2.17

6
Problem Set 4, Physics 622 (Fall 2001) Solutions 1 (a) From Eq(2.5.8) in Sakurai, u n (x) is the energy eigenfunction, the time dependent propagator for the simple harmonic oscillator is given by, K (x ′′ ,t; x ,t 0 ) = n e iEn(tt 0 ) u n (x )u n (x ′′ ) = n e iEnt 0 u n (x ) e iEnt u n (x ′′ ) Using Eq(2.5.17) in Sakurai and let α = , K (x ′′ ,t; x ,t 0 ) = α π e α 2 2 (x ′′2 +x 2 ) n 1 2 n n! e (n+ 1 2 )(tt 0 ) H n (αx )H n (αx ′′ ) = α π e α 2 2 (x ′′2 +x 2 ) e 2 (tt 0 ) e α 2 (x ′′2 +x 2 ) n (e (tt 0 ) ) n 2 n n! H n (αx )H n (αx ′′ ) = α π e α 2 2 (x ′′2 +x 2 ) e 2 (tt 0 ) 1 1 e i2ω(tt 0 ) × exp α 2 (x ′′2 + x 2 )+2α 2 x ′′ x e (tt 0 ) 1 e i2ω(tt 0 ) (using Eq(2.5.19) in Sakurai) = 2πi sin[ω(t t 0 )] exp imω 2 (x ′′2 + x 2 ) cos[ω(t t 0 )] 2x ′′ x sin[ω(t t 0 )] (b) We try to show that the given H n (x) indeed satisfies the Hermite differential equation. H n (x) = (2i) n π 1/2 −∞ dzz n e (z+ix) 2 H n (x) = 2i (2i) n π 1/2 −∞ dzz n (z + ix)e (z+ix) 2 H ′′ n (x) = 2 (2i) n π 1/2 −∞ dzz n [1 2(z + ix) 2 ]e (z+ix) 2 H ′′ n 2xH n +2nH = (2i) n π 1/2 −∞ dz z n [2 4(z + ix) 2 +4xi(z + ix)+2n]e (z+ix) 2 = (2i) n π 1/2 2(n + 1) −∞ dzz n e (z+ix) 2 4 −∞ dzz n+1 (z + ix)e (z+ix) 2 1

description

saaaswq

Transcript of 2.17

Page 1: 2.17

Problem Set 4, Physics 622 (Fall 2001)

Solutions

1 (a) From Eq(2.5.8) in Sakurai, un(x) is the energy eigenfunction, the time dependentpropagator for the simple harmonic oscillator is given by,

K(x′′, t; x′, t0) =∑

n

e−iEn(t−t0)

~ u∗n(x′)un(x′′)

=∑

n

[

e−iEnt0

~ un(x′)] [

e−iEnt

~ un(x′′)]

Using Eq(2.5.17) in Sakurai and let α =√

mω~

,

K(x′′, t; x′, t0) =α√πe−

α2

2(x′′2+x′2)

n

1

2nn!e−iω(n+ 1

2)(t−t0)Hn(αx′)Hn(αx′′)

=α√πe

α2

2(x′′2+x′2)e−

iω2

(t−t0)

[

e−α2(x′′2+x′2)∑

n

(e−iω(t−t0))n

2nn!Hn(αx′)Hn(αx′′)

]

=α√πe

α2

2(x′′2+x′2)e−

iω2

(t−t0) 1√1 − e−i2ω(t−t0)

×

exp

[−α2(x′′2 + x′2) + 2α2x′′x′e−iω(t−t0)

1 − e−i2ω(t−t0)

]

(using Eq(2.5.19) in Sakurai)

=

2πi~ sin[ω(t− t0)]exp

{

imω

2~

(x′′2 + x′2) cos[ω(t− t0)] − 2x′′x′

sin[ω(t− t0)]

}

(b) We try to show that the given Hn(x) indeed satisfies the Hermite differentialequation.

