1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700...

21
24.10.2017 1 1. Basic Optics Simon Hubertus, M.Sc. Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany [email protected] www.ma.uni-heidelberg.de/inst/cbtm/ckm Biomedical Optics – „Basic Optics“ Simon HubertusI Slide 2/42 I 10/24/2017 My Academic Background… B.Sc. in Physics at RWTH Aachen University (2011-2014) Saarland M.Sc. in Biomedical Engineering at Imperial College London (2014-2015) PhD Thesis at the Institute of Computer Assisted Clinical Medicine in Mannheim (2016-present)

Transcript of 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700...

Page 1: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

1

1. Basic OpticsSimon Hubertus, M.Sc.

Computer Assisted Clinical MedicineMedical Faculty Mannheim Heidelberg University

Theodor-Kutzer-Ufer 1-3D-68167 Mannheim, Germany

[email protected]/inst/cbtm/ckm

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 2/42 I 10/24/2017

My Academic Background…

B.Sc. in Physics at RWTH Aachen University (2011-2014)

Saarland

M.Sc. in Biomedical Engineering at Imperial College London (2014-2015)

PhD Thesis at the Institute of Computer AssistedClinical Medicine in Mannheim (2016-present)

Page 2: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

2

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 3/42 I 10/24/2017

My Academic Background…

PhD student in „Tissue Structure and Function“ at the Institute of Computer Assisted Clinical Medicine in Mannheim

[pp

m]

OE

F

CM

RO

2 [µ

mol

/100

g/m

in]

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 4/42 I 10/24/2017

Further Topics at CKM…

• Functional MRI• Medical Imaging and Image Analysis• Multinuclear NMR• RF Methods and Imaging• MRI Sequence Development

Interested in Bachelor's or Master's Thesis? visit: http://www.umm.uni-heidelberg.de/inst/cbtm/ckm/groups/

Page 3: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

3

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 5/42 I 10/24/2017

Outline: Biomedical Optics

1. Lecture – Basic Optics

• Invention of the LASER

• Properties of Light

• Geometrical Optics

• Yet even more Properties of Light..

2. Lecture – LASER Physics and Systems

3. Lecture – LASER Resonators

4. Lecture – Tissue Interactions I

5. Lecture – Tissue Interactions II

6. Lecture – Biomedical Applications

Wednesday, 20.12.207, 1-3pmHouse 1, Level 0, Lecture Hall 09

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 6/42 I 10/24/2017

Literature

Page 4: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

4

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 7/42 I 10/24/2017

LASER

A few Laser applications • Laser cutting in industry• Laser Printers• Optical Disc Drives• Barcode Scanners• Laser Pointer• Laser Surgery• Fiber Optics• Free-Space Communication• Distance measurements (LUNAR LASER Ranging Experiment: precision < 4cm!!)• Two-photon excitation microscopy• Alignment check (MRI, radiotherapy) • many more…

LASER

Light Amplification by Stimulated Emission of Radiation

A LASER is a device that emits light through a processof optical amplification based on the stimulated emission ofelectromagnetic radiation

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 8/42 I 10/24/2017

Invention of the LASER

Page 5: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

5

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 9/42 I 10/24/2017

Discovery of Stimulated Emission in 1917

Einstein coefficients:Bki AbsorptionBik stimulated EmissionAik spontaneous Emission

Albert Einstein

* 14.3.1879, Ulm, Germany† 18.4.1955, Princeton, USA

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 10/42 I 10/24/2017

1953 First MASER Constructed

Charles Hard Townes

* 28.7.1915, Greenville, USA† 27.1.2015, Oakland, USA

Page 6: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

6

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 11/42 I 10/24/2017

1960 First LASER Constructed

Theodore Harold Maiman

* 11.7.1927, Los Angeles, USA† 5.5.2007, Vancouver, Canada

Pulsed solid-state LASER

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 12/42 I 10/24/2017

1960 First LASER Constructed

Ali Javan

William Bennett, Jr.

Donald Herriott

at Bell Telephone Laboratories

Continuous gas LASER

Page 7: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

7

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 13/42 I 10/24/2017

Nobel Prize in Physics in 1964

„…for fundamental work in the field of quantum electronics, which has led to the

construction of oscillators and amplifiers based on the maser-laser principle“

Aleksandr Mikhailovich Prokhorov

* 11.7.1916, Atherton, Australia† 8.1.2002, Moscow, Russia

Nicolay Gennadiyevich Basov

* 14.12.1922, Usman, Russia† 1.7.2001, Moscow, Russia

Charles Hard Townes

* 28.7.1915, Greenville, USA

† 27.1.2015, Oakland, USA

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 14/42 I 10/24/2017

Properties of Light

Page 8: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

8

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 15/42 I 10/24/2017

Wave – Particle Duality

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 16/42 I 10/24/2017

Wave – Particle Duality

Matter Light

Particle Wave

Einstein (1905)

