10/2/07 van Alphen & Katz 1 10/2/07 van Alphen & Katz...
Embed Size (px)
Transcript of 10/2/07 van Alphen & Katz 1 10/2/07 van Alphen & Katz...
-
10/2/07 van Alphen & Katz 1
Digital Modulation Techniques- Overview -
Digital Modulation Basics Vocabulary/Notation Basic Phase Modulation: BPSK, QPSK, MPSK, DPSK Basic Frequency Modulation: FSK Performance Measures & Fundamental Limits
QPSK Variations (/4 QPSK, OQPSK, MSK, DQPSK) QAM & OFDM Pulse Shaping Conclusions
10/2/07 van Alphen & Katz 2
Basic M-ary Digital CommunicationSystem
A/DA/D Collect k bits;Collect k bits;bits bits symbols symbols
Modulate;Modulate;
symbols symbols waveformswaveforms
Demodulate;Demodulate;
waveform waveform symbolssymbols
bits bits symbols symbolsD/AD/A
(analog)(analog)informationinformation
(analog)(analog)informationinformation
channelchannel
10/2/07 van Alphen & Katz 3
M-ary Communication System:Symbol Level Considerations
Transmits one of M possible waveforms Each symbol
corresponds to a message mi, i = 1, 2, , M can represents k bits of information, where M = 2k
is associated with a waveform si(t), of duration T seconds
T = Ts is called the symbol time or symbol duration
To send message mi: transmit waveform si(t), 0 < t T receiver guesses which of M possible messages was sent
10/2/07 van Alphen & Katz 4
Simplified QPSK Example
Say we use Quaternary Phase Shift Keying (QPSK) as ourmodulation.
We need M = 4 waveforms, with 4 different phase angles:
cos(2f0t)
sin(2f0t)
00
01
11
10
Bits-to-Waveforms
(Gray-coded)
-
10/2/07 van Alphen & Katz 5
QPSK Receiver (Generalized)
)tcos(T
20!
)tsin(T
20!
E
00
01
11
10
s4
s1
s3
s2
Dotted lines receiver decisionboundaries (for equally likely messages inadditive white noise)
Note that the mapping between bits andwaveforms is done using a Gray Code:Noise that pushes the received point past asingle decision boundary causes only asingle bit error.
10/2/07 van Alphen & Katz 6
QPSK Example for Digital Image
Vector Value 5 7 4 Binary-Coded 101 111 100Tx Bit Sequence for M = 4:(re-grouping) 10 11 11 10
Consider a vector, v, taken from a digital color image with 8quantization levels (3 bits) for R, G and B:
[5 7 4 4 0 3 5 6 2 1 0 5]
red green blue
(Grouping k = log2(M) = log2(4) = 2 bits per symbol)
10/2/07 van Alphen & Katz 7
Quaternary Example, Continued
Bit Sequence 10 11 11 10
-sin(2f0t)-cos(2f0t) -sin(2f0t)
-cos(2f0t)
t0 T 2T 3T 4T
Say f0 = 1000 Hz, T = 1 ms
-1
0
1
0 0.001 0.002 0.003 0.004
10 11 11 10 Note: abruptphasechangesincrease thebandwidth
10/2/07 van Alphen & Katz 8
Relating Bit and Symbol Parameters
1 symbol k = log2(M) bits T = Ts = kTb
e.g., if M = 4, then k = 2 and T = Ts = 2Tb Baud Rate R symbols/sec = 1/T Bit Rate Rb bits/sec = 1/Tb
E = S T (E: energy in the waveform of duration T; S:average signal power) Eb = S Tb (Eb: energy allocated per bit; Tb is time allocated per bit)
Bandwidth proportional to 1/T Decreasing T Faster signaling Wider Bandwidth
-
10/2/07 van Alphen & Katz 9
Binary Phase Shift Keying (BPSK)
M = 2 2 waveforms, 180 out of phase
Signal Space Diagram (1-dimensional)
Throughput:
)tcos(T
E2)t(s 01 !=
)tcos(T
E2)t(s 02 !"=
0 < t T
Rb = 1/T = 1/Tb bps
X X )tcos(T
20!
0
EE!
s1s2
10/2/07 van Alphen & Katz 10
BPSK: Optimum Receiver for AWGN(Assume equally likely, equal energy signals)
r(t) x !T
0
II > 0s1 si
)tcos(T
2)t( 01 !="
CorrelationReceiver
10/2/07 van Alphen & Katz 11
Quaternary Phase Shift Keying (QPSK)
M = 4 4 waveforms, 90 out of phase
Signal Space Diagram (2-dim.)
