2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. ·...

28
Introduction The Model and the algorithm Simulation of the system Results Conclusions 2D and 3D Antiferromagnetic Ising Model with ”topological” term at θ = π V. Azcoiti, E. Follana, G. Cortese , M. Giordano Departamento de Fisica Teorica, Universidad de Zaragoza 31st International Symposium on Lattice Field Theory July 29, 2013, Mainz, Germany 1 / 22

Transcript of 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. ·...

Page 1: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

2D and 3D Antiferromagnetic Ising Model with”topological” term at θ = π

V. Azcoiti, E. Follana, G. Cortese, M. GiordanoDepartamento de Fisica Teorica, Universidad de Zaragoza

31st International Symposium on Lattice Field TheoryJuly 29, 2013, Mainz, Germany

1 / 22

Page 2: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Outline

I Introduction

I The Model and the algorithm

I Simulation of the system

I Results

I Conclusions

2 / 22

Page 3: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Introduction

Motivation of the work:

I Many interesting physical systems do not have an efficientnumerical algorithms yet.

I An example: QCD at finite density or with a non-vanishing θterm.

I It is thus of great interest to study novel simulationalgorithms.

In the present work we develop and test a geometric algorithmwhich is applicable to the two and three-dimensionalantiferromagnetic Ising model with an imaginary magnetic field iθ,and which solves the sign problem that this model has when usingstandard algorithms.

3 / 22

Page 4: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

The Model and the algorithm

Reduced Hamiltonian of the system:

H[{sx},F , h] = −F∑

(x ,y)∈B

sxsy −h

2

∑x

sx ,

where

I F = J/(kT ) → coupling

I h = 2B/(kT ) → reduced magnetic field

I Q = 12

∑x sx (from −N2/2 and N2/2) → ”topological

charge”

It is then worth studying what happens for imaginary values of thereduced magnetic field h, i.e., for h = iθ.

4 / 22

Page 5: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

weight of a configuration not a positive real number⇒ ”sign problem”

For θ = π we can circumvent this problem.

Z (F , θ = π) =∑

{sx}, sx=±1

eF∑

(x,y)∈B sx sy+i π2

∑z sz

=∑

{sx}, sx=±1

∏(x ,y)∈B

[cosh(F ) + sinh(F )sxsy ]∏z

sz ,

The terms that contribute to the partition function are those forwhich a given spin variable appears an odd number of times.

5 / 22

Page 6: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Decomposing the lattice in two staggered sublattices we canrewrite our partition function as

Z (F , θ = π) =∑

{sx}, sx=±1

∏(x ,y)∈B

[cosh(F )− sinh(F )sxsy ]∏z

sz ;

⇒ Z (F , θ = π) = Z (−F , θ = π) at θ = π;

⇒ the terms that survive in this expansion are those with aneven number of terms sxsy .

6 / 22

Page 7: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Considering the contributions following these rules:

I a factor 2N for the sum over the spins;

I a factor of sinh(|F |)N [b], where N [b] is the number of bondsfor a given configuration;

I a factor cosh(|F |)N [b] where N [b] = N [B]−N [b] is thenumber of inactive bonds;

the partition function becomes:

Z (F , θ = π) = 2N2

cosh(|F |)N [B]∑b∈B!

tanh(|F |)N [b] .

All configurations (”graphs”) positive weights ⇒ no sign problem !

7 / 22

Page 8: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Simulation of the system

Number of links at any site → odd:

I 2D → 1, 3 bonds

I 3D → 1, 3, 5 bonds

The dual lattice sites:

u uuu

1

2

3

4 x∗

The state of bond i at the dual lattice site x∗ is denoted byAi (x

∗), and we set

Ai (x∗)→

{1 if active

0 if inactive

8 / 22

Page 9: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

We can draw all the admissible configuration, specified by a vectorA(x∗).

I S(x∗) → graphs corresponding to these configurations.

I w(x∗) =∑4

i=1 Ai (x∗) → number of active bonds at site x∗ in

a given configuration.

The key observation is that, as the number of external bondstouching a vertex is fixed, and the total number of bonds touchinga vertex must be odd, when changing A(x∗) we must be sure thatthe number of internal bonds that change state, touching a givenvertex, is an even number, i.e., 0 or 2 (or 4 in 3D).

