10 Composite Variables - Byrnes Lab
Embed Size (px)
Transcript of 10 Composite Variables - Byrnes Lab

12/8/16
1
CompositeVariablesinSEM
Jarre9E.K.Byrnes
ToSEMandBeyond!1. Whatisacompositevariable?
2. UsingCompositesfornonlinearvariables
3. Compositesv.Latents-whenandwhy?
4. Comparisonincontext
5. TreatmentasaCompositevariable
6. UsingCompositesToCollapseVariables
We’reComfortablewithLatentExogenousVariables…
ξ
X1δx1
X2
X3
δx2
δx3
λx1λx2
λx3
AndNow,LatentVariablesDrivenbyObservedExogenousCauses
η
X1
X2
X3
λx1λx2
λx3
ζ
LatentComposite

12/8/16
2
CompositeVariablesReflectJointEffects
X1
X2
X3
λx1
λx2
λx3
0
ηc
• Coefficientscanbesta6s6callyes6mated.• Fixingerrorto0aidsiniden6fica6on(otherwiseit’salatentcomposite)• SpecifyingascaleisoEenhelpful.
CoefficientsCanbeFixed
Rela6veDensity
Rela6veAbundance
Rela6veFrequency
11
1
0
ImportanceValue
Easywaytoincorporateconceptsintomodels,par\cularlyifexogenousvariableshaveeffectsbeyondthecompositevariable.
CompositesandNonlineari\es
X
X2
λx
λx^2
0
Indicatesonevariablederivedfromanother ηc
CompositesandCategoricalVariables
NutrientAddi6on
GrazerAddi6on
Fungicide
λx1
λx2
λx3
0
Categoriescodedas0or1
Treatment

12/8/16
3
ToSEMandBeyond!1. Whatisacompositevariable?
2. UsingCompositesfornonlinearvariables
3. Compositesv.Latents-whenandwhy?
4. Comparisonincontext
5. TreatmentasaCompositevariable
6. UsingCompositesToCollapseVariables
10
Media6oninAnalysisofPost-FireRecoveryofPlantCommuni6esinCaliforniaShrublands*
*FiveyearstudyofwildfiresinSouthernCaliforniain1993.90plots(20x50m),(datafromJonKeeleyetal.)
11
Analysisfocus:understandpost-firerecoveryofplantspeciesrichness
Examina\onofwoodyremainsallowedfores\mateofageofstandthatburnedaswellasseverityofthefires.
measuredvegeta\onrecovery:- plantcover- speciesrichness
linear<-lm(rich ~ cover, data=keeley)
nonlinear<-lm(rich ~ cover+I(cover^2), data=keeley)
aictab(list(linear, nonlinear), c("linear", "squared"))
LinearorNonlinear?

12/8/16
4
Model selection based on AICc :
K AICc Delta_AICc AICcWt Cum.Wt LLsquared 4 735.92 0.00 0.83 0.83 -363.72linear 3 739.08 3.15 0.17 1.00 -366.40
LinearorNonlinear? ASimpleNonlinearModel
#Create a new nonlinear variable in the datakeeley<-within(keeley, coverSQ<-cover^2)
#Now, for a modelnoCompModel <- 'rich ~ cover + coverSQ'
noCompFit <- sem(noCompModel, data=keeley)
cover
richcoversq
ζ
ASimpleNonlinearModel
> summary(noCompFit)… Estimate Std.err Z-value P(>|z|)Regressions: rich ~ cover 57.999 18.613 3.116 0.002 coverSQ -28.577 12.176 -2.347 0.019
coverrich
R2=0.16coversq
58.0
-28.6
ζ
ASimpleCompositeModel
compModel<-'
coverEffect <~ cover + coverSQ
rich ~ 1*coverEffect'
compFit <- sem(compModel, data=keeley)
richcover
coversqcoverEffect
0
ζ
1