2 bits/symbol
Throughput:
)tcos(T
E2)t(s 04 !=
)tsin(T
E2)t(s 01 !=
Rb = 2/T bps
)tcos(T
E2)t(s 03 !"=
)tsin(T
E2)t(s 02 !"=
0 < t T
)tcos(T
20!
)tsin(T
20!
xx
x
x
E
10/2/07 van Alphen & Katz 12
QPSK Modulation
diSerialParallel
xdeven
dodd
)tcos(T2)t( 01 !="
x
-90I-QTransmitter
1T 2T 3T0td(t)
dodd(t) 1T 2T 3T0 t
deven(t) 1T 2T 3T0 t
Data streamExample
s(t)
-
10/2/07 van Alphen & Katz 13
8-ary PSK
M = 8 8 waveforms, 45 out of phase
Signal Space Diagram (2-dim.)
3 bits/symbol
Throughput: Rb = 3/T bps
)tcos(T
20!
)tsin(T
20!
xx
x
x
E
xx
xx
10/2/07 van Alphen & Katz 14
MPSK: Optimum Receiver for AWGN(Assume equally likely, equal energy signals)
I-QReceiver
r(t)
x !T
0
I
= tan-1(Q/I) si^)tcos(
T2)t( 01 !="
x !T
0
Q
)tsin(T2)t( 02 !="
Choose siw/nearest i
I: Projection of r(t) onto 1 axisQ: Projection of r(t) onto 2 axis )t(1!
0
r
I
2(t)
Q
10/2/07 van Alphen & Katz 15
Bit Error Probabilities for MPSKSignals in AWGN
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
M=2, 4
M=8
M=16
M=32
M=64
Eb/N0, dB
Bit Error Probabililty, MPSK
Signaling
10/2/07 van Alphen & Katz 16
QPSK vs. BPSK(The Almost Free Lunch)
QPSK has twice the throughput as BPSK
QPSK and BPSK have
the same transmission bandwidth
the same bit error probability, PB
even though QPSK has a higher symbol errorprobability
-
10/2/07 van Alphen & Katz 17
Differential Phase Shift Keying (DPSK)- Motivation -
Consider a BPSK system in which the transmitter local oscillatorand the receiver local oscillator are out of phase by angle .
Note that some phase offset between the tx and the rcvr isalways present, and usually necessitates a PLL at the rcvr
X XX
X
Tx Rcvr
)tsin(T2
0! )tsin(T2
0!
)tcos(T2
0!
EE!
10/2/07 van Alphen & Katz 18
(Binary) DPSK
Concept: Differentially encode the information bits, prior totransmission; differentially decode the received bits
m2 = 0 no change in phase of the sinusoid, relative to the previousburst
m1 = 1 180 change in phase of the sinusoid, relative to theprevious burst
Tx phase angle i = i-1 + i where i denotes the i-thinformation bit: i = i i-1 = i
Note: Differential schemes always require the transmission ofone additional reference bit prior to transmitting the data.
10/2/07 van Alphen & Katz 19
Example: Transmitted Waveformsfor BPSK and DPSK
Consider the bit stream
0 1 1 0 1BPSK
-1.5
0
1.5
0 1 2 3 4 5
t, s
s(t)
DPSK
-1.5
0
1.5
0 1 2 3 4 5 6
10/2/07 van Alphen & Katz 20
DPSK
Phase information is only relative to that of the previouspulse no need to generate phase reference at thereceiver (No PLL required).
Performance is degraded from that of BPSK in AWGN, dueto induced dependence of errors from bit-to-bit.
However, DPSK eliminates degradation due to phase offsetsbetween the transmitter and the receiver.
Note that we have only discussed Binary DPSK; QuarternaryDPSK (QDPSK) is also commonly used, with similarencoding and decoding at the tx and the rcvr.
-
10/2/07 van Alphen & Katz 21
M-ary Frequency Shift Keying: MFSK
As M increases
Bandwidth increases (bandwidth efficiency decreases)
Pb decreases (if the frequencies are chosen to yieldorthogonality)
power efficiency increases
Constant envelope signaling No performance degradation from the use of
non-linear amplifiers
10/2/07 van Alphen & Katz 22
Binary Frequency Shift Keying (BFSK)
M = 2 2 waveforms, at 2 different frequencies
Signal Space Diagram (for the special case oforthogonal signaling)
Throughput:
)tf2cos(T
E2)t(s 01 !=
)t)ff(2cos(T
E2)t(s 02 !+"=
0 < t T
Rb = 1/T = 1/Tb bps
X )tf2cos(T
20!