9 / 22

Page 10: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

S(x∗) w(x∗) A(x∗)

r rrr0 (0, 0, 0, 0)

r rrr1 (1, 0, 0, 0)

r rrr1 (0, 1, 0, 0)

r rrr1 (0, 0, 1, 0)

r rrr1 (0, 0, 0, 1)

r rrr2 (1, 1, 0, 0)

r rrr2 (1, 0, 1, 0)

r rrr2 (1, 0, 0, 1)

Active bonds → solid line, inactive bonds → no line.w(x∗) =

∑4i=1 Ai (x

∗) → number of active bonds.10 / 22

Page 11: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Updating the configurations:

A(x∗)→

{IA(x∗) = A(x∗) ,

CA(x∗) = I − A(x∗)

where

I I → identity

I C → conjugation

The variation ∆w(x∗) of the number of active bonds is given by

∆w(x∗) =4∑

i=1

CAi (x∗)−Ai (x

∗) =4∑

i=1

Ii−2Ai (x∗) = 2[2−w(x∗)] .

To pass to another admissible configuration, we have only twopossibilities: either leave everything unchanged, or change the stateof all the bonds at the given square/dual lattice site (next table).

11 / 22

Page 12: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

S(x∗) CS(x∗) ∆w(x∗)

r rrr r rrr4

r rrr r rrr2

r rrr r rrr2

r rrr r rrr2

r rrr r rrr2

r rrr r rrr0

r rrr r rrr0

r rrr r rrr0

Transformation under C12 / 22

Page 13: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Ergodicity

S(x∗) RS(x∗)

r rrr r rrrr rrr r rrrr rrr r rrrr rrr r rrrr rrr r rrrr rrr r rrr

Reduction: it coincides with the identity if A2 = 0, and withconjugation if A2 = 1

13 / 22

Page 14: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Open boundary conditions: Ergodicity

r rrr rr. . .

rr rr rr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure: (Left) Right-most colum after the first step of reduction. (Right)Two right-most columns after the second step of reduction.

r rrr rr. . .

rr rr rr

rrrrrr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr. . .

rr rr rr

rrrrrr

rrrrrr

Reduced configuration →

14 / 22

Page 15: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Open boundary conditions: Ergodicity

r rrr rr. . .

rr rr rr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure: (Left) Right-most colum after the first step of reduction. (Right)Two right-most columns after the second step of reduction.

r rrr rr. . .

rr rr rr

rrrrrr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr. . .

rr rr rr

rrrrrr

rrrrrr

Reduced configuration →

14 / 22

Page 16: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Periodic boundary conditions: Ergodicity

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

15 / 22

Page 17: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Periodic boundary conditions: Ergodicity

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

15 / 22

Page 18: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Periodic boundary conditions: Ergodicity

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

15 / 22

Page 19: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Periodic boundary conditions: Ergodicity

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N−1 N 1

. . .

rr rr rr

rrrrrr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

15 / 22

Page 20: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Periodic boundary conditions: Ergodicity

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r rrr rr

N 1 2

. . .

rr rr rr

rrrrrr

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

4 inequivalent reduced configurations in 2D

16 / 22

Page 21: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Results: Correlation function in the 2D model

C (d ,F ) ≡ 〈sxsx+d 1〉

0 10 20 30 40d

-2

-1

0

1

2

corr

elat

ion

func

tion

s

L=256L=512L=1024

F=-0.4

0 10 20 30 40 50d

-2

-1

0

1

2

corr

elat

ion

func

tion

s

L=256L=512L=1024

F=-0.6

0 10 20 30 40d

-2

-1

0

1

2

corr

elat

ion

func

tion

s

L=256L=512L=1024

F=-0.8

17 / 22

Page 22: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

0 20 40 60d

-1,5

-1

-0,5

0

0,5

1

1,5co

rrel

atio

n fu

ncti

ons

L=256L=512L=800L=1024

F=J/(kBT)=-1.0

0 10 20 30 40 50 60d

-1,5

-1

-0,5

0

0,5

1

1,5

corr

elat

ion

func

tion

s

L=64L=512L=1024

F=J/(kBT)=-2.0

Results is in agreement with B. M. McCoy and T. T. Wu, Phys.Rev. 155 (1967) 438 T. D. Lee and C. N. Yang, Phys. Rev. 87(1952) 410, V. Matveev and R. Shrock, J. Phys. A 28 (1995)4859 and with the mean-field calculation done by V. Azcoiti,E. Follana, and A. Vaquero, Nucl. Phys. B 851 (2011) 420.

