1.1 1-1 Camus

Click here to load reader

  • date post

    03-May-2022
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of 1.1 1-1 Camus

1




1mm


3
a
b
c d


1-6
1.2 1-7
1-8 1-8 A1 B1
A2 B2 A3 B3
A1 B1 A2 B2


mf









[16]




[19] 4μm





TEHL
] ””
] ”
0] ”
”221-228200268-666
[2
[3
[4
[5
[8
200268-667
68-666
[1
15
[12] ”
[14]
[15] ”
[16] (
[17]
[18] al
Investigation of the Effect of Lubricant Viscosity on Gear Mesh Vibration”
[19]

The 1st International Conference on Manufacturing, Machine Design and Tribology
June 23-24 2005,Seoul

151-1522003-11
”149-150



(1) Agashe(2)

32rpm 1500rpm 500kW 2-1
20
1
21
2.2.1 2-4 2-4


2-5

45°



24
8μ 4μ
2.2.5 ’back to back’ 2-8


26
2-9
2-9


T.F.Conry(5)
2.3.2 2.3.1 2.3.1.1 2-10 Oi-x iy iz i

2gr 1gr
Oi-x iy iz i zi xiyi
Oi-x iy iz i
28
n
[ci * ] ii
T i CΦΦ=
[ki * ] ii

Oa-x ay az a Oa-x ay az a xaza
29
za Oa-x ay az a

C
n
n


2-11
(2-15)
00001
1
1

==

(2-33)
n TT* CfDΦf 111 [m1
* ] +*
(2-35)

(c 2
( )Δf


2-14







Δ f Δ f
0=lf



rad/s sn
500kW










100
200
300


(g6)
(h1)


3
43


2-20
2- 0
2
[1] CunliffeF.SmithJ.D.and WelbournD.B.“Dynamic Tooth Loads in Epicyclic
Gears”ASME J.Eng.Ind.578-584197495
[2] AgasheV.VijayakarsS.M.and ParkerR.G.“Dynamic Response of a Planetary
Gear System using a Finite Element/Contact Mechanics Model”ASME J. Mech Des.
304-3102000122
[4] ”
”634-639200099
[5] Corny, T.F. et al., “A Mathematical Programming Technique for the aluation
of Load Distribution and Optimal Modification for Gear System” ASME J Eng.Ind.
197311

3-1


(4)



(1
(2 (3

(1) iiii zyxO −

j Δ


i jw1 i
11
2
1
1
21
(3-4)
53

[ ]1f [ ]w [ ] 0f
[ ]1f [ ]w 3-5
5000×5000
54


(3-16)
(3-17)

i xy
( )12 −= i

56
i xy
3-7
i Sx
3
rx rxΔ ry ryΔ 3-8 exa eyai i
( )αθ −⋅Δ−= ii x sin (3-25) rexa
( )αθ −⋅Δ= i r
57
ygf i zgf i j


i
i ygj ssyssxsignff θαθαμ −Θ⋅−+Δ−−Θ⋅−+Δ⋅⋅±= sincos 00
(3-29)
58

(3-31)

S c
2X Sc ⋅⋅
b
3-8 x y x xrΔΘ
x

(3-42)
y
-1.5
-1
-0.5
0
0.5
1
-1.5
-1.5
-1



′ =



tktck ωωω θθθω 2sin2cos ′−′= (3-48) tktck ωωω θθθω 2cos2sin ′+′=′ (3-49)
(3-45)
-1
-0.5
0
0.5
1
-0.5
0
1
3-12
rxΔ y ryΔ x

xr
65
3.4.1 3-13

3-2
67
(rad) (a) 30Nm(b) 60Nm(c) 120Nm 3-15


Angular Displacement (rad)
M o m
e n t
Angular Displacement (rad)
M o m
e n t
Angular Displacement (rad)
M o m
e n t

68
(rad) (a) 30Nm(b) 60Nm(c) 120Nm 3-15


Angular Displacement (rad)
M o m
e n t
Angular Displacement (rad)
M o m
e n t
Angular Displacement (rad)
M o m
e n t
5.0E+5
1.0E+6
1.5E+6
2.0E+6


N
5.0E+5
1.0E+6
1.5E+6
2.0E+6


N
5.0E+5
1.0E+6
1.5E+6
2.0E+6


N
m
m
20
3.4.3 3-16
(mm)(a) 30 (b) 60Nm(c) 120Nm 3-16


Nm
Shearing Displacement (μm)
Shearing Displacement (μm)
Shearing Displacement (μm) M
μm
b 0.5ton
0 0
5000 10000

N
μm
c 1.09ton
0 0
5000 10000

N
3.4.4 3-17
178(N/mm2)(a) 120Nm 1.5 10-3rad (b) 120Nm 2.5×10-3rad
3-17


0
2
4
6
8
10
12
Tooth number
0
2
4
6
Tooth number
6
4
2
0
6
4
2
0
[4] ,,””
50-459 592124
60773
Zahnkupplungen ”Konstruktion 30-121978,483.
[2] ,” ”45-399C 541277
71