10/2/07 van Alphen & Katz 1 10/2/07 van Alphen & Katz...

of 11 /11
10/2/07 van Alphen & Katz 1 Digital Modulation Techniques - Overview - Digital Modulation Basics Vocabulary/Notation Basic Phase Modulation: BPSK, QPSK, MPSK, DPSK Basic Frequency Modulation: FSK Performance Measures & Fundamental Limits QPSK Variations (π/4 QPSK, OQPSK, MSK, DQPSK) QAM & OFDM Pulse Shaping Conclusions 10/2/07 van Alphen & Katz 2 Basic M-ary Digital Communication System A/D A/D Collect k bits; Collect k bits; bits bits symbols symbols Modulate; Modulate; symbols symbols waveforms waveforms Demodulate; Demodulate; waveform waveform symbols symbols bits bits symbols symbols D/A D/A (analog) (analog) information information (analog) (analog) information information channel channel 10/2/07 van Alphen & Katz 3 M-ary Communication System: Symbol –Level Considerations Transmits one of M possible waveforms Each symbol corresponds to a message m i , i = 1, 2, …, M can represents k bits of information, where M = 2 k is associated with a waveform s i (t), of duration T seconds T = T s is called the symbol time or symbol duration To send message m i : transmit waveform s i (t), 0 < t T receiver guesses which of M possible messages was sent 10/2/07 van Alphen & Katz 4 Simplified QPSK Example Say we use Quaternary Phase Shift Keying (QPSK) as our modulation. We need M = 4 waveforms, with 4 different phase angles: cos(2πf 0 t) sin(2πf 0 t) 00 01 11 10 Bits-to-Waveforms (Gray-coded)

Embed Size (px)

Transcript of 10/2/07 van Alphen & Katz 1 10/2/07 van Alphen & Katz...

  • 10/2/07 van Alphen & Katz 1

    Digital Modulation Techniques- Overview -

    Digital Modulation Basics Vocabulary/Notation Basic Phase Modulation: BPSK, QPSK, MPSK, DPSK Basic Frequency Modulation: FSK Performance Measures & Fundamental Limits

    QPSK Variations (/4 QPSK, OQPSK, MSK, DQPSK) QAM & OFDM Pulse Shaping Conclusions

    10/2/07 van Alphen & Katz 2

    Basic M-ary Digital CommunicationSystem

    A/DA/D Collect k bits;Collect k bits;bits bits symbols symbols

    Modulate;Modulate;

    symbols symbols waveformswaveforms

    Demodulate;Demodulate;

    waveform waveform symbolssymbols

    bits bits symbols symbolsD/AD/A

    (analog)(analog)informationinformation

    (analog)(analog)informationinformation

    channelchannel

    10/2/07 van Alphen & Katz 3

    M-ary Communication System:Symbol Level Considerations

    Transmits one of M possible waveforms Each symbol

    corresponds to a message mi, i = 1, 2, , M can represents k bits of information, where M = 2k

    is associated with a waveform si(t), of duration T seconds

    T = Ts is called the symbol time or symbol duration

    To send message mi: transmit waveform si(t), 0 < t T receiver guesses which of M possible messages was sent

    10/2/07 van Alphen & Katz 4

    Simplified QPSK Example

    Say we use Quaternary Phase Shift Keying (QPSK) as ourmodulation.

    We need M = 4 waveforms, with 4 different phase angles:

    cos(2f0t)

    sin(2f0t)

    00

    01

    11

    10

    Bits-to-Waveforms

    (Gray-coded)

  • 10/2/07 van Alphen & Katz 5

    QPSK Receiver (Generalized)

    )tcos(T

    20!

    )tsin(T

    20!

    E

    00

    01

    11

    10

    s4

    s1

    s3

    s2

    Dotted lines receiver decisionboundaries (for equally likely messages inadditive white noise)

    Note that the mapping between bits andwaveforms is done using a Gray Code:Noise that pushes the received point past asingle decision boundary causes only asingle bit error.

