1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.
-
Author
ashlyn-bennett -
Category
Documents
-
view
266 -
download
2
Embed Size (px)
Transcript of 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

1
Chapter 2. Optical Fibers
Geometrical Optics & Wave Optics in Fiber
Loss
Dispersion
Nonlinearity

2
2.1 Geometrical Optics & Wave Optics in Fiber
2.1.1 Geometrical Optics
suited for a >> λ Multimode Step-Index Optical Fiber
( 1%)
1 2n n ,
2 21 2 1 2
21 1
n -n n -nΔ=
2n n
weak-waveguided fiber

3
2.1.1 Geometrical Optics
0 i 1 r 1n sinθ =n sinθ =n cosφ
c 2 1Total internal reflection: sinφ n /n
0 i 1n sinθ =n 2Δ=NA (Numerical Aperture)
2 2 2 1/20 i 1 c 1 2n sinθ =n 1-sin φ =(n -n )

4
2.1.1 Geometrical Optics
Δ , NA , η (coupling efficiency between light source & fiber)
dispersion (multiplath dispersion)
c
Lthe longest path:
sinφ
the shortest path: L2
1 1
c 2
n nL Ltime delay: ΔT= ( L)= Δ
c sinφ c n-
max B
1ΔT T = , (bit slot)
B
-322
1
n cBL< , Δ , BL (n=1.5, Δ=2 10 , BL<100Mb/s km)
n Δ

5
2.1.1 Geometrical Optics Multimode Graded-Index Optical Fiber
α1
1 2
rn [1-Δ( ) ] r < a
n(r)= an (1-Δ)=n r a
α , SIOF
α=2 , parabolic-index

6
2.1.1 Geometrical Optics
2mπZ= , all rays recover their initial positions and directions
p1/21
2
2n ΔP= ( )
a

7
2.1.1 Geometrical Optics
21n ΔΔT
=L 8c
α = 2(1-Δ) ,
21
8cB L <
n Δ

8
2.1.2 Wave Optics
E , ΗMaxwell's Equations Wave Equation
cylindrical coordinatesGuided wave equation Helmholtz's Equation
boundaryconditions
tangenticalcomponents
general solution eigenvalue equation
1. Derivation
(x, y, z)
t
separate variables
numerical solving
mnβ
suited for a ~λ, wave theory

9
2.1.2 Wave Optics
2. Basic Concepts Normalize Frequency
Mode Index
01
2 20 1 2 1 0 01
21
TE2
V=k a n -n n 2 2.405 J (r) TM
HE
0
nk
模式在光纤中的分布光纤折射率分布
n2
n1
n2
n1
n2
>

10
2.1.2 Wave Optics Birefringence 双折射
HE11 → two orthogonally polarized fiber modes x, y
Degeneracy!
Uniform:
Nonuniform:x yn n birefringency PMD
L L
00 0= dz n k dz
linear → elliptical → linear 线偏 → 椭圆 → 线偏
modal birefringence m x yB n n
beat length Bm x y
LB n n
7
m BB ~10 , L ~10m
y
x

11
2.1.2 Wave Optics

12
2.1.2 Wave Optics
PMF: Polarization —Maintaining Fiber 4
m BB 10 , L ~10mm Small random birefringence fluctuations do not affect the light polarization significantly
Spot Size 2
x 2
rE A exp( )exp(i z)
w w: field radius
1.2<V<2.4 3/ 2 6w / a 0.65 1.619V 2.879V
Confinement Factor a 2 2
xcore 022
total x0
| E | r drP 2a1 exp( )
P w| E | r dr
V=2, Γ≈75%
V=1, Γ=20%
2<V<2.4

13
Chapter 2. Optical Fibers
Geometrical Optics & Wave Optics in Fiber
Loss
Dispersion
Nonlinearity

14
2.2 Fiber Loss
2.2.1 Attenuation Coefficient
Pin Pout
dPP, :attenuation coefficient
dz
integrating out inP P exp( L) (1/ km)
Lout10 10
in
10
P10 10log ( ) log (e )
4.343
L P L
10l
(dB / k
og e (1/
m)
km)