0 E
E
s1
s2Xf = 1/T, NC Rcvr
1/(2T), Coh. Rcvr
10/2/07 van Alphen & Katz 23
BFSK Optimum (Coherent) Receiver
))(2cos(2
0 tffT
!+"
r(t)
x !T
0
si^)2cos(2 0tfT !
x !T
0
Chooselargest
10/2/07 van Alphen & Katz 24
PSD: NRZ Baseband Signaling, BPSK
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
fTs
G(f)/E
-
10/2/07 van Alphen & Katz 25
PSD: NRZ Signaling, BPSK(dB Scale, with Bandwidth Definitions)
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
0 2 4 6 8 10 12 14 16
fTs
G(f
)/E
, dB
W3dB
WB,16 dB
WN-N
10/2/07 van Alphen & Katz 26
Communications Link: the Channel
Channels are characterized by their capacity
Capacity: An inherent limit on the rate at whichinformation can be sent error free
Capacity increases with bandwidth (W) and signal-to-noise ratio (SNR or S/N)
Info
Bandwidth,SNR
C = W log(1 + S/N)
10/2/07 van Alphen & Katz 27
Reviewing Shannons Theorem
Shannon-Hartley Theorem:
Communication (with arbitrarily small error probability)is . . .
Possible at rates Rb < C Impossible at rates Rb > C
Establishes absolute theoretical limit on tx rate Therefore,
!"
#$%
&+'=N
S1logWC 2
!"
#$%
&+= C Region: NoModulation/CodingTechniques w/P(E) 0
10/2/07 van Alphen & Katz 30
-8
-4
0
4
-2 2 6 10 14 18 22 26 30
Bandwidth Efficiency Plane, continuedPB = 10-5
Rb = C
Eb/N0, dB
log2(Rb/W)
Power-limitedRegion
Bandwidth-limitedRegion
M = 4M = 2
MPSK
10/2/07 van Alphen & Katz 31
Bandwidth Efficient Digital ModulationTechniques
Phase Modulation
Discrete Phase MPSK QPSK, OQPSK, /4-QPSK DQPSK, ODQPSK, O/4-QPSK
Continuous Phase MSK, GMSK
QAM
OFDM
More later on howto do these, if thebasic modulationtechniques arentefficient enough
10/2/07 van Alphen & Katz 32
QPSK Variations Restricting Alowable PhaseTransitions
QPSK: max phase transition 180o
loses constant envelope afterfiltering
OQPSK: max phase transition 90o
preserves constantenvelope after filtering
Compromise - /4-QPSK:max phase transition 135o, min 45o
preserves constant envelope: better than bandlimited QPSK not as well as bandlimited OQPSK
same BER in AWGN as QPSK, OQPSK
-
10/2/07 van Alphen & Katz 33
QPSK Variations, cont.
Discrete Phase Transition Techniques:
QPSK //4-QPSK OQPSK max 180o max 135o max 90o
- reduction of phasetransitions to obtain lesssidelobe regrowth andtherefore less ISI
Why not completely eliminate abrupt phase transitions? Continuous Phase Transition Techniques (CPFSK):
MSK: applies sinusoidal weight to OQPSK (constant envelope)- same BER as QPSK & OQPSK (MF detector in AWGN)- same bandwidth efficiency (bps/Hz) as QPSK & OQPSK- spectrum has wider mainlobe than QPSK & OQPSK, but faster drop-off of sidelobes (proportional to -4 vs. -2)
10/2/07 van Alphen & Katz 34
QPSK Variations, cont.