Hn(x) =(2i)n

π1/2

∫ ∞

−∞

dz zne−(z+ix)2

H ′n(x) = −2i

(2i)n

π1/2

∫ ∞

−∞

dz zn(z + ix)e−(z+ix)2

H ′′n(x) = 2

(2i)n

π1/2

∫ ∞

−∞

dz zn[1 − 2(z + ix)2]e−(z+ix)2

H ′′n − 2xH ′

n + 2nH

=(2i)n

π1/2

∫ ∞

−∞

dz{

zn[2 − 4(z + ix)2 + 4xi(z + ix) + 2n]e−(z+ix)2}

=(2i)n

π1/2

[

2(n+ 1)

∫ ∞

−∞

dz zne−(z+ix)2 − 4

∫ ∞

−∞

dz zn+1(z + ix)e−(z+ix)2]

1

Page 2: 2.17

=(2i)n

π1/2

{

2(n+ 1)

∫ ∞

−∞

dz zne−(z+ix)2 − 2

∫ ∞

−∞

zn+1e−(z+ix)2d[(z + ix)2]

}

=(2i)n

π1/2

{

2(n+ 1)

∫ ∞

−∞

dz zne−(z+ix)2 + 2[

zn+1e−(z+ix)2]∞

−∞− 2

∫ ∞

−∞

(n+ 1)zne−(z+ix)2dz

}

= 0 �

(c) The Hamiltonian of the simple harmonic oscillator can be written as

H = ~ω

(

a†a+1

2

)

where a, a† are the annihilation and creation operator respectively. Using thecommutator relations:

[a, a†] = 1

[a,H ] = ~ωa,

it can be proved thataHn = (~ω +H)na.

a|λ, t〉 = a e−iHt

~ |λ〉

=∞∑

n=0

1

n!

(

−it~

)n

aHn|λ〉

=∞∑

n=0

1

n!

(

−it~

)n

(~ω +H)na|λ〉

= λ

∞∑

n=0

1

n!

(

−it~

)n

(~ω +H)n|λ〉

= λe−iωte−iHt

~ |λ〉= λe−iωt|λ, t〉

Therefore, |λ, t〉 is an eigenfunction of a (with eigenvalue λe−iωt) and thus a co-herent state. �

2 (a)

x =

~

2mω(a† + a) , p = i

m~ω

2(a† − a)

a|λ〉 = λ|λ〉〈λ|a|λ〉 = λ

〈λ|a†|λ〉 = 〈λa|λ〉 = λ∗

2

Page 3: 2.17

〈λ|x|λ〉 =

~

2mω(λ∗ + λ)

〈λ|x2|λ〉 =~

2mω〈λ|(a† + a)(a† + a)|λ〉 =

~

2mω〈λ|a†2 + a2 + aa† + a†a|λ〉

=~

2mω〈λ|a†2 + a2 + 2a†a+ 1|λ〉

=~

2mω[(λ∗ + λ)2 + 1]

〈λ|p|λ〉 = i

m~ω

2(λ∗ − λ)

〈λ|p2|λ〉 = −m~ω

2〈λ|(a† − a)(a† − a)|λ〉 = −m~ω

2〈λ|a†2 + a2 − aa† − a†a|λ〉

= − ~

2mω〈λ|a†2 + a2 − 2a†a− 1|λ〉

= − ~

2mω[(λ∗ − λ)2 − 1]

∆x2 = 〈λ|x2|λ〉 − 〈λ|x|λ〉2 =~

2mω

∆p2 = 〈λ|p2|λ〉 − 〈λ|p|λ〉2 =m~ω

2

∆x∆p =~

2 �

(b) By definition, a coherent state is an eigenstate of the annihilation operator a,hence

2~

(

x+i

mωp

)

|λ〉 = λ |λ〉

In position space representation,√

2~

(

x+i

~

i

d

dx

)

