 0π+π−] D K* 0$ atBelle Kentaro Negishi 19th February

Discussion 19th  Feb.  '15 LLWI’15  K.Negishi

23

•  rS  は0と無矛盾  –  B0→DK*0シグナル数が小さかった 44.2 ���

崩壊分岐比で Br(B0→DK*0) = (2.9 ± 0.9)×10−5

–  統計的なふらつきによる

•  Belle  II  実験(予定)では  

+ 13.3 − 12.1  

イベント数 Br(B0→DK*0) ずれ

本結果 44.2 (2.9  ±  0.9)×10-­‐5

BaBar   78 (5.2  ±  1.2)×10-­‐5 −1.5σ

PDG 64 (4.2  ±  0.6)×10-­‐5 −1.2σ

(統計誤差が支配的)

ただし”ずれ”は  大きくない

x−  =  +  0.4                              y−  =  −  0.6                ±  0.1          x+  =  +  0.1                ±  0.1                              y+  =  +  0.3                ±  0.1        

+  1.0 +  0.0  −  0.6 −  0.1 +  0.8   −  1.0  +  0.7  −  0.4 +  0.5  −  0.8

統計 系統

50倍BB 統計誤差→  O(<0.1)

現系統誤差と同等  

1.  K/π識別能力が上がる   →BB背景事象の抑制  

2.  Super-­‐Charm-­‐Factory   →ci,  siの誤差が減る  

_

B0→DK*0崩壊を用いφ3測定の可能性

_

Belle  II  +  Super-­‐Charm-­‐Factory  Δ(x,y)stat.  =  ±  0.1  Δ(x,y)syst. = ± 0.1