I the apparent decrease of C (d ,F ) is probably due to theheavy-tailed probability distributions of the correlators

18 / 22

Page 23: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

0 20 40 60d

-1,5

-1

-0,5

0

0,5

1

1,5co

rrel

atio

n fu

ncti

ons

L=256L=512L=800L=1024

F=J/(kBT)=-1.0

0 10 20 30 40 50 60d

-1,5

-1

-0,5

0

0,5

1

1,5

corr

elat

ion

func

tion

s

L=64L=512L=1024

F=J/(kBT)=-2.0

Results is in agreement with B. M. McCoy and T. T. Wu, Phys.Rev. 155 (1967) 438 T. D. Lee and C. N. Yang, Phys. Rev. 87(1952) 410, V. Matveev and R. Shrock, J. Phys. A 28 (1995)4859 and with the mean-field calculation done by V. Azcoiti,E. Follana, and A. Vaquero, Nucl. Phys. B 851 (2011) 420.

I the apparent decrease of C (d ,F ) is probably due to theheavy-tailed probability distributions of the correlators

18 / 22

Page 24: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

0 20 40 60d

-1,5

-1

-0,5

0

0,5

1

1,5co

rrel

atio

n fu

ncti

ons

L=256L=512L=800L=1024

F=J/(kBT)=-1.0

0 10 20 30 40 50 60d

-1,5

-1

-0,5

0

0,5

1

1,5

corr

elat

ion

func

tion

s

L=64L=512L=1024

F=J/(kBT)=-2.0

Results is in agreement with B. M. McCoy and T. T. Wu, Phys.Rev. 155 (1967) 438 T. D. Lee and C. N. Yang, Phys. Rev. 87(1952) 410, V. Matveev and R. Shrock, J. Phys. A 28 (1995)4859 and with the mean-field calculation done by V. Azcoiti,E. Follana, and A. Vaquero, Nucl. Phys. B 851 (2011) 420.

I the apparent decrease of C (d ,F ) is probably due to theheavy-tailed probability distributions of the correlators

18 / 22

Page 25: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Probability distributions of the logarithm of the correlators

-20 -10 0 10ln(C)

0

0,1

0,2

0,3

0,4

0,5

Fre

quen

cy

d=2d=8d=16d=32

2D, L=64, F=-0.4

-0,6 -0,4 -0,2 0 0,2 0,4 0,6ln(C)

0

0,1

0,2

0,3

0,4

0,5

Fre

quen

cy

d=2d=8d=16d=32

2D, L=64, F=-2.0

-0,4 -0,2 0 0,2 0,4C

0

50

100

150

200

Fre

quen

cy

d=2d=8d=16d=24d=32

3D, L=64, F=-2.0

For a low coupling |F | the values are spread in a wider range thanfor F = −2.0, and also that a long tail is developed for largedistances.

19 / 22

Page 26: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Results: Correlation function in the 3D model

0 10 20 30 40 50d

-2

-1

0

1

2

C(d

,F) L=32

L=64L=128L=256

3D, F=J/(kBT)=-0.6

0 10 20 30 40 50 60 70d

-2

-1

0

1

2

C(d

,F) L=32

L=64L=128L=256

3D, F=J/(kBT)=-1.2

0 10 20 30 40 50 60 70d

-2

-1

0

1

2

C(d

,F) L=32

L=64L=128L=256

3D, F=J/(k|sBT)=-2.0

20 / 22

Page 27: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Energy density and Specific Heat

0,0 0,5 1,0 1,5 2,0 2,5 3,0

|F|

-6

-5

-4

-3

-2

-1

0

Ene

rgy

dens

ity

L=16L=32L=64L=128L=256

2D

0,0 0,5 1,0 1,5 2,0

|F|

-4

-3

-2

-1

0

Ene

rgy

dens

ity

L=16L=32L=64L=128L=256

3D

0,0 0,5 1,0 1,5 2,0 2,5 3,0

|F|

0

0,02

0,04

0,06

0,08

0,1

Spec

ific

hea

t

L=16L=32L=64L=128L=256

2D

0,0 0,5 1,0 1,5 2,0

|F|

0,01

0,02

0,03

0,04

0,05

0,06

0,07

Spec

ific

hea

tL=16L=32L=64L=128L=256

3D

21 / 22

Page 28: 2D and 3D Antiferromagnetic Ising Model with 'topological' term at · 2013. 8. 5. · IntroductionThe Model and the algorithmSimulation of the systemResultsConclusions 2D and 3D Antiferromagnetic

Introduction The Model and the algorithm Simulation of the system Results Conclusions

Conclusions

I We developed, for a model not free from the sign problem, anew algorithm able to circumvent this obstacle

I We tested successfully for the 2D antiferromagnetic Isingmodel and we studied also the 3D version

I The behavior of the correlation function as well the specificheat are in agreement with the predictions

I No phase transitions for these models at θ = π

I This technique maybe can be applied to study otherinteresting models

22 / 22