3-11 Shear Stresses Shear on a Beam Elementpkwon/me471/Lect 3.2.pdf · * The product of shear...

3
1 3-11 Shear Stresses How are the shear stresses due to a shear force distributed? V Not possible!!!! Shear on a Beam Element V+dV M V dx F 1 F 3 t dx ( ) Ib VQ Ib Q dx dM Q I dM dA y I dM F F bdx F dA I y dM M dA F dA I My dA F A A A A A = = = = = = + = = = = τ τ σ σ 1 1 2 3 1 1 2 2 1 1 1 1 1 1 1 1 1 F 2 M+dM Q is the first moment w.r.t. the neutral axis. σ τ Rectangular & Circular Sections π 3 4r b h/2 h/2 N.P. A V h t Vbh bh h h b Q y h bh V Ib VQ y A y h y h b y h b ybdy ydA Q h y Area Yellow 2 3 8 12 ; 8 4 2 4 6 2 2 1 2 4 2 3 2 2 max 2 max 2 2 3 2 2 2 / = = = = = = = + = = = = τ τ N.P. ( ) ( ) A V r V r r r V Ib VQ r r r y A Q 3 4 3 4 ) 2 ( 4 3 2 3 2 3 4 2 2 4 3 max 3 2 max = = = = = = = π π τ π π At the N.P. y y

Transcript of 3-11 Shear Stresses Shear on a Beam Elementpkwon/me471/Lect 3.2.pdf · * The product of shear...

Page 1: 3-11 Shear Stresses Shear on a Beam Elementpkwon/me471/Lect 3.2.pdf · * The product of shear stress times thickness of the wall is constant.! A m =areaenclosed bythesectionmedianline

1

3-11 Shear Stresses

•  How are the shear stresses due to a shear force distributed?

V

Not possible!!!!

Shear on a Beam Element

V+dV

M V

dx

F1

F3

t dx

( )

IbVQ

IbQ

dxdM

QIdMdAy

IdM

FFbdxF

dAI

ydMMdAF

dAIMydAF

A

AA

AA

==

==

−==

+==

==

∫∫

∫∫

τ

τ

σ

σ

1

123

1122

1111

1

11

11

F2 M+dM

Q is the first moment w.r.t. the neutral axis.

σ τ

Rectangular & Circular Sections

π34r

b

h/2

h/2

N.P.

AV

htVbhbhhhbQ

yhbhV

IbVQ

yAyhyhb

yhbybdyydAQh

yAreaYellow

23

812;

842

46

221

2

42

32

2

max

2

max

22

3

222/

===⎟⎠

⎞⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛−==

=⎟⎠

⎞⎜⎝

⎛ +⎟⎠

⎞⎜⎝

⎛ −=

⎟⎟⎠

⎞⎜⎜⎝

⎛−=== ∫∫

τ

τ

N.P.

( ) ( ) AV

rV

rr

rV

IbVQ

rrryAQ

34

34

)2(4

32

32

34

2

24

3

max

32

max

====

=⎟⎠

⎞⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛==

ππτ

ππ

At the N.P.

y y

Page 2: 3-11 Shear Stresses Shear on a Beam Elementpkwon/me471/Lect 3.2.pdf · * The product of shear stress times thickness of the wall is constant.! A m =areaenclosed bythesectionmedianline

2

Torsion •  Torsion - the twisting of a straight bar loaded by twisting moment

called torque. •  Examples: screwdriver, drive shaft and axles •  Angle of Twist, θ(x) •  Assuming the angle of twist is small, the length and radius do not

change.

x

y

z

θ(x)

x

θ(L)

c

ρ

Torsion

( ) ( ) const.21 == xx γγ

maxγρ

γ

θργ

γθρ

⎟⎠

⎞⎜⎝

⎛=

=

=

c

dxddxd

γ(x1)

γ(x2)

x1

x2

θ δ

γ

dx

c

θρτ

ρτ

τρ

τ

ρτ

drdc

dAc

T

cwhere

dAdMT

dMTM

AA

A A

Az

∫∫

∫ ∫∫∑

==

⎟⎠

⎞⎜⎝

⎛=

==

=−=

3max2max

max

0;0Torsion

JTr

JTc

== ττ ormax

6302533000TnFVH ==

Solid Shaft:

Tubular Shaft: ( ) ( )4444

44

322

322

ioio ddccJ

dcJ

−=−=

==

ππ

ππT Z

ρ c

τ

τ

ρ

τ

ρ

J: Polar Moment of Inertia

(hp) in English Units

ωTH = (W) in SI Units

T=torque, N·m ω=angular velocity, rad/s

F=force, lbf T=torque, lbf·in V=velocity, ft/min n=rpm,rev/m

Torsion of Noncircular Members

GbcTL

cbbcT

bcT

3

22max /8.13

βθ

ατ

=

⎟⎠

⎞⎜⎝

⎛ +≈=

yzτyxτ

xzτ

b/c α β

1.0 0.208 0.1406 1.2 0.219 0.1661 1.5 0.231 0.1958 2.0 0.246 0.229 2.5 0.258 0.249 3.0 0.267 0.263 4.0 0.282 0.281 5.0 0.291 0.291 10.0 0.312 0.312 ∞ 0.333 0.333

c

b

Page 3: 3-11 Shear Stresses Shear on a Beam Elementpkwon/me471/Lect 3.2.pdf · * The product of shear stress times thickness of the wall is constant.! A m =areaenclosed bythesectionmedianline

3

Closed Thin-walled Tubes

( )( ) ( ) mdAqpdsqqdsppdFdM

qdstdsdAdFtq

2

constant

====

===

==

ττ

τ

( ) ( )

tAT

tAAtrdstrdstT

m

mm

2

22

=

==== ∫∫τ

ττττ

tGATL

m

m21 4

* The product of shear stress times thickness of the wall is constant.

linemediansectionthebyenclosedarea=mA

linemediansectiontheofperimeter=mL

BBAA

BA

ttFFττ =

=

mA

Open thin-walled sections

Gcll τ

θθ == 1

213LcTcG == θτ

The Angle of twist

l

Stress Concentration

See Peterson’s Stress Concentration Factors

ots

ot

K

K

ττ

σσ

max

max

=

=