15
2.2.2 Loss Mechanism
1. Absorption (light energy → heat energy, 能量转移 ) Intrinsic absorption
Impurity absorption
Infrared (λ>7μm): vibrational resonances
ultraviolet (λ< 0.4μm): electronic resonances
0.8~1.6 μm : < 0.1dB/km
OH : 0.95, 1.24, 1.39 m
0.85 1.31 1.55 m
- 吸收峰
, , 吸收谷值OH
- Dry fiber
All wave fiber
400nm Transitional metal (Fe, Cu, Co, Ni):
9101000dB / km eliminated

16
2.2.2 Loss Mechanism
2. Scattering ( 方向偏折, 能量不转移 ) Rayleigh Scattering → Intrinsic, on a scale smaller than λ
R R4
1, ,
4
1.31
1.55
1.55
1.31
Mie scattering → Waveguide Imperfection, on a scale larger than λ
3. Bending ( 模式泄漏,能量不转换 )
Macro - bending Installing
Micro - bending Cabling

17
课堂作业1. 某光纤通信线路长 80km ,使用的光纤芯层折射率为 1.45 ,
相对折射率差为 0.3 %,截止波长为 1m ,光纤损耗只于瑞利散射有关。工作在 1310nm 时,输入功率为 1mW ,接收到功率为- 28.5dBm 。请计算:( 1 )该光纤在 1550nm处的模场半径为多少?( 2 )光纤在 1550nm 处的损耗系数为多少 dB/km?
2. 如果模拟信号的带宽为 3.1kHz ,信噪比大于 30dB ,则转化数字信号后要求传输速率至少为:( )
A 、 31kb/s ; B 、 31Mb/s ; C 、 93kb/s ; D 、 91Mb/s 。
3. 请简要描述固定电话使用者是如何通过点对点光纤通信系统实现通话的?

18
Chapter 2. Optical Fibers
Geometrical Optics & Wave Optics in Fiber
Loss
Dispersion
Nonlinearity

19
Inter-symbol interference !!!
Bit 2 Bit 1 Bit 2 Bit 1 Bit 2 Bit 1
2.3 Dispersion in SMF
SMF

20
2.3 Dispersion in SMF
Chromatic Dispersion (CD)
Group Velocity Dispersion (GVD)
Intra-modal Dispersion
High-order Dispersion
Polarization Mode Dispersion (PMD)
gV

21
2.3.1 Group Velocity Dispersion
1. Dispersion parameter
L T= L /Vg
2
2 22
( / ) (1/ )( )
g gd L V d V d dT L L
d d d d
dL L T L
d
22 2
2 2 2, ( )
c c cT L
-

22
2.3.1 Group Velocity Dispersion
2 2
2( )
cD T L D
- D: Dispersion Parameter, ps/(nm·km)
1B L D -1( / ) ( )g gd L V d V
T Ld d
2. D ~ λ
2
-1-1
2 2
2 2
2 2 2 2
1 2 1( ) ( )
( ) ( )
2 2 ( )
2 2 2
g g
g
d c dD
d V d V
d d dV n
d d d c
c d c d n dnD n
d c d c c d
c dn dn d n c dn d n
d d d d d

23
2.3.1 Group Velocity Dispersion
2
1 2
1
-
-
22
0
M W
n nb
n n
V n a D D D
d
d
2 2
2
2 22 2
2 22
2 1
2
g gM
g gW
dn dnD
d c d
n dnVd Vb d VbD
n dV d dV
n2g: the group index of the cladding material

24
2.3.2 Material Dispersion
Sellmeier equation:2M
j j22 2
j=1 j
j j
j j
M
β ωn (ω)=1+
ω -ω
ω : resonance frequency; β : oscillator strength
ω , β : fitting value according to experiments
pure silica fiber: λ=1.276μm, D =0
M 2
M 2
M ZD
λ<1.276μm, D <0, β >0,
λ>1.276μm, D >0, β <0,
1.25μm<λ<1.6μm,
D =122(1-λ /λ)
正常色散区,负色散
反常色散区,正色散