12/8/16
5
ASimpleCompositeModel
Composites: Estimate Std.Err Z-value P(>|z|) coverEffect <~ cover 57.999 18.613 3.116 0.002 coverSQ -28.577 12.176 -2.347 0.019
Regressions: Estimate Std.Err Z-value P(>|z|) rich ~ coverEffect 1.000
richR2=0.16
cover
coversqcoverEffect
0
-28.6
158.0
ζ
ANoteAbouttheLatentNatureofComposite
• Responsevariablesactlikelatentvariableindicators
• Therefore,responsesmustsharesomevariance.
• Rulesthatappliedtoiden\fiablyoflatentvariablesalsoapplytocomposites.
• Onecompositeperresponseifcompositeerror=0.Ifcompositehasmul\pleresponses,errorvarianceshouldbefree.
richcover
coversqcoverEffect
0
58.0ζ
Exercise:ANonlinearRela\onshipBetweenabio\candfiresev Exercise:AnAbio\cCompositeModel
1. Fit this model – start with a regression
2. Compare the effect of fixing the abiotic loading on abiotic effect to the coefficient from the regression to fixing the abioticEffect on firesev to 1.
firesevabio\c
abio\cSQabio\cEffect
0
ζ

12/8/16
6
Forsomereason,thismodelfails
keeley$abioticSQ <- keeley$abiotic^2
abioticCompModelBad<-' abioticEffect <~ 0.4 * abiotic +
abioticSQ
firesev ~ abioticEffect'
abioticCompFitBad <- sem(abioticCompModelBad, data=keeley)
firesevabio\c
abio\cSQabio\cEffect
0.4
0
ζ
Thismodeldoesnot:trymul\plemethodswithcomposites!
keeley$abioticSQ <- keeley$abiotic^2
abioticCompModel<-' abioticEffect <~ abiotic + abioticSQ
firesev ~ 1*abioticEffect'
abioticCompFit <- sem(abioticCompModel, data=keeley)
firesevabio\c
abio\cSQabio\cEffect 1
0
ζ
EndogenousCompositeVariables
endoCompModel<-' coverEffect <~ cover + coverSQ
cover ~~ coverSQ age ~~ coverSQ
cover ~ age rich ~ age + 1*coverEffect'
endoCompFit <- sem(endoCompModel, data=keeley, fixed.x=F)
richcover
coversqcoverEffect
0
age
δ ζ
1
EndogenousCompositeVariables
Composites: Estimate Std.Err Z-value P(>|z|) coverEffect <~ cover 48.705 19.246 2.531 0.011 coverSQ -24.186 12.315 -1.964 0.050
Regressions: Estimate Std.Err Z-value P(>|z|) cover ~ age -0.009 0.002 -3.549 0.000 rich ~ age -0.201 0.125 -1.603 0.109 coverEffect 1.000
richcover
coversqcoverEffect
48.7
0
age
δ ζ
1
-0.20
-24.2
-0.01

12/8/16
7
ToSEMandBeyond!1. Whatisacompositevariable?
2. UsingCompositesfornonlinearvariables
3. Compositesv.Latents-whenandwhy?
4. Comparisonincontext
5. TreatmentasaCompositevariable
6. UsingCompositesToCollapseVariables
ConsiderThisModel…
UrchinGrazing
NutrientAvailability
GiantKelp
PurpleUrchins
RedUrchins
MeanTemperature
#DaysofLowNutrients
GiantKelpObserved
ε1 ε2
ζ2
δ1 δ2
ζ1
(1)
(1) (1)
0.24
UrchinGrazing
NutrientAvailability
GiantKelp
PurpleUrchins
RedUrchins
MeanTemperature
#DaysofLowNutrients
GiantKelpObserved
ε1 ε2 δ1 δ2
ζ1
(1)
(1) (1)
Whatisthedirec\onofcausality?
ζ20.24
Whatisthedirec\onofcausality?
NutrientAvailability
GiantKelp
PurpleUrchins
RedUrchins
MeanTemperature
#DaysofLowNutrients
GiantKelpObserved
ε1 ε2 δ1 δ2
0
(1)
(1) (1)
GrazingPressure
ζ20.24

