1 interface angle critical 1 , or 2 reflected Summary of...

16
© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips Summary of Boundary Resistance 1 thermionic emission tunneling or reflection f FD (E) E Electrical : Work function (Φ) mismatch Thermal : Debye (v,Θ) mismatch ++ ?? ++ ?? f BE (ω) ω g(E) g(ω) ω g(ω) ω D,2 ω D,1 interface reflected 1 l , t 1 , or t 2 incident l t 1 t 2 transmitted l t 1 t 2 2 critical angle interface reflected 1 l , t 1 , or t 2 incident l t 1 t 2 transmitted l t 1 t 2 2 critical angle μ 1 μ 2 μ 1 2 = ? © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips Acoustic vs. Diffuse Mismatch Model 2 interface reflected 1 l , t 1 , or t 2 incident l t 1 t 2 transmitted l t 1 t 2 2 critical angle interface reflected 1 l , t 1 , or t 2 incident l t 1 t 2 transmitted l t 1 t 2 2 critical angle Acoustic Impedance Mismatch (AIM) = (ρv) 1 /(ρv) 2 Acoustic Mismatch Model (AMM) Khalatnikov (1952) Diffuse Mismatch Model (DMM) Swartz and Pohl (1989) Diffuse Specular Diffuse Mismatch = (Cv) 1 /(Cv) 2 Snell’s law with Z = ρv 1 2 2 1 2 4 ( ) ZZ T Z Z (normal incidence)

Transcript of 1 interface angle critical 1 , or 2 reflected Summary of...

Page 1: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Summary of Boundary Resistance

1

thermionic emission

tunneling or reflectionfFD(E)

E

Electrical: Work function (Φ) mismatch Thermal: Debye (v,Θ) mismatch

++ ?? ++ ??

fBE(ω)

ω

g(E)

g(ω)

ω

g(ω)

ωD,2

ωD,1

interface

reflected

1

l , t1 , or t2

incidentl

t1

t2

transmitted

l

t1

t2

2

critical

angle

interface

reflected

1

l , t1 , or t2

incidentl

t1

t2

transmitted

l

t1

t2

2

critical

angle

µ1

µ2

µ1-µ2 = ?

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Acoustic vs. Diffuse Mismatch Model

2

interface

reflected

1

l , t1 , or t2

incidentl

t1

t2

transmitted

l

t1

t2

2

critical

angle

interface

reflected

1

l , t1 , or t2

incidentl

t1

t2

transmitted

l

t1

t2

2

critical

angle

Acoustic ImpedanceMismatch (AIM)= (ρv)1/(ρv)2

Acoustic Mismatch Model (AMM)

Khalatnikov (1952)

Diffuse Mismatch Model (DMM)

Swartz and Pohl (1989)

DiffuseSpecular

Diffuse Mismatch= (Cv)1/(Cv)2

Snell’s lawwith Z = ρv

1 2

2

1 2

4

( )

Z ZT

Z Z

(normal incidence)

Page 2: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Debye Temperature Mismatch

3

DMM

Stevens, J. Heat Transf. 127, 315 (2005)Stoner & Maris, Phys. Rev. B 48, 16373(1993)

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

General Approach to Boundary Resistance

Flux J = #incident particles x velocity x transmission prob.

4

transmission

fFD(Ex)

Ex

0

exp 2 ( )

L

WKBT k x dx

A B

E||

#incident ( )A B B A A B A BJ J J g g f f T E dE

0 L

More generally:fancier version of

Landauer formula!

ex: electron tunneling

1

, ,e

B e B e

dJG R

dV

1

, ,th

B th B th

dJG R

dT

(conductance)

Page 3: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Band-to-Band Tunneling Conduction

• Assuming parabolic energy dispersion E(k) = ħ2k2/2m*

• E.g. band-to-band (Zener) tunneling

in silicon diode

5

* 3/24 2( ) exp

3

x x

x

m ET E

q F

F = electric field

3 * 3/2*

3 2

4 22exp

4 3

eff x G

BB

G

q FV m EmJ

E q F

See, e.g. Kane, J. Appl. Phys. 32, 83 (1961)