    10/2/07 van Alphen & Katz 6

    QPSK Example for Digital Image

    Vector Value 5 7 4 Binary-Coded 101 111 100Tx Bit Sequence for M = 4:(re-grouping) 10 11 11 10

    Consider a vector, v, taken from a digital color image with 8quantization levels (3 bits) for R, G and B:

    [5 7 4 4 0 3 5 6 2 1 0 5]

    red green blue

    (Grouping k = log2(M) = log2(4) = 2 bits per symbol)

    10/2/07 van Alphen & Katz 7

    Quaternary Example, Continued

    Bit Sequence 10 11 11 10

    -sin(2f0t)-cos(2f0t) -sin(2f0t)

    -cos(2f0t)

    t0 T 2T 3T 4T

    Say f0 = 1000 Hz, T = 1 ms

    -1

    0

    1

    0 0.001 0.002 0.003 0.004

    10 11 11 10 Note: abruptphasechangesincrease thebandwidth

    10/2/07 van Alphen & Katz 8

    Relating Bit and Symbol Parameters

    1 symbol k = log2(M) bits T = Ts = kTb

    e.g., if M = 4, then k = 2 and T = Ts = 2Tb Baud Rate R symbols/sec = 1/T Bit Rate Rb bits/sec = 1/Tb

    E = S T (E: energy in the waveform of duration T; S:average signal power) Eb = S Tb (Eb: energy allocated per bit; Tb is time allocated per bit)

    Bandwidth proportional to 1/T Decreasing T Faster signaling Wider Bandwidth

  • 10/2/07 van Alphen & Katz 9

    Binary Phase Shift Keying (BPSK)

    M = 2 2 waveforms, 180 out of phase

    Signal Space Diagram (1-dimensional)

    Throughput:

    )tcos(T

    E2)t(s 01 !=

    )tcos(T

    E2)t(s 02 !"=

    0 < t T

    Rb = 1/T = 1/Tb bps

    X X )tcos(T

    20!

    0

    EE!

    s1s2

    10/2/07 van Alphen & Katz 10

    BPSK: Optimum Receiver for AWGN(Assume equally likely, equal energy signals)

    r(t) x !T

    0

    II > 0s1 si

    )tcos(T

    2)t( 01 !="

    CorrelationReceiver

    10/2/07 van Alphen & Katz 11

    Quaternary Phase Shift Keying (QPSK)

    M = 4 4 waveforms, 90 out of phase

    Signal Space Diagram (2-dim.)

    2 bits/symbol

    Throughput:

    )tcos(T

    E2)t(s 04 !=

    )tsin(T

    E2)t(s 01 !=

    Rb = 2/T bps

    )tcos(T

    E2)t(s 03 !"=

    )tsin(T

    E2)t(s 02 !"=

    0 < t T

    )tcos(T

    20!

    )tsin(T

    20!

    xx

    x

    x

    E

    10/2/07 van Alphen & Katz 12

    QPSK Modulation

    diSerialParallel

    xdeven

    dodd

    )tcos(T2)t( 01 !="

    x

    -90I-QTransmitter

    1T 2T 3T0td(t)

    dodd(t) 1T 2T 3T0 t

    deven(t) 1T 2T 3T0 t

    Data streamExample

    s(t)

  • 10/2/07 van Alphen & Katz 13

    8-ary PSK

    M = 8 8 waveforms, 45 out of phase

    Signal Space Diagram (2-dim.)

    3 bits/symbol

    Throughput: Rb = 3/T bps

    )tcos(T

    20!

    )tsin(T

    20!

    xx

    x

    x

    E

    xx

    xx

    10/2/07 van Alphen & Katz 14

    MPSK: Optimum Receiver for AWGN(Assume equally likely, equal energy signals)

    I-QReceiver

    r(t)

    x !T

    0

    I

    = tan-1(Q/I) si^)tcos(

    T2)t( 01 !="

    x !T

    0

    Q

    )tsin(T2)t( 02 !="

    Choose siw/nearest i

    I: Projection of r(t) onto 1 axisQ: Projection of r(t) onto 2 axis )t(1!