Photoelectric effect (Nobel Prize 1921)

Quantum optics

De Broglie (1924)

Wave-like behaviour of all matter

Geometric optics

Page 9: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

9

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 17/42 I 10/24/2017

Wave – Particle Duality

E = h·ν = p·cp = h/λ

E: energyp: linear momentumh: Planck's constant = 4.1·10-15 eVs

Light Quantum

Photons (γ)

dispersion in vacuum λ · ν = c

λ: wavelengthν: frequencyc: speed of light = 299 792 458 m/s

Electromagnetic Wave

ψ(t)=I0⋅eiωt

t

λ

I0

Question:What's the energy difference ∆E between violet (λ=400nm) and red light (λ=700nm)?

Solution: ∆E = 1.3 eV

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 18/42 I 10/24/2017

Electromagnetic Spectrum

visible spectrum: λ = 400 – 700 nm, ν = 4.3 – 7.5 ⋅ 1014 Hz

Geometric optics

(wave character)

Quantum optics

(particle character)

Page 10: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

10

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 19/42 I 10/24/2017

Electromagnetic (EM) Waves

Electromagnetic waves are defined by

• Electric field: , • Magnetic field: , • Wave vector: , with ⁄

, ,

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 20/42 I 10/24/2017

Electromagnetic Fields in Dielectric Media

electric field

Electric displacement field:

polarisation

magnetic field

Magnetic induction:

magnetisation

Page 11: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

11

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 21/42 I 10/24/2017

Maxwell's Equations for Static Fields1. Charges are the sources of electric fields

Divergence of electric field is created by charges

2. Magnetic monopoles do not exist

In the absence of magnetic monopoles, divergence of the magnetic field lines is always zero

! ∙ "# $%

&'

∙ 0

! ∙ "# 0

&'

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 22/42 I 10/24/2017

Maxwell's Equations for Dynamic Fields3. A changing magnetic field creates an electric field

4. An electric current and a changing electric field creates a magnetic field

⨯ *++

⨯ ,- ++

Page 12: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

12

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 23/42 I 10/24/2017

Geometrical Optics

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 24/42 I 10/24/2017

Geometrical Optics

Simplified model of optics:

1. Light propagates as rays in homogeneous media2. At the border of two homogeneous and isotropic media,

light obeys the Law of Reflection and Refraction3. The direction of light propagation is arbitrary4. Crossing light rays do not interfere

Page 13: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

13

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 25/42 I 10/24/2017

Fermat‘s Principle

• Refractive index n: cmedium = c/n

• vacuum: 1

• air: 1.0003

• water: 1.333

• lenses: 1.5

• Optical path length: . / nd234

The optical length of the path followed by light between the points A and B is an extremum.

„Light minimises the time to travel from point A to point B.“

Help

Beach

Sea

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 26/42 I 10/24/2017

Reflection

θθ’

angle of incidence = angle of reflection

Page 14: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

14

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 27/42 I 10/24/2017

Refraction

Snell's Law

n

n’

Normal

θ

θ’

A

B

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 28/42 I 10/24/2017

Total Reflection

Fiber optic cable: Total reflection important for signal transmission!

Water tank: Reflected and refracted light components!

Page 15: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

15

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 29/42 I 10/24/2017

Total Reflection

critical angle

n

n’

Normal

n’ > n

θc

sin(θ) =1

Question:What is the critical angle for a light beam travelling from water to air?

Solution: ϴc = 49°

refractive index n

vacuum: 1air: 1.0003water: 1.333lenses: 1.5

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 30/42 I 10/24/2017

Lenses

Ray tracing diagram for converging lense

16

17 1

8

Ray tracing diagram for a Galilean telescope and an object with finite distance

Page 16: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

16

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 31/42 I 10/24/2017

Yet even more Properties ofLight..

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 32/42 I 10/24/2017

Dispersion

Refractive index depends on wavelengthof incoming light:

n = n(λ)

λ ∙ 8 :;

⇔ 8 :∙;

⇔ = >∙:;>

with = 2@8 and 2@/λ

Normal dispersion: dn/dλ B 0 stronger refraction of blue light

Page 17: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

17

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 33/42 I 10/24/2017

Dispersion – Group and Phase Velocity

Gaussian wave packageWave package: Ψ D, ∑ FGeIJKLM>KNG

Group velocity = ,velocity of wave package‘

OPQRST d=d F ∙ d/Ud

Phase velocity = ‚velocity of the phase‘

OTVWXY = F

nIf U U ⇒ OTVWXY [ OPQRST⇒ Dispersion

OTVWXYOPQRST

https://de.wikipedia.org/wiki/Gruppengeschwindigkeit#/media/File:Wave_group.gif

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 34/42 I 10/24/2017

Interference..