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Thermionic and Field Emission (3D)

6

µ1

µ2µ1-µ2 = qV

thermionic emission

tunneling (field emission)Φ

* 3/23 2 4 2exp

8 3

x

FN

mq FJ

h q F

field emission a.k.a. Fowler-Nordheim tunneling

see, e.g. Lenzlinger, J. Appl. Phys. 40, 278 (1969)S. Sze, Physics of Semiconductor Devices, 3rd ed. (2007)

* 22

3

4expx B

TE

B

m k q qJ T

h k T

F

Page 4: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

The Photon Radiation Limit

7

Swartz & Pohl, Rev. Mod. Phys. 61, 605 (1989)

Acoustic analog ofStefan-Boltzmann constant

Phonons behave like photons at low-Tin the absence of scattering (why?)

Heat flux:

ci = sound velocities (2 TA, 1 LA)

what’s the temperature profile?

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Phonon Conductance of Nanoconstrictions

8

Prasher, Appl. Phys. Lett. 91, 143119 (2007)

1) a >> λ τ = cos(θ)

λ = dominant phonon wavelength

Page 5: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Phonon Conductance of Nanoconstrictions

9

Prasher, Appl. Phys. Lett. 91, 143119 (2007)

2) a << λ

λ = dominant phonon wavelength

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Why Do Thermal Boundaries Matter?

• Because surface area to volume ratio is greater for

nanowires, nanoparticles, nanoconstrictions

• Because we can engineer metamaterials with much

lower “effective” thermal conductivity than Mother Nature

10

lmin=50

100

50

n=2, l=50

n=1, l=100

n=2, l=100n=3, l=66

n=1, l=200

n=4, l=50

nl 2d cos

(i)

(ii)

(i)

wavevector, K

freq

uen

cy,

w

(ii)

wavevector, K

freq

uen

cy, w

(A) (B)

lmin=50

100

50

n=2, l=50

n=1, l=100

n=2, l=50

n=1, l=100

n=2, l=100n=3, l=66

n=1, l=200

n=4, l=50

n=2, l=100n=3, l=66

n=1, l=200

n=4, l=50

nl 2d

(i)

(ii)

(i)

wavevector, K

freq

uen

cy,

w

(i)(i)

wavevector, K

freq

uen

cy,

w

wavevector, K

freq

uen

cy,

w

(ii)

wavevector, K

freq

uen

cy, w

(ii)(ii)

wavevector, K

freq

uen

cy, w

wavevector, K

freq

uen

cy, w

(A) (B)TEM of superlattice

source: A. Majumdar

Page 6: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Because of Thermoelectric Applications

11

• No moving parts: quiet and reliable

• No Freon: clean

Courtesy: L. Shi, M. Dresselhaus

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Thermoelectric Figure of Merit (ZT)

12

11

/1COPmax

m

chm

ch

c

zT

TTzT

TT

T

Coefficient of Performance

where ZT is…

TS

ZT

2

Seebeck coefficient

Electrical conductivity

Thermal conductivity

Temperature

0

1

2

0 1 2 3 4 5

ZT

CO

Pm

ax

Bi2Te3

Freon (CFCs)

TH = 300 K

TC = 250 K

Courtesy: L. Shi

Page 7: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

ZT State of the Art

• Goal: decrease k (keeping σ same)

with superlattices, nanowires or

other nanostructures

• Nanoscale thermal engineering!

