1 Deep Sea Neutrino Telescope Detection Principle.

9
1 Deep Sea Neutrino Telescope Deep Sea Neutrino Telescope Detection Principle Detection Principle

Transcript of 1 Deep Sea Neutrino Telescope Detection Principle.

Page 1: 1 Deep Sea Neutrino Telescope Detection Principle.

1

Deep Sea Neutrino TelescopeDeep Sea Neutrino Telescope

Detection PrincipleDetection Principle

Page 2: 1 Deep Sea Neutrino Telescope Detection Principle.

2

Basic Properties of Neutrino Spin: ½ (fermion)

Type: lepton

Flavors: muonic, electronic, tau

Masses: very small (different masses)

Interactions: Weak, Gravitation

Peculiarities: flavor oscillations

Detection: only through interactions

μ+

W+

u

d

Page 3: 1 Deep Sea Neutrino Telescope Detection Principle.

3

Interaction Volum

e

              

νμ

Θν-μ

μ Detector

(Electro

magnetic In

teractio

ns)

Detection Principle• Large Interactive Volume

• Efficient μ Detection

μ-νμ

μ-

W-

d

u

Page 4: 1 Deep Sea Neutrino Telescope Detection Principle.

4

Cherenkov Radiation

+ -

+ -+ - +

-+-

+-

+

- +-

+

-+ -

+ -+ - +

-+-

+-

+

- +-

+

-

+-+ -

+ -

+-

+-

+

-

+-

+-

+-

Page 5: 1 Deep Sea Neutrino Telescope Detection Principle.

5

Cherenkov Radiation

Properties

Page 6: 1 Deep Sea Neutrino Telescope Detection Principle.

6

Photo-Sensor (Photomultiplier- PMT)

Cherenkov Wavefront

Experimental Principle

Muon TrajectoryCherenkon Photon Path

Page 7: 1 Deep Sea Neutrino Telescope Detection Principle.

7

PMT signals

Muon Tracking

Page 8: 1 Deep Sea Neutrino Telescope Detection Principle.

8

x/λ0 eII

How clean ?How deep ?

Cosmic μ background

Page 9: 1 Deep Sea Neutrino Telescope Detection Principle.

9

• Energy dependent

• Direction dependent

• Tracking Resolution

Estimated by Monte Carlo Integration

generated

tedreconstruc

N

Narea

Effective AreaEffective AreaGeometrical acceptance Reconstruction Efficiency

Good Tracking Resolution & Large Effective Area for all Energies and Directions