Taken fromhttp://www.eso.org/public/archives/images/screen/potw1404a.jpg

..is the superposition of waves.

constructive

destructive

Just a french astronaut creating interference..

Page 18: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

18

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 35/42 I 10/24/2017

Coherence

Coherence time: ∆] ^∆_

Coherence length: ∆2] F ∙ ∆]

Time in which phase differencedoes not exceed 2@

Distance that light travels in ∆]

I

ννa 5·1014 Hz

LASER: ∆τ = 10 ms ⇒ ∆s = 3000 km

Sun: ∆τ = 10 fs ⇒ ∆s = 3 µm

source: P.W. Milonni, J.H. Elberly. Lasers. Wiley 1988

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 36/42 I 10/24/2017

Michelson-Interferometer

• Splitting LASER in two rays

• Detection of interference

• Michelson-Morley experiment (1887):⇒Aether hypothesis

• LIGO⇒Detection of gravitational waves;∆2 10Mm

Schematic diagram of Michelson-Interferometer

Interference pattern for diverging rays

Page 19: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

19

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 37/42 I 10/24/2017

Diffraction

• Change of light path when passingrestricted space

• Fresnel diffraction: " ≪ de

• Fraunhofer diffraction: " ≫ deg

• Diffraction limit for telescope:

hiIj ^.∙d

Intensity distribution for diffraction at a slit with different widths b

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 38/42 I 10/24/2017

Directionality

∆θ

A

λ Question:What's the opening angle in steradians, givenλ = 500 nm, A = 25 mm² ?

∆Ω m λ# m ∆n

Light bulb:Strongly divergentLow irradiance(intensity)

LASER:Slightly divergentHigh irradiance(intensity)

*steradians (sr): dimensionless variable for the solid angle related to the area „A“ it cuts out of a sphere: Ω=A/r2 [sr]

Solution:

∆Ω = 10-8 steradians*

Page 20: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

20

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 39/42 I 10/24/2017

Spectral Radiance

“A blackbody allows all incident radiation to pass into it (no reflected energy) and internally absorbs all the incident radiation (no energy transmitted through the body). This is true for radiation of all wavelengths and for all angles of incidence. Hence the blackbody is a perfect absorber for all incident radiation.” Siegel, Robert; Howell, John R. (2002). Thermal Radiation Heat Transfer; Volume 1 (4th ed.). Taylor & Francis. p. 7.

_ 8@νFp

qνer_/>s * 1

t_ F _ _# ∙ ∆ν

u_ t_∆Ω

Spectral energy density

Spectral irradiance

Spectral radiance

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 40/42 I 10/24/2017

Spectral Radiance

“A blackbody allows all incident radiation to pass into it (no reflected energy) and internally absorbs all the incident radiation (no energy transmitted through the body). This is true for radiation of all wavelengths and for all angles of incidence. Hence the blackbody is a perfect absorber for all incident radiation.” Siegel, Robert; Howell, John R. (2002). Thermal Radiation Heat Transfer; Volume 1 (4th ed.). Taylor & Francis. p. 7.

_ 8@νFp

qνer_/>s * 1

t_ F _ _# ∙ ∆ν

u_ t_∆Ω

Spectral energy density

Spectral irradiance

Spectral radiance

Sun:u_ 1.5 ∙ 10M^ W/(cm2 Hz sr)

HeNe-LASER:u_ 25 W/(cm2 Hz sr)

NdGlas-LASER:u_ 2 ∙ 10w W/(cm2 Hz sr)

Page 21: 1. Basic Optics - uni-heidelberg.de · 1. Basic Optics Simon Hubertus, ... • Fiber Optics ... 700 nm, ν= 4.3 – 7.5 ⋅10 14 Hz Geometric optics (wave character) Quantum optics

24.10.2017

21

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 41/42 I 10/24/2017

Repetition

• Einstein: Explenation of stimulatedemission 1917

• First pulsed ruby LASER by Maiman in 1960

• Nobel prizes for Townes, Basow andProkhorov in 1964: fundamental work in quantum electronicsfacilitatingLASERs/MASERs

• Light has both wave and particle character• Electromagnetic wave: oscillating B- and

E fields• Maxwell's Equation: foundation of

electrodynamics

• Fermat‘s principle: (total) relfection, refraction

• Lens equation• Dispersion: Group and phase velocity• Interference and coherence• Diffraction

Properties of LASER Light• High Directionality: small ∆Ω=λ2/A• High Spectral Radiance β=I/∆Ω

• Small bandwidth ∆ω

• High spatial and temporal coherence (Michelson Interferometer)

Biomedical Optics – „Basic Optics“

Simon HubertusI Slide 42/42 I 10/24/2017

Next Lecture

2. LASER Physics and Systems