10GBASE-T Line Signaling

22
May 2003 Plato Labs 10GBASE 10GBASE - - T Line Signaling T Line Signaling Joseph N. Babanezhad [email protected] (408)-379-5115 Samir Thosani [email protected] Plato Labs

Transcript of 10GBASE-T Line Signaling

Page 1: 10GBASE-T Line Signaling

May 2003 Plato Labs

10GBASE10GBASE--T Line Signaling T Line Signaling

Joseph N. [email protected]

(408)-379-5115Samir Thosani

[email protected]

Plato Labs

Page 2: 10GBASE-T Line Signaling

May 2003 Plato Labs

Analog Front End (AFE) modelAnalog Front End (AFE) modelfor DSP Solutionfor DSP Solution

PSF

HYB

RID

AAFPGA

HYB

RID

AAF PGA

PSF

RecoveredClock

SynthesizedClock

RecoveredClock

1 : 1

UTP

1 : 1

TXADC RXADC

TXADC

Page 3: 10GBASE-T Line Signaling

May 2003 Plato Labs

• 2 Vp peak-to-peak PAM-M launch signal• Analog differential blocks have only odd non-linearity• Analog blocks are characterized by:

Y = ββββX(1+ααααX2)

• ββββ block gain• αααα 3rd order non-linearity coefficient

Assumptions for AFE Linearity Assumptions for AFE Linearity AnalysisAnalysis

Page 4: 10GBASE-T Line Signaling

May 2003 Plato Labs

WorstWorst--case Noncase Non--linearity Error (0m)linearity Error (0m)

Page 5: 10GBASE-T Line Signaling

May 2003 Plato Labs

Combined AFE Non-linearity (7 blocks)

-Vp Vp0

Vp(1 + 7αVp2 + 63α2Vp

4)

Vp

2

Vp

2-Vp(1 + 7α Vp2 + 63 α2Vp

4)

(Accurate PAM5 IN)

X(1 + 7αX2 + 63α2X4)

(Warped PAM5 OUT)

IN

OU

T

Page 6: 10GBASE-T Line Signaling

May 2003 Plato Labs

AFE Linearity Requirement vs. AFE Linearity Requirement vs. LineLine--SignalSignal

0.43

0.31

1.74

|αααα|Formula

(%)

0.455.742.000PAM-17(Cicada 1/00)

0.3510.003.134PAM-10(Solar Flare)

2.007.002.000PAM-5(Plato Labs)

|αααα|Simulation

(%)

Launch Power (dBm)

Peak-to-Peak (V)

Line Code

Page 7: 10GBASE-T Line Signaling

May 2003 Plato Labs

WorstWorst--case Noncase Non--linearity Error linearity Error (Normalized (Normalized -- 0m)0m)

Page 8: 10GBASE-T Line Signaling

May 2003 Plato Labs

Combined AFE Non-linearity (7 blocks normalized)

-Vp Vp0Vp

2

Vp

2-Vp(1 + 7α Vp

2 + 63 α2 Vp4)

(Accurate PAM5 IN)

X(1 + 7αX2 + 63α2 X4)

(Warped PAM5 OUT)

IN

OU

T1 + 7αVp

2 + 63α2 Vp4

1 + 7αVp2 + 63α2 Vp

4

4 16

Vp(1 + 7 α Vp2 + 63 α2 Vp

4)

1 + 7αVp2 + 63α2 Vp

4

4 16

Page 9: 10GBASE-T Line Signaling

May 2003 Plato Labs

AFE Linearity Requirement AFE Linearity Requirement (Normalized) vs. Line(Normalized) vs. Line--SignalSignal

1.30

1.00

7.10

|αααα|Formula

(%)

2.755.742.000PAM-17(Cicada 1/00)

1.3010.003.134PAM-10(Solar Flare)

6.007.002.000PAM-5(Plato Labs)

|αααα|Simulation

(%)

Launch Power (dBm)

Peak-to-Peak (V)

Line Code

Page 10: 10GBASE-T Line Signaling

May 2003 Plato Labs

ClassClass--E 4E 4--Connector Channel Model1Connector Channel Model1

Page 11: 10GBASE-T Line Signaling

May 2003 Plato Labs

Channel Capacity 1Channel Capacity 1

15.5215.4614.75Capacity (Gbps)