13

5

Harman et al., Science 297, 2229

Venkatasubramanian et al. Nature 413, 597

Bi2Te3/Sb2Te3 Superlattices

2.5-25nm

Quantum dot superlattices

Courtesy: A. Majumdar, L. Shi

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 14

Page 8: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Nanoscale Thermometry

15

Reviews: Blackburn, Semi-Therm 2004 (IEEE)Cahill, Goodson & Majumdar, J. Heat Transfer (2002)

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Typical Measurement Approach

• For nanoscale electrical we can still measure I/ΔV =

AJq/ΔV

• For nanoscale thermal we need Jth/ΔT, but there is NO

good, reliable nanoscale thermometer

• Typically we either:

a) Measure optical reflectivity change with ΔT

b) Measure electrical resistivity change with ΔT

(after making sure they are both calibrated)

• Must know the thermal flux Jth

16

g

Pt

SiO2

Page 9: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

The 3ω Method (thin film cross-plane)

17

D. Cahill, Rev. Sci. Instrum. 61, 802 (1990)T. Yamane, J. Appl. Phys. 91, 9772 (2002)

I0 sin(wt)

L 2b

Substrate

Metal line

f

s

s Lbk

Pdi

b

D

kL

PT

242ln

2

1ln

2

1)2(

2

w

w

• I ~ 1w

• T ~ I2 ~ 2w

• R ~ T ~ 2w

• V3ω ~ IR ~ 3wVThin film

where α is metal line TCR

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

3ω Method Applications…

18

Thin crystalline Si films

Ju and Goodson, Appl. Phys. Lett. 74, 3005 (1999)

Compare temperature rise of metal line for different linewidths, deduce anisotropicpolymer thermal conductivity

Ju, Kurabayashi, Goodson, Thin Solid Films 339, 160 (1999)

SuperlatticesSong, Appl. Phys. Lett. 77, 3154 (2000)

Page 10: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

The 3ω Method (longitudinal)

19

Substrate

WireI0 sin(wt)

V

Lu, Yi, Zhang, Rev. Sci. Instrum. 72, 2996 (2001)

• 3w mechanism: ΔT~ V2/k and R ~ Ro + αΔT

• Low frequency: V(3ω) ~ 1/k

• High frequency: V(3ω) ~ 1/C

• Tested for a 20 mm diameter Pt wire

• Results for a bundle of MW nanotubes:

C ~ linear T dependence, low k ~ 100 W/mK

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Another Suspended Bridge Approach

20

SiNx beam

Pt heater line

Suspended island

Multiwall nanotube

Pt heater line

Source: L. Shi

Page 11: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Measurement Scheme

21

10 nm multiwall tube

Island

Beam

Pt heater line

ThTs

t

TsRsRh

QH = IRH

Tube

I

Gt = kA/L

0

02

h l st

h s h s

Q Q T TG

T T T T T

Thermal Conductance:

VTE

Thermopower:Q = VTE/(Th-Ts)

QL = IRL

Environment

T0

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Multiwall Nanotube Measurement

22

14 nm multiwall tube

6

4

2

0

Resi

stan

ce (

k

)

3002001000

Temperature (K)

Resistance of the Pt line

m

Resistance vs. Joule Heat

Temperature (K)

k (1

03

W/m

K)

3

2

1

0

300200100

3

2

1

0

300200100

l ~ 0.5 mm

T2

Measurement result

Cryostat: T : 4-350 K

P ~ 10-6 torr

L. Shi, J. Heat Transfer, 125, 881 (2003)

Page 12: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Scanning Thermal Microscopy (SThM)

• Sharp temperature-sensing

tip mounted on cantilever

• Scan in lateral direction,

monitor cantilever deflection

• Thermal transport at tip is

key (air, liquid, and solid

conduction)

23

TA

TT

TS

Source: L. Shi, Appl. Phys. Lett. 77, 4296 (2000)

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

SThM Applied to Multi-Wall Nanotube

• Must understand sample-tip heat

transfer

• Note arbitrary temperature units

here (calibration was not

possible)

• Note Rtip ~ 50 nm vs. d ~ 10 nm

24

Source: L. Shi, D. Cahill

Page 13: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Scanning Joule Expansion Microscopy

• AFM cantilever follows the thermo-mechanical expansion of

periodically heated (ω) substrate

• Ex: SJEM thermometry images of metal interconnects

• Resolution ~10 nm and ~degree C

25

Source: W. P. King

V

B

A

X-Y-Z

Piezoelectric

ScannerFeedback

Topography

Image

Thermal

Expansion

Image

Lock-in

AmplifierRef.