    0

    r

    I

    2(t)

    Q

    10/2/07 van Alphen & Katz 15

    Bit Error Probabilities for MPSKSignals in AWGN

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

    M=2, 4

    M=8

    M=16

    M=32

    M=64

    Eb/N0, dB

    Bit Error Probabililty, MPSK

    Signaling

    10/2/07 van Alphen & Katz 16

    QPSK vs. BPSK(The Almost Free Lunch)

    QPSK has twice the throughput as BPSK

    QPSK and BPSK have

    the same transmission bandwidth

    the same bit error probability, PB

    even though QPSK has a higher symbol errorprobability

  • 10/2/07 van Alphen & Katz 17

    Differential Phase Shift Keying (DPSK)- Motivation -

    Consider a BPSK system in which the transmitter local oscillatorand the receiver local oscillator are out of phase by angle .

    Note that some phase offset between the tx and the rcvr isalways present, and usually necessitates a PLL at the rcvr

    X XX

    X

    Tx Rcvr

    )tsin(T2

    0! )tsin(T2

    0!

    )tcos(T2

    0!

    EE!

    10/2/07 van Alphen & Katz 18

    (Binary) DPSK

    Concept: Differentially encode the information bits, prior totransmission; differentially decode the received bits

    m2 = 0 no change in phase of the sinusoid, relative to the previousburst

    m1 = 1 180 change in phase of the sinusoid, relative to theprevious burst

    Tx phase angle i = i-1 + i where i denotes the i-thinformation bit: i = i i-1 = i

    Note: Differential schemes always require the transmission ofone additional reference bit prior to transmitting the data.

    10/2/07 van Alphen & Katz 19

    Example: Transmitted Waveformsfor BPSK and DPSK

    Consider the bit stream

    0 1 1 0 1BPSK

    -1.5

    0

    1.5

    0 1 2 3 4 5

    t, s

    s(t)

    DPSK

    -1.5

    0

    1.5

    0 1 2 3 4 5 6

    10/2/07 van Alphen & Katz 20

    DPSK

    Phase information is only relative to that of the previouspulse no need to generate phase reference at thereceiver (No PLL required).

    Performance is degraded from that of BPSK in AWGN, dueto induced dependence of errors from bit-to-bit.

    However, DPSK eliminates degradation due to phase offsetsbetween the transmitter and the receiver.

    Note that we have only discussed Binary DPSK; QuarternaryDPSK (QDPSK) is also commonly used, with similarencoding and decoding at the tx and the rcvr.

  • 10/2/07 van Alphen & Katz 21

    M-ary Frequency Shift Keying: MFSK

    As M increases

    Bandwidth increases (bandwidth efficiency decreases)

    Pb decreases (if the frequencies are chosen to yieldorthogonality)

    power efficiency increases

    Constant envelope signaling No performance degradation from the use of

    non-linear amplifiers

    10/2/07 van Alphen & Katz 22

    Binary Frequency Shift Keying (BFSK)

    M = 2 2 waveforms, at 2 different frequencies

    Signal Space Diagram (for the special case oforthogonal signaling)

    Throughput:

    )tf2cos(T

    E2)t(s 01 !=

    )t)ff(2cos(T

    E2)t(s 02 !+"=

    0 < t T

    Rb = 1/T = 1/Tb bps

    X )tf2cos(T

    20!

    0 E

    E

    s1

    s2Xf = 1/T, NC Rcvr

    1/(2T), Coh. Rcvr

    10/2/07 van Alphen & Katz 23

    BFSK Optimum (Coherent) Receiver

    ))(2cos(2

    0 tffT

    !+"

    r(t)

    x !T

    0

    si^)2cos(2 0tfT !

    x !T

    0

    Chooselargest

    10/2/07 van Alphen & Katz 24

    PSD: NRZ Baseband Signaling, BPSK

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    fTs

    G(f)/E

  • 10/2/07 van Alphen & Katz 25

    PSD: NRZ Signaling, BPSK(dB Scale, with Bandwidth Definitions)

    -22

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    0 2 4 6 8 10 12 14 16

    fTs

    G(f

    )/E

    , dB

    W3dB

    WB,16 dB

    WN-N

    10/2/07 van Alphen & Katz 26

    Communications Link: the Channel

    Channels are characterized by their capacity

    Capacity: An inherent limit on the rate at whichinformation can be sent error free

    Capacity increases with bandwidth (W) and signal-to-noise ratio (SNR or S/N)

    Info

    Bandwidth,SNR

    C = W log(1 + S/N)

    10/2/07 van Alphen & Katz 27

    Reviewing Shannons Theorem

    Shannon-Hartley Theorem:

    Communication (with arbitrarily small error probability)is . . .