-150-150-143NOISE (dBm/Hz)

1005050FEXT Cancellation (dB)

1006565ECHO Cancellation (dB)

1005050NEXT Cancellation (dB)

• Avaya ANEXT model: -60+10 log10( )• No ANEXT Cancellation is considered

f100

Page 12: 10GBASE-T Line Signaling

May 2003 Plato Labs

Modified ClassModified Class--E 4E 4--Connector Channel Model2Connector Channel Model2

Page 13: 10GBASE-T Line Signaling

May 2003 Plato Labs

Channel Capacity 2Channel Capacity 2

18.5918.5217.77Capacity (Gbps)

-150-150-143NOISE (dBm/Hz)

1005050FEXT Cancellation (dB)

1006565ECHO Cancellation (dB)

1005050NEXT Cancellation (dB)

• Avaya ANEXT model: -60+10 log10( )• No ANEXT Cancellation is considered

f100

Page 14: 10GBASE-T Line Signaling

May 2003 Plato Labs

Analog ApproachAnalog Approach

CLK

DATA

Vin EQUALIZER/CANCELLOR CDR

Page 15: 10GBASE-T Line Signaling

May 2003 Plato Labs

ClassClass--E 4E 4--Connector Channel Model3Connector Channel Model3

Page 16: 10GBASE-T Line Signaling

May 2003 Plato Labs

Frequency responses at Slicer Frequency responses at Slicer InputInput

Page 17: 10GBASE-T Line Signaling

May 2003 Plato Labs

Original PAM5 and Slicer InputOriginal PAM5 and Slicer Input

Page 18: 10GBASE-T Line Signaling

May 2003 Plato Labs

Slicer Input Eye DiagramSlicer Input Eye Diagram

Page 19: 10GBASE-T Line Signaling

May 2003 Plato Labs

Retimed CDR PAM5 Data OutputRetimed CDR PAM5 Data Output

Page 20: 10GBASE-T Line Signaling

May 2003 Plato Labs

FEC FEC

D0 D7 D8 D15 D16 D23 D24 D31

Scrambler

Sc0 Sc7 Sc8 Sc15 Sc16 Sc23 Sc24 Sc31

Coset/Lattice Calculation

Sd0 Sd8 Sd9 Sd17 Sd18 Sd26 Sd27 Sd35

4D 8-state Trellis FEC

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3

XGMII

A3

A2

A1

A0

B3

B2

B1

B0

C3

C2

C1

C0

D3

D2

D1

D0

1.25GBaud/sec (4x312.5MHz)

312.5 MHz

Page 21: 10GBASE-T Line Signaling

May 2003 Plato Labs

CosetCoset/Lattice Calculation/Lattice Calculation

Sdn(t) = Scn(t) n=0,…, 7Sd8 = Sc7 (t-1) ⊕⊕⊕⊕ Sc6 (t-2) ⊕⊕⊕⊕ Sd8(t-3)

Sdn(t) = Sc(n-1)(t) n=9,…, 16Sd17 = Sc16 (t-1) ⊕⊕⊕⊕ Sc15 (t-2) ⊕⊕⊕⊕ Sd17(t-3)

Sdn(t) = Sc(n-1)(t) n=18,…, 25Sd26 = Sc25 (t-1) ⊕⊕⊕⊕ Sc24 (t-2) ⊕⊕⊕⊕ Sd26(t-3)

Sdn(t) = Sc(n-1)(t) n=27,…, 34Sd35 = Sc34 (t-1) ⊕⊕⊕⊕ Sc33 (t-2) ⊕⊕⊕⊕ Sd35(t-3)

Page 22: 10GBASE-T Line Signaling

May 2003 Plato Labs

Implementation FeasibilityImplementation Feasibility

• PHY achieves 10Gb/s over 100m Cat6• Single-chip CMOS implementation (0.18µ)• Power/Cost is 2-3X of 1000BASE-T• PAM5 line-signaling• 2Vpp launch voltage• Interface to MAC via XGMII