ψλ(x) = λψλ(x)

dψλ

dx= −mω

~

(

x−√

2~

mωλ

)

ψλ

ψλ(x) = C e−mω

2~

(

x−√

2~

mωλ)2

3

Page 4: 2.17

3(2.14) (a)

〈p′|x|α〉 =

dx′〈p′|x|x′〉〈x′|α〉

=

dx′x′〈p′|x′〉〈x′|α〉

=

dx′x′〈x′|p′〉∗〈x′|α〉

=

dx′x′1√2π~

e−ip′x′

~ 〈x′|α〉

= i~∂

∂p′

dx′〈p′|x′〉〈x′|α〉

= i~∂

∂p′〈p′|α〉 �

(b)

i~∂

∂t|α〉 =

p2

2m|α〉 +

mω2

2x2|α〉

i~∂

∂t〈p′|α〉 =

〈p′|p2|α〉2m

+mω2

2〈p′|x2|α〉

=p′2

2m〈p′|α〉 +

mω2

2i~

∂p′〈p′|x|α〉

=p′2

2m〈p′|α〉 +

mω2

2

(

i~∂

∂p′

)(

i~∂

∂p′

)

〈p′|α〉

⇒ i~∂

∂t|α〉 =

[

p2

2m− m~

2ω2

2

∂2

∂p′2

]

〈p′|α〉 �

From the symmetry between x and p in the coordinate and momentum spaceSchrodinger equation, we can deduce that the energy eigenfunctions in momen-tum space should be of the form

e−

p2

2p2◦Hn

(

p

p◦

)

where p◦ =√m~ω . �

4(2.15) From Eq(2.3.45a) in Sakurai,

x(t) = x(0) cosωt+p(0)

mωsinωt

C(t) = 〈0|x(t)x(0)|0〉

= 〈0|x2(0)|0〉 cosωt+ 〈0|p(0)x(0)|0〉sinωtmω

4

Page 5: 2.17

〈0|p(0)x(0)|0〉 =i~

2〈0|(a† − a)(a† + a)|0〉

= −i~2〈0|aa†|0〉

= −i~2

〈0|x2(0)|0〉 =

dx′〈0|x2(0)|x′〉〈x′|0〉

=

dx′x′2|〈x′|0〉|2

=α√π

dx′x′2e−α2x′2

(α =√

mω~

)

=α√π

√π

2α3

=~

2mω

Gathering the above results, we have

C(t) =~

2mωe−iωt

5(2.17)

〈0|eikx|0〉 =

dx′〈0|eikx|x′〉〈x′|0〉

=

dx′〈0|eikx′|x′〉〈x′|0〉

=

dx′eikx′|〈x′|0〉|2

=α√π

dx′eikx′

e−α2x′2

(α =√

mω~

)

=α√π

√π

αe−

k2

4α2

= e−k2

~

4mω

From Eq(2.3.34) in Sakurai, 〈0|x2|0〉 =~

2mω, therefore

〈0|eikx|0〉 = exp

[

−k2

2〈0|x2|0〉

]

5

Page 6: 2.17

6(2.20) (a) For x > 0, ψ(x) obeys the same differential equation as the simple harmonicoscillator, but only those solutions ψn(x=0) = 0 are acceptable in the presentproblem. Noticing that Hn(0) 6= 0 for even n, the eigenfunctions for the givenpotential are those of the simple harmonic oscillator with odd n, and the groundstate energy is therefore,

E =3

2~ω �

(b) The ground state wavefunction vanishes for x < 0 and is the same as the firstexcited state wavefunction of the simple harmonic oscillator for x ≥ 0, thus

ψ0(x) =

0 x < 0

2

α3

√πx e−

α2x2

2 x ≥ 0 (α =√

mω~

)

〈x2〉 =4α3

√π

∫ ∞

0

dx x4 e−α2x2

=4α3

√π

3√π

8α5

=3~

2mω �

– END –

6