12/8/16
8
Aretheindicatorsinablockinterchangeable?
NutrientAvailability
GiantKelp
PurpleUrchins
RedUrchins
MeanTemperature
#DaysofLowNutrients
GiantKelpObserved
ε1 ε2 δ1 δ2
0
(1)
(1) (1)
GrazingPressure
Correla\on=0.78
ζ20.24
Doindicatorscovarybecauseofjointcauses?
NutrientAvailability
GiantKelp
PurpleUrchins
RedUrchins
MeanTemperature
#DaysofLowNutrients
GiantKelpObserved
ε1 ε2 δ1 δ2
0
(1)
(1) (1)
GrazingPressure
YES!Temperature!
ζ20.24
Doindicatorshaveaconsistentsetofcausalinfluences?
NutrientAvailability
GiantKelp
PurpleUrchins
RedUrchins
MeanTemperature
#DaysofLowNutrients
GiantKelpObserved
ε1 ε2 δ1 δ2
0
(1)
(1) (1)
GrazingPressure
YES!Currents!
ζ20.24
LatentsandCompositesTogether:L-CBlockforMeasurementError
GrazingPressure
δ1
δ2
δ3
RedUrchinDensity
MeasuredRedUrchinDensity
MeasuredPurpleUrchinDensity
MeasuredWhiteUrchinDensity
PurpleUrchinDensity
0
WhiteUrchinDensity

12/8/16
9
LatentsandCompositesTogether:L-CBlock
SessileCommunity
ε1
ε2
ε3
UnderstoryAlgae
QuadratAlgalDensity
BandTransectAlgalDensity
PointCountAlgae
ζ1
SessileInvertebrates
QuadratInvertDensity
BandTransectInvertDensity
PointCountInvertebrates
ε4
ε5
ε6 ζ2
0
Ques\onstoAskofYourLatent/CompositeVariables
1. Whatisthedirec\onofcausality?
2. Aretheindicatorsinablockinterchangeable?
3. Doindicatorscovarybecauseofjointcauses?
4. Doindicatorshaveaconsistentsetofcausalinfluences?
ToSEMandBeyond!1. Whatisacompositevariable?
2. UsingCompositesfornonlinearvariables
3. Compositesv.Latents-whenandwhy?
4. Comparisonincontext
5. TreatmentasaCompositevariable
6. UsingCompositesToCollapseVariables
Grace,J.B.&Bollen,K.A.(2008).Represen\nggeneraltheore\calconceptsinstructuralequa\onmodels:theroleofcompositevariables.Environ.Ecol.Stat.,15,191–213.
Example:TreeRecoloniza\onandCompositeVariables

12/8/16
10
WhatistheContribu\onofLocalversusRegionalFactorstoRecoloniza\on
GraceandBollen2008
AddingVariablestotheMetamodel
GraceandBollen2008
LatentorComposites?
GraceandBollen2008
Whatdoyouthink?
Generalityv.Specificity
GraceandBollen2008

12/8/16
11
Generalityv.Specificity
GraceandBollen2008
χ2=45.20DF=10P<0.00005
χ2=6.88DF=3P=0.075
HowConfidentareWeinCompositeLoadingsandtheirConclusions?
Specificmodelwithoutcompositesprovidessimilaranswers.
Tes\ngourConfidenceinComposites
Thegeneralcompositeconstructisnotobscuringmorespecificrela\onshipsinthedata.
ToSEMandBeyond!1. Whatisacompositevariable?
2. UsingCompositesfornonlinearvariables
3. Compositesv.Latents-whenandwhy?
4. Comparisonincontext
5. TreatmentasaCompositevariable
6. UsingCompositesToCollapseVariables

12/8/16
12
PreviousModelUnstandardized
1. Rhodymenia is not good food. – Urchins eat more, but produce less gonad
2. Performance is similar with Macrocystis or Mixture diet
MAPY
Feeding.rate.dryGONAD_INDEX
R
0.67 0.38
0.002-0.57
TreatmentasaCompositeAffec\ngMul\pleResponses
#read in and binary-ize the treatmenturchinData<-read.csv("./urchin_ex_sem.csv")source("./makeBinaryTreatments.R")
binTrt<-makeBinaryTreatments(urchinData, "treatment")
urchinData<-cbind(urchinData, binTrt)
MAPY
Feeding.rate.dryGONAD_INDEX
R
ζ3ζ
TreatmentRela\vetoMixture
0
ACompositeTreatmentModel
urchinCompositeModel<-' Treatment <~ MAPY + .002*R
Feeding.rate.dry ~ Treatment GONAD_INDEX ~Treatment + Feeding.rate.dry'
MAPY
Feeding.rate.dryGONAD_INDEX
R
ζ3ζ
TreatmentRela\vetoMixture
0 1
MAPYHasNoEffect
lavaan (0.5-12) converged normally after 71 iterations
Used Total Number of observations 20 21
Estimator ML Minimum Function Test Statistic 1.993 Degrees of freedom 1 P-value (Chi-square) 0.158
MAPY
Feeding.rate.dryGONAD_INDEX
R
0.72 0.39
TreatmentRela\vetoMixture
0.002
0
1-19.94
CompositereflectsR