Mirror

Fixed Laser

SourcePhotodiode

Interconnect

Thermal

Image Thermal expansion image at 20 kHz

Thermal expansion image at 100 kHz

5 mm5 mm

5 mm5 mm

Thermal expansion image at 20 kHz

Thermal expansion image at 100 kHz

5 mm5 mm

5 mm5 mm

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 26

Thermal Effects on Devices

• At high temperature (T↑)

– Threshold voltage Vt ↓ (current ↑)

– Mobility decrease µ ↓ (current ↓)

– Device reliability concerns

• Device heats up during characterization (DC I-V)

– Temperature varies during digital and analog operation

– Hence, measured DC I-V is not “true” I-V during operation

– True whenever tthermal >> telectrical and high enough power

– True for SOI-FET (perhaps soon bulk-FET, CNT-FET, NW-FET)

• How to measure device thermal parameters at the same

time as electrical ones?

)( 00 TTVV tt

mm )/( 00 TT

Page 14: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 27

Measuring Device Thermal Resistance

• Noise thermometry

– Bunyan 1992

• Gate electrode resistance thermometry

– Mautry 1990; Goodson/Su 1994

• Pulsed I-V measurements

– Jenkins 1995, 2002

• AC conductance measurement

– Lee 1995; Tenbroek 1996; Reyboz 2004; Jin 2001

Note: these are electrical, non-destructive methods

∆T = P × RTH

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 28

Noise Thermometry

• Body-contacted SOI devices

– L = 0.87 and 7.87 µm

– tox = 19.5 nm, tSi = 0.2 um, tBOX = 0.42 um

• Bias back-gate accumulation (R) at back interface

• Mean square thermal noise voltage ‹vn›2 = 4kBTRB

• Frequency range B = 1-1000 Hz

• Measure R and ‹vn› at each gate & drain bias

• T = T0 + RTHIDVD (RTH ~ 16 K/mW)

Bunyan, EDL 13, 279 (1992)

Page 15: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 29

Gate Electrode Resistance Thermometry

• Gate has 4-probe configuration

• Make usual I-V measurement…

• Gate R calibrated vs. chuck T

• Measure gate R with device power P

• Correlate P vs. T and hence RTH

Mautry 1990; Su-Goodson 1994-95

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 30

Pulsed I-V Measurement

• Normal device layout

• 7 ns electric pulses, 10 µs period

• Device can cool during long thermal

time constant (50-100 ns)

• High-bandwidth (10 GHz) probes

• Obtain both thermal resistance and

capacitance

Jenkins 1995, 2002

Page 16: 1 interface angle critical 1 , or 2 reflected Summary of ...poplab.stanford.edu/files/ece598/L12L13_TBR_Thermometry.pdf · © 2008 Eric Pop, UIUC ECE 598EP: Hot Chips The Photon Radiation

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 31

AC Conductance Measurement

• No special test structure

• Measure drain conductance

• Frequency range must span all

device thermal time constants

• Obtain both RTH and CTH

• Thermal time constant (RTHCTH) is

bias-independent

Lee 1995; Tenbroek 1996; Reyboz 2004; Jin 2001

gDS = ∂ID / ∂VDS

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 32

0.1

1

10

100

1000

10000

100000

0.01 0.1 1 10L (mm)

RTH (

K/m

W)

Device Thermometry Results Summary

Cu

GST

SiO2

Si

Silicon-on-Insulator FET

Bulk FET

Cu Via

Phase-change Memory (PCM)

Single-wall nanotube SWNT

Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996), Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006).

High thermal resistances:

• SWNT due to small thermal

conductance (very small d ~ 2 nm)

• Others due to low thermal

conductivity, decreasing dimensions,

increased role of interfaces

Power input also matters:

• SWNT ~ 0.01-0.1 mW

• Others ~ 0.1-1 mW