25
2.3.3 Waveguide Dispersion
~ ,wD a

26
2.3.3 Waveguide Dispersion

27
2.3.3 Dispersion Compensation
w 0, G.652, D>0 ~17ps/(nm km) @1.55 m
lossDispersion shifted Fiber: lowest @ m
dispersion
Dispersion Compensating Fiber: D<0 @1.55 m
D
-
① SMF ② DCF
D=16ps/(nm ·km)
L1=50km
D’=-100ps/(nm ·km)
L2=?
1 1
2 2 2
T 16 50
T ' 100
D L
D L L
①:
② : 1 2 2T T 8L km
Dispersion flattened Fiber: 1.3 ~1.6 m D - 很小

28
Dispersion Shifted Fiber
Refractive Index Profile of Optical Fiber

30
2.3.4 High - Order Dispersion
ZD ZDλ=λ λ λ
2
2 3 22 2 3
m
m m
D = SΔλ2
2
B L Δλ D 1, D 0 B L
D 0, D 0, D ~ f(λ)
dD d 2πc 2πc 4πcS= = β = β + β
dλ dλ λ λ λ
d ββ =
dω
B L Δλ D 1 B L (Δλ) S 1
Δλ = 2nm
S=0.05ps/ nm km B L
λ =1.55μm
-
<5Tbit/s km
Really?

31
2.3.5 PMD
nx
nyEx
Ey
Pulse As It Enters the Fiber Spreaded Pulse As It Leaves the Fiber

32
1x 1y 1gx gy
1 x y 0 m 0
L LΔT L β β L β
V V
Δβ n n k B k
-
statistic modal birefringence
22 2 2T 1 C
C C
C
L Lσ = < ΔT > 2(Δβ ) L exp(- ) + -1
L L
L : correlation length
L: fiber length

33
2.3.5 PMD
C T 1 C p
p
P
L <<L, σ Δβ 2L L = D L
D : PMD parameter, ps/ km
G.652 D : 0.01 ~ 1ps/ km
A limiting factor for high bit rates lightwave systems

34
2.4 Dispersion - Introduced Limitations
Optical pulse: 2
00
1 ic tA(0, t) A exp
2 T
T0: half-width at 1/e intensity point C: frequency chirp
FWHM 0T 2 ln 2T (full-width at half-maximum)

35
2.4 Dispersion - Introduced Limitations
When the source spectrum is Gaussian with the RMS spectral width σw 22 22
2 2 2 32 22 2 2 3
0 0 0 0
LC L L1 (1 V ) (1 C V )
2 2 4 2
L: fiber length σ0: RMS width of the input Gaussian pulse
0V 2 2
20
: dispersion-introduced broadening of Gaussian input pulses

36
2.4 Dispersion - Introduced Limitations
1. Optical Sources with a Large Spectral Width
non-zero-dispersion wavelength 3neglecting
2 22 2 2 2 20 2 0 0 D
D
D 0 D
B
L DL
D L dispersion induced broadenin
T / 4, 95% energy of Gaussian pulse remains within a
g
,
14B 1 L
bit slo
D
t4
V 1, C 0

37
2.4 Dispersion - Introduced Limitations
zero-dispersion wavelength 2 0
2 22 2 2 2 20 3 0
2
1 1L SL
2 2
L S 1/ 8
2. Optical Sources with a Small Spectral Width V 1, C 0
non-zero-dispersion wavelength 3neglecting
22 2 2 20 2 0 0 D
1/ 2
D 0 2
2
L / 2
L / 2
1B L
4

38
2.4 Dispersion - Introduced Limitations
zero-dispersion wavelength 2 0
22 2 2 20 2 0 0 D
1/3
D 0 3
1/3
3
L / 4 / 2
L / 4
L 0.324