    Possible at rates Rb < C Impossible at rates Rb > C

    Establishes absolute theoretical limit on tx rate Therefore,

    !"

    #$%

    &+'=N

    S1logWC 2

    !"

    #$%

    &+= C Region: NoModulation/CodingTechniques w/P(E) 0

    10/2/07 van Alphen & Katz 30

    -8

    -4

    0

    4

    -2 2 6 10 14 18 22 26 30

    Bandwidth Efficiency Plane, continuedPB = 10-5

    Rb = C

    Eb/N0, dB

    log2(Rb/W)

    Power-limitedRegion

    Bandwidth-limitedRegion

    M = 4M = 2

    MPSK

    10/2/07 van Alphen & Katz 31

    Bandwidth Efficient Digital ModulationTechniques

    Phase Modulation

    Discrete Phase MPSK QPSK, OQPSK, /4-QPSK DQPSK, ODQPSK, O/4-QPSK

    Continuous Phase MSK, GMSK

    QAM

    OFDM

    More later on howto do these, if thebasic modulationtechniques arentefficient enough

    10/2/07 van Alphen & Katz 32

    QPSK Variations Restricting Alowable PhaseTransitions

    QPSK: max phase transition 180o

    loses constant envelope afterfiltering

    OQPSK: max phase transition 90o

    preserves constantenvelope after filtering

    Compromise - /4-QPSK:max phase transition 135o, min 45o

    preserves constant envelope: better than bandlimited QPSK not as well as bandlimited OQPSK

    same BER in AWGN as QPSK, OQPSK

  • 10/2/07 van Alphen & Katz 33

    QPSK Variations, cont.

    Discrete Phase Transition Techniques:

    QPSK //4-QPSK OQPSK max 180o max 135o max 90o

    - reduction of phasetransitions to obtain lesssidelobe regrowth andtherefore less ISI

    Why not completely eliminate abrupt phase transitions? Continuous Phase Transition Techniques (CPFSK):

    MSK: applies sinusoidal weight to OQPSK (constant envelope)- same BER as QPSK & OQPSK (MF detector in AWGN)- same bandwidth efficiency (bps/Hz) as QPSK & OQPSK- spectrum has wider mainlobe than QPSK & OQPSK, but faster drop-off of sidelobes (proportional to -4 vs. -2)

    10/2/07 van Alphen & Katz 34

    QPSK Variations, cont.

    QPSK /4-QPSK OQPSK MSK - reduction of phasetransitions to obtain lesssidelobe regrowth andtherefore less ISI

    MPSK GMSK, BT=.25 GMSK, BT = .3 GMSK, BT = .5 Ideal 0 dB .7 dB .3 dB .2 dB Practical1 .7 dB 1.7 dB

    Eb/N0 Penalty in AWGN (vs. Ideal QPSK)

    1 Simulation results, assuming non-optimal receiver

    Special Case of MSK: GMSK (Gaussian Pulse Shape, time-bandwidth product BT) further narrows the spectrum, at the cost of re-introducing ISI (increasing BER) smaller BT product more compact spectrum, but larger ISI

    10/2/07 van Alphen & Katz 35

    Power Spectral Densities

    f/Rb, Hz/bps

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    - 3 - 2 - 1 0 1 2 3

    MSK, dB

    QPSK, dB

    G(f)

    10/2/07 van Alphen & Katz 36

    Quadrature Amplitude Modulation:Rectangular 16-ary QAM

    -3A -A A 3A

    3A

    A

    -A

    -3A

    1(t)

    2(t)QAM: send one coordinate on in-phase carrier, one on quadraturecarrier

    Throughput:

    Rb = 4/T

  • 10/2/07 van Alphen & Katz 37

    Orthogonal Frequency Division Modulation(OFDM)

    Choose N orthogonal tones to be used as sub-carriers:

    Demux the user data (serial-to-parallel conversion) Put each sub-stream of data onto a different sub-carrier,

    where the sub-carriers are the orthogonal tones describedabove

    )t)ff(2cos(T

    E2)t(s 0i !+"= i = 1, 2, , N;

    f = i/(T)

    f1 f2 fN

    x

    xx

    x

    x

    xx

    x

    x

    xx

    x

    Example whereeach sub-carrieris modulatedwith QPSK

    10/2/07 van Alphen & Katz 38

    Motivation for Pulse Shaping

    Band-limiting the signal in the frequency domain leads to timedomain spreading of the signal

    Result: Intersymbol Interference, due to signal in one time-slot overlapping into the next time slot(s).

    H(f)

    f

    Sin(f) Sout(f)

    f f

    sin(t)

    t0 T

    sin(t)Narrow relative to Signal

    Channel Transfer Function

    t0 T

    10/2/07 van Alphen & Katz 39

    Motivation for Pulse Shaping: ISI

    Tails of signal overlap with body of succeeding signal

    Destructive interference results when the pulses are ofopposite polarity

    Problem cannot be solved by increasing signal power orenergy as opposed to additive noise problems, which can!

    t0 T

    Pb

    Eb/N0, dB

    AWGN

    Eb/N0, dB

    PbISI

    10/2/07 van Alphen & Katz 40

    Commonly Used Pulse Shapes

    Nyquist Pulse: Cancel ISI (ideally) Example: Raised Cosine, w/roll-off parameter = 0):

    Gaussian Pulse:where = .5887/B, and B is the 3-dB bandwidth of the filter

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -1.5 -1 -0.5 0 0.5 1 1.5

    = 0

    = 1

    = .5

    fTs,

    H(f)

    22fG e)f(H

    !"=

  • 10/2/07 van Alphen & Katz 41

    Power Efficiency Comparison for DigitalModulation Techniques in AWGN

    Modulation PB = 10-1

    PB = 10-2

    PB = 10-3

    PB = 10-4

    PB = 10-5

    PB = 10-6

    MPSK, M = 2, 4

    M = 8

    M = 16

    M = 32

    M = 64

    -0.9 dB

    1.0 dB

    4.0 dB

    7.4 dB

    11.2 dB

    4.3 dB

    7.3 dB

    11.4 dB

    16.0 dB

    20.9 dB

    6.7 dB

    10.0 dB

    14. 4 dB

    19.1 dB

    24.2 dB

    8.4 dB

    11.8 dB

    16.2 dB

    21.0 dB

    26.1 dB

    9.6 dB

    12.9 dB

    17.5 dB

    22.3 dB

    27.4 dB

    10.5 dB

    14.0 dB

    18.5 dB

    23.4 dB

    28.5 dB

    DQPSK, MSK 2.0 dB 6.8 dB 9.2 dB 10.8 dB 12.0 dB 12.9 dB

    GMSK, BT = .25

    BT=infinity

    0.8 dB

    -.1 dB

    6.0 dB

    5.0 dB

    8.5 dB

    7.5 dB

    10.1 dB

    9.1 dB

    11.3 dB

    10.3 dB

    12.2 dB

    11.2 dB

    16-QAM

    64-QAM

    1.9 dB

    5.0 dB

    7.9 dB

    11.5 dB

    10.5 dB

    15.0 dB

    12.3 dB

    16.0 dB

    13.6 dB

    17.8 dB

    14.2 dB

    18.5 dB

    Required Eb/N0 for Various Bit Error Probabilities

    10/2/07 van Alphen & Katz 42

    Relative Complexityof Modulation Techniques [Ref: Oetting]

    BPSK

    QPSK

    OQPSK

    MSK

    CPFSK

    QPR

    MPSK

    QAMDQPSK

    DPSK

    CPFSK

    NCFSK

    OOK

    (ED) (DISC.DET.)

    (OPT.DET.)

    HIGHLOW