12/8/16
13
Exercise:FitthisModel
> urchinCompositeFit2<-sem(urchinCompositeModel2, data=urchinData)Error in solve.default(E) : system is computationally singular: reciprocal condition number =
2.09555e-16
[lavaan message:] could not compute standard errors!
You can still request a summary of the fit to inspect the current estimates of the parameters.
MAPY
Feeding.rate.dryTEST_CHANGE
R
ζ3ζ
TreatmentRela\vetoMixture
0
SCALEPROBLEM
1
Exercise:FitthisModel
> head(urchinData[,c(5,17)]) Feeding.rate.dry TEST_CHANGE1 0.006454893 7.682 0.011449023 3.743 0.012258490 5.784 0.007628933 6.345 0.011282345 5.006 0.007344447 4.94
MAPY
Feeding.rate.dry
R
ζ3ζ
TreatmentRela\vetoMixture
0
TEST_CHANGE
1
Exercise:FitthisModel
> inspect(urchinSEMT, "sample")$cov Fdng.. TEST_C MAPY R Feeding.rate.dry 0.000 TEST_CHANGE -0.001 2.441 MAPY 0.000 0.322 0.222 R 0.000 -0.455 -0.111 0.222
MAPY
Feeding.rate.dry
R
ζ3ζ
TreatmentRela\vetoMixture
0
TEST_CHANGE
1
TransformScalestoFit
urchinData$TEST_CHANGE_1000<-urchinData$TEST_CHANGE/1000
MAPY
Feeding.rate.dry
R
ζ3ζ
TreatmentRela\vetoMixture 1
0
TEST_CHANGE

12/8/16
14
FitModel
Estimate Std.err Z-value P(>|z|)
Regressions: Feeding.rate.dry ~ Treatment 1.000 TEST_CHANGE_1000 ~ Treatment -1.180 0.470 -2.512 0.012 Feedng.rt.dry 0.237 0.168 1.410 0.158
MAPY
Feeding.Rate.dry
R
ζ3ζ
TreatmentRela\vetoMixture
0.002
0
TEST_CHANGE_1000
-1.18 0.888
ToSEMandBeyond!1. Whatisacompositevariable?
2. UsingCompositesfornonlinearvariables
3. Compositesv.Latents-whenandwhy?
4. Comparisonincontext
5. TreatmentasaCompositevariable
6. UsingCompositesToCollapseVariables
LinkingProduc\vityandPlantRichness
Graceetal.2016
DifferentAPrioriComposites
sitemod <- 'SiteRich ~ SiteBiomass +Heterogeneity +Disturb.anthro +SiteSoilSuit + ClimateOnRich
SiteBiomass ~ SiteProd +Disturb.herbiv
SiteProd ~ SiteRich +SiteSoilFert + ClimateOnProd
SiteProd ~~ SiteBiomass 'Graceetal.2016

12/8/16
15
DifferentAPrioriComposites
Graceetal.2016
#anthropogenic disturbancesite.sem.dat$Disturb.anthro <- site.dat$anthro
#herbivore disturbancesite.sem.dat$Disturb.herbiv <- site.dat$ln.disturbance
DifferentAPrioriComposites
sitemod <- 'SiteRich ~ SiteBiomass +Heterogeneity +Disturb.anthro +SiteSoilSuit + ClimateOnRich
SiteBiomass ~ SiteProd + Disturb.herbiv
SiteProd ~ SiteRich +SiteSoilFert + ClimateOnProd
SiteProd ~~ SiteBiomass 'Graceetal.2016
ACompositeConclusion
• Compositevariablesareusefulasvariablestogatherinforma\onaboutmul\pleaspectsofasingleeffect.
• Excellentforrepresen\ngnonlineari\es.
• Otenwhatecologiststhinkofintermsofaggregatevariables.
• Providemethodofincorpora\ngcomplextreatmenteffects.