QPSK /4-QPSK OQPSK MSK - reduction of phasetransitions to obtain lesssidelobe regrowth andtherefore less ISI
MPSK GMSK, BT=.25 GMSK, BT = .3 GMSK, BT = .5 Ideal 0 dB .7 dB .3 dB .2 dB Practical1 .7 dB 1.7 dB
Eb/N0 Penalty in AWGN (vs. Ideal QPSK)
1 Simulation results, assuming non-optimal receiver
Special Case of MSK: GMSK (Gaussian Pulse Shape, time-bandwidth product BT) further narrows the spectrum, at the cost of re-introducing ISI (increasing BER) smaller BT product more compact spectrum, but larger ISI
10/2/07 van Alphen & Katz 35
Power Spectral Densities
f/Rb, Hz/bps
-60
-50
-40
-30
-20
-10
0
10
- 3 - 2 - 1 0 1 2 3
MSK, dB
QPSK, dB
G(f)
10/2/07 van Alphen & Katz 36
Quadrature Amplitude Modulation:Rectangular 16-ary QAM
-3A -A A 3A
3A
A
-A
-3A
1(t)
2(t)QAM: send one coordinate on in-phase carrier, one on quadraturecarrier
Throughput:
Rb = 4/T
-
10/2/07 van Alphen & Katz 37
Orthogonal Frequency Division Modulation(OFDM)
Choose N orthogonal tones to be used as sub-carriers:
Demux the user data (serial-to-parallel conversion) Put each sub-stream of data onto a different sub-carrier,
where the sub-carriers are the orthogonal tones describedabove
)t)ff(2cos(T
E2)t(s 0i !+"= i = 1, 2, , N;
f = i/(T)
f1 f2 fN
x
xx
x
x
xx
x
x
xx
x
Example whereeach sub-carrieris modulatedwith QPSK
10/2/07 van Alphen & Katz 38
Motivation for Pulse Shaping
Band-limiting the signal in the frequency domain leads to timedomain spreading of the signal
Result: Intersymbol Interference, due to signal in one time-slot overlapping into the next time slot(s).
H(f)
f
Sin(f) Sout(f)
f f
sin(t)
t0 T
sin(t)Narrow relative to Signal
Channel Transfer Function
t0 T
10/2/07 van Alphen & Katz 39
Motivation for Pulse Shaping: ISI
Tails of signal overlap with body of succeeding signal
Destructive interference results when the pulses are ofopposite polarity
Problem cannot be solved by increasing signal power orenergy as opposed to additive noise problems, which can!
t0 T
Pb
Eb/N0, dB
AWGN
Eb/N0, dB
PbISI
10/2/07 van Alphen & Katz 40
Commonly Used Pulse Shapes
Nyquist Pulse: Cancel ISI (ideally) Example: Raised Cosine, w/roll-off parameter = 0):
Gaussian Pulse:where = .5887/B, and B is the 3-dB bandwidth of the filter
0
0.2
0.4
0.6
0.8
1
1.2
-1.5 -1 -0.5 0 0.5 1 1.5
= 0
= 1
= .5
fTs,
H(f)
22fG e)f(H
!"=
-
10/2/07 van Alphen & Katz 41
Power Efficiency Comparison for DigitalModulation Techniques in AWGN
Modulation PB = 10-1
PB = 10-2
PB = 10-3
PB = 10-4
PB = 10-5
PB = 10-6
MPSK, M = 2, 4
M = 8
M = 16
M = 32
M = 64
-0.9 dB
1.0 dB
4.0 dB
7.4 dB
11.2 dB
4.3 dB
7.3 dB
11.4 dB
16.0 dB
20.9 dB
6.7 dB
10.0 dB
14. 4 dB
19.1 dB
24.2 dB
8.4 dB
11.8 dB
16.2 dB
21.0 dB
26.1 dB
9.6 dB
12.9 dB
17.5 dB
22.3 dB
27.4 dB
10.5 dB
14.0 dB
18.5 dB
23.4 dB
28.5 dB
DQPSK, MSK 2.0 dB 6.8 dB 9.2 dB 10.8 dB 12.0 dB 12.9 dB
GMSK, BT = .25
BT=infinity
0.8 dB
-.1 dB
6.0 dB
5.0 dB
8.5 dB
7.5 dB
10.1 dB
9.1 dB
11.3 dB
10.3 dB
12.2 dB
11.2 dB
16-QAM
64-QAM
1.9 dB
5.0 dB
7.9 dB
11.5 dB
10.5 dB
15.0 dB
12.3 dB
16.0 dB
13.6 dB
17.8 dB
14.2 dB
18.5 dB
Required Eb/N0 for Various Bit Error Probabilities
10/2/07 van Alphen & Katz 42
Relative Complexityof Modulation Techniques [Ref: Oetting]
BPSK
QPSK
OQPSK
MSK
CPFSK
QPR
MPSK
QAMDQPSK
DPSK
CPFSK
NCFSK
OOK
(ED) (DISC.DET.)
(OPT.DET.)
HIGHLOW