2. Details of - Colorado State...

10

Transcript of 2. Details of - Colorado State...

Page 1: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations
Page 2: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

++

_+

2. Perpendicular

•••

2. Details of π-bonding.

a. Organic π-bond as a σ-donor

++

+

filled πvacant"dsp"

b. Organic π*-orbital as π-acceptor

+_

+

+

_

_

filled d vacant π* back donation / back bonding

Bonding of unsaturated organicligands involves a balance ofthese bonding modes -- whichdepopulates π-MO and populatesπ*

changes chemistry of organicligand

2 types of π-acceptors

1. Longitudinal

++

+_

_

++

+_

_

π bondfilled sp

vacantdsp

filled dπ*

_

_ ++

+

π bondσ bond

π

π*filled dvacantdsp

C O

:C O RN C: C C C C

M

M

M M

Page 3: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

D. Ligand substitution processes.

1. General Considerations - ligand substitution reactions are central to all organometallic reactions.

+ L' + L

a. For catalysis, substrate must coordinate to metal for activation - usually by ligand substitution of substrate for L.

b. To adjust reactivity of coordinated substrate, exchange an innocent ligand.

e.g.:

2

+ Et3N

unreactive towardnucleophiles

+

reactive towardnucleophiles

c. To stabilize normally unstable species.

e.g.:

2unstable to air

requires HNO3for oxidation

+

requires aqua regiaHCl/HNO3

M L M L'

PdCl

ClPdPd

NEt3

Cl

Cl Cl

NEt3

NEt3

NiBr

NiBr

PPh3

PPh2Ph2P

NiP

P

Et3N Cl-

PPh3

Ph2

Ph2

Br

Page 4: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

2. Classification

Substitution Reactions

2e- (L:) 1e- (radical, redox)

Associative (Sn2-like)

Dissociative (Sn1-like)

MLn + L' L'MLn

L + L'MLn-1requires vacantsite - e.g.coordinativeunsaturation

MLn MLn-1 + L

L'

L + L'MLn-1

usually coord. sat.

Associative (SRN2)

Diassociative (SRN1)

Oxidatively or reductivelydriven ligand exchange(catalyzed).

Radical chain ligandexchange - later.

3. Examples

a. 16 - electron compounds - d8, square planar, unsaturated complexes of Ni(II), Pd(II), Pt(II), Rh(I), Ir(I) - most extensively studied. Typical mechanism is 2e-, associative.

e.g.:

+ Y

Sn2 - apical attack sq. py. trig. bip.

+ X

sq. py.

LcPt

X

Lt Lc

PtLcLt

XLc

Y Lc

Pt

Pt

X

XLt

YLc

Lc Y

Lt Lc

PtLcLt

YLc

Page 5: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

Rate = 2nd order

Rate depends on the metal e.g. Ni > Pd >> Pt Å 106 difference

∴ if reaction depends on ligand exchange, Pt-catalyzed process may be too slow to be useful.

Rate depends on the incoming ligand R3P > Py > NH3, Cl– > H2O > OH– Å 105 range.

Rate depends on leaving group NO3– > H2O > Cl– > Br– > I– >

N3– > SCN– > NO2

– > CN–.

Rate depends on ligand trans to the one being displaced (trans effect) R3Si– > H– Å CH3

– Å CN– Å olefins Å CO > PR3 Å NO2

– Å I– Å SCN_ > Br > Cl– > RNH2 Å NH3 > OH– > NO3–

Å H2O

∴ you can activate ligand exchanges by replacing innocent ligand trans to the one you want to replace.

Sn2 - like

NOTE Trans effect is a kinetic phenomenon.

Trans influence- weakening of the bond trans to it.

Page 6: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

c. 18-electron systems - much slower than 16e systems, coordinatively saturated - mostly dissociative.

Ni(CO)4 Fe(CO)5 Cr(CO)6

e.g.

•• L•

Look at MO schemegains 1/2 M-L bondby associating!

a1σ

WHY?*a1σ*

e + b2

e + b2

(R3P)V(CO)6

Rate = 2nd order, SN2 like ligand trans to leaving group often hasprofound effect on rate of exchange.

b. 17-electron systems - very labile - originally thought to be dissociative to 15e- system, but really associative to 19e- system.

•Mn(CO)5 + R3P •Mn(CO)4PR3 + CO

e.g. •V(CO)6 + R3P •V(CO)5Pr3 + CO (M(O), d5) Rate ~ [V(CO)6] [R3P] and depends on basicity of R3P

slow Ni(CO)3 + CO L

fastLNi(CO)3

tetrahedrallabile

Rate α [Ni(CO)4] - 1st order

L

only 1 e– into anti

2e– into bonding MO

for Mn(CO)5•

d7

MnMn

Ni(CO)4

Page 7: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

b1 b2

a1

e + b2

a1σ*

a1σ

L

e + b2

C4v yzx

•• LMn Mn

Page 8: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

Can be accelerated by bulky ligands - steric strain release

PhH 25°+ L

In contrast Fe(CO)5, Cr(CO)6 not labile, and require heat or hν to give dissociation of CO for ligand substitution.

Apparent associative ligand exchanges of 18e- systems occur by "slippage".

L

M(I), d6, 18e-, sat. M(I), d6, 16e-, unsat. isolated

L

NiL

L

L

LNi L

L

L

Mn(CO)3Mn(CO)3 Mn(CO)3L

Mn(CO)2

L =

Cone <

KD

P(OEt)3

109°

<1010

P(Optolyl)3

128°

6 x 10-10

P(O-iPr)3

130°

2.7 x 0-5

P(O-otolyl)3

141°

4 x 10-2

PPh3

145°

No NiL4

KD

-CO

Page 9: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

19e-

+ MeCN

++

+ MeCN

d. Catalyzed and promoted ligand exchanges.

1. Electron-transfer catalysis.

- e

E° = 0.19v

_• •Ph3P

fast

L

M(I), d6, sat., 18e-unreactive toward L

17e- E°=0.52voxidizes

S.M.

for catalysis

L

chemical oxidants arealso effective

Reductive systems also known.

Fe(CO)5 + [Ph2CO] •– –•dissociative

•–

17e-

L

[LFe(CO)4] –•

M(0), d8, sat. 18e-

LFe(CO)4

strongreducingagent

Mn(CO)2Mn(MeCN) Mn(CO)2

Mn(CO)2

(CH3CN) (CO)2

[Fe(CO)5]-CO

[Fe(CO)4]

Page 10: 2. Details of - Colorado State Universityfranklin.chm.colostate.edu/lsh/teaching/c551/Chapter1CD.pdf · 2003. 2. 14. · D. Ligand substitution processes. 1. General Considerations

2. Radical chain

M(I), d6, 18e- M(0), d7, 17e-

•Re(CO)5 + InH

•Re(CO)5 + L LRe(CO)4• + CO (associative as above)

LRe(CO)4• + HRe(CO)5 LRe(CO)4H + Re(CO)5•

3. Other assisted ligand substitutions

Most important is R3NO replacements of CO on metal carbonyls.

Fe(CO)5 + R3N+_O_ Nuc.

attack

_ +

M(0), d8, 18e-, sat.not labile

R3N + LFe(CO)4L [(CO)4FeNR3 + CO2]

L

Note! Bu3PO catalyzes this kind of CO replacement.

Fe(CO)5 + R3PO+_

strong P-O bond

Fe(CO)4 + CO + R3POLFe(CO)4

(CO)4Fe CO

O NR3

O PR3CO

(CO)4Fe

HRe(CO)5In