39
2.5 Nonlinearities in Optical Fiber
2.5.1 Stimulated light scattering
SRS (Stimulated Raman Scattering)
SBS (Stimulated Brillouin Scattering)
Rayleigh Scattering - not to generate new frequency
Raman Scattering - photon → stokes photon + optical phonon
能量大,频移大,单个原子振动 Brillouin Scattering - photon → stokes photon + acoustic phonon
能量小,频移小,多原子振动
both directions, frequency shift is large
backward directions, frequency shift is small

40
2.5.1 Stimulated light scattering
1. SRS
R th eff eff
R
th
eff eff
eff eff
3R
2
g P L / A 16
g : Raman gain coefficient
P threshold power
1 exp LL : effective interaction length L km
A effective core area A w
g 1 10 m / W
w 50 m
0.2dB / km
th
in
P 570 mW
P 10 mW,
SRS 影响小

41
Figure 2.18: (a) Raman gain spectrum of fused silica at λp = 1μm and (b) energy levels participating in the SRS process.

42
2.5.1 Stimulated light scattering
2. SBS
Note: frequency shift < 10GHz, channel spacing ~ 100GHz ,
B th eff eff
11B th
g P L / A 21
g 5 10 m / W P 10 mW
not to generate crosstalk, but the loss of signal power

43
Figure 2.17: Brillouin-gain spectra measured using a 1.525-μm pump for three fibers with different germanium doping: (a) silica-core fiber; (b) depressed-cladding fiber; (c) dispersion-shifted fiber. Vertical scale is arbitrary.

44
2.5.2 Phase ModulationSPM : Self Phase Modulation
XPM : Cross Phase Modulation
--
Power dependence of refractive index
1. SPM nonlinear refraction
j j 2 eff
2
eff
n ' n n P / A j=1, 2. core, cladding respectively
n : nonlinear index coefficient
A :effective mod e area
-
propagation constant
0 2 eff 2 eff' k n P / A P, 2 n /(A )

45
2.5.2 Phase Modulation
1. SPM nonlinear phase shift
L L
NL in eff in0 0
NL in eff eff
in in1 1
' dL P(z)dz P L P(z) P exp( z)
11, P L L
0.2 dB / kmP / , P 22 mW
2 W km

46
2.5.2 Phase Modulation
2. XPM
MNL
j eff j mm j
NLj j j
L P 2 P
/ 2M 1 P , P 1mW
assuming equal channel power
SPM → distortion of optical pulse
XPM → intensity noise How to solve
Solution: effA Corning: Large Effective Area Fiber (LEAF)

47
2.5.3 Four-Wave Mixing
Also originates from the three-order nonlinear susceptibility
1 2 3 4
4 1 2 3
4 1 2 3
h h h h energy conservation
k k k k momentum conservation
��������������������������������������������������������
Easily to realize phase-matching at zero-dispersion wavelength !
1 24 1 2 3
4 1 2 3 4 1 3
4 1 2 3
h h h h2
k k k k
��������������������������������������������������������
DWDM: large effective area non-zero dispersion-shifted fiber
YOFC: LAPOSH

48
2.5.4 Evolvement of Fiber
1. G.651 MMF
2. G.652 SMF
3. G.653 DSF
4. G.655 NZDSF
6. Dry fiber, All-wave fiber
5. LEAF LAPOSH
7. DCF: D= - 100ps/(nm·km), 0.6 dB / km (Lucent)
RDCF: SMF, D’=16ps/(nm·km) reverse
C band: 1530 ~ 1570 nm S band: 1490 ~ 1530 nm
L band: 1570 ~ 1610 nm O band & E band: 1260 ~ 1490 nm
Problems: 2.5, 2.8, 2.11, 2.13, 2.16, 2.19

49
Fiber evolutionG.651
G.652
G.653
G.654
G.655
G.656
DCF
DCF Module
RDCF
LEAF
Dry fiber
C+L+S fiber

50
Cable
Optical fibers
Tube
Strain relief(e.g., Kevlar)Innerjacket
Sheath
Outerjacket
Connector