02 Introducción a la fisiología microbiana

27
Introducción a la fisiología microbiana La fisiología (del griego del griego φυσις physis, 'naturaleza', y λογος logos, 'conocimiento, estudio‘), es la ciencia cuyo objeto de estudio son las funciones de los seres orgánicos. Objetivos principal: Comprender los procesos funcionales de los organismos vivos y todos sus elementos (estructura y función). Estudiar las interacciones de los elementos básicos del ser vivo con su entorno. Fisiología microbiana: Aplicación de estos objetivos tomando como modelo a los microorganismos.

Transcript of 02 Introducción a la fisiología microbiana

Page 1: 02 Introducción a la fisiología microbiana

Introducción a la fisiología microbiana

La fisiología (del griego del griego φυσις physis, 'naturaleza', y λογος logos, 'conocimiento, estudio‘), es la ciencia cuyo

objeto de estudio son las funciones de los seres orgánicos.

Objetivos principal: Comprender los procesos funcionales de los organismos vivos y todos sus elementos (estructura y función). Estudiar las interacciones de los elementos básicos del ser vivo con su entorno.

Fisiología microbiana: Aplicación de estos objetivos tomando como modelo a los

microorganismos.

Page 2: 02 Introducción a la fisiología microbiana

Importancia e impacto de la fisiología de los microorganismos

http://commtechlab.msu.edu/sites/dlc-me/zoo/

Page 3: 02 Introducción a la fisiología microbiana

Every time you walk on the ground you step on billions of microbes. Microbes live in the soil, on rocks, inside roots, buried under miles of Earth, in compost piles and toxic waste, and all over the Earth's surface:

• Ag acres: Microbes are essential for growing all our crops.

• Compost: Many microbes convert organic wastes into useful compost.

• Home sweet home: See what lives on your cutting board, on your shower curtain, in your couch and in your carpet.

• Hot Springs: Some microbes can survive temperatures about the boiling point. These are called thermophiles.

• House of Horrors: Visit monsters of the microbial world. See vampire bacteria that suck the life juices from other bacteria, Bdellovibrio, which gets inside other bacteria and eats their guts out, and fungi that strangle worms.

Page 4: 02 Introducción a la fisiología microbiana

• Ice Land: Some microbes live on snow and ice and die at room temperature. These are called psychrophiles.

• Redox Mine Shaft: Some microbes, called anaerobes, "breathe" substances other than oxygen (nitric acid, sulfuric acid, iron, arsenic or uranium) to produce energy. They undergo different "redox" reactions.

• Root Cellar: Microbes live near roots in the "rhizosphere" and they live in symbiotic associations with the roots of plants.

• Statue: Some microbes slowly destroy stone buildings and statuary.

• Toxic Waste Dump: Microbes thrive in chemical environments hostile to humans and remove toxins like oil and pesticide

Page 5: 02 Introducción a la fisiología microbiana

Most animals are intimately associated with microbes. Microbes live in their guts, in their mouths, and on their skin. Microbes are important for the good health of most animals. Because many animals have more microbe cells than they have animal cells living in or on them, it is as if animals evolved as homes for microbes.

Page 6: 02 Introducción a la fisiología microbiana

• Habitat on Humanity: The right microbes on our skin and in our guts keep us humans healthy.

• Cow Rumen: Humans depend on cows for milk and meat. Cows and other

animals called ruminants have special stomachs called rumens which are host to billions of microbes that help these animals survive.

• Termite Gut: You probably thought termites digested wood. They don't, but

the microbes that live inside their guts do. By digesting wood bits, the bacteria and protists in the termite's guts help the termites survive. In turn, the termite gives the microbes a comfy place to stay.

• Poo Corner: One product of all animals is dung. Without microbes to get rid

of all the dung, the world would be a really poopy place.

Page 7: 02 Introducción a la fisiología microbiana

Where there is water, there are microbes. Microbes, like other living creatures, require water to live and reproduce. All environments in this Zoo, including Water World, could be called Water World. However, some microbes prefer environments that have more water than the millimeters of water surrounding a particle of soil, or than is found in many foods. For this reason these organisms are grouped into habitats collectively known as Water World.

Page 8: 02 Introducción a la fisiología microbiana

Pond: Ponds have a rich diversity of microbial life. In this pond, you will see many bizarre microbes including green and purple bacteria and algae, sulfate reducers, methane producers, and others. Deep Sea Vents: Want to explore a world that is as bizarre as anywhere in the solar system? Check out Deep Sea Vents where life is truly bizarre. Life thrives at the bottoms of oceans near these vents. Pipe Slimers: Ever noticed that black stuff on your shower curtain or the gunk in your drain? These are examples of microbes that have grown to become a biofilm. Watery Desert: Ironically, much of the ocean is a biological "desert". Although the ocean is obviously not dry, much of it is barren of life, supporting very little life. Only 1 - 100 microbes per milliliter live in some parts of the ocean compared to the 1,000,000 found in a milliliter of coastal water.

Page 9: 02 Introducción a la fisiología microbiana

• Sediment: Many microbes live in the bottom of lakes and rivers in sediments. • Salty Sea: Many microbes cannot survive except in the presence of high concentrations

of salt. These organisms are called"halophiles." • Diatoms and Chalk Makers: What do the White Cliffs of Dover and toothpaste have to

do with each other? Both are made with the remnants of the microscopic shells of algae. • Swamps and Bogs: What gas is produced in swamps? Swamp gas, also known as

methane is produced by bacteria called methanogens. • Magnetotactic Bacteria: Certain bizarre bacteria have tiny magnets in them. The

magnets allow these magnetotactic bacteria to move along the Earth's magnetic fields.

• Luminescent Bacteria: Next time you go to the ocean at night, notice how the water lights up when you splash it. These are free-living luminescent microbes. Other luminescent microbes are found as symbionts of fish.

• Red Tide: The Red Tide is caused by billions of microscopic red algae known as

dinoflagellates that bloom periodically in the ocean.

Page 10: 02 Introducción a la fisiología microbiana

Microbes are used to help preserve foods. Many microbes preserve foods by a process called "fermentation." Fermentation is the conversion of sugars to simpler compounds by microbes under conditions with no oxygen. Microbes gain energy in this process, just as we gain energy by respiration.

• Beer: Grains, such as barley, are converted to beer with the help of yeast. Hops, (flowers of hops vine), are added for flavoring and to prevent the growth of unwanted microbes that would otherwise ruin the beer.

• Bread: Bread is made from grains fermented with yeast. The yeast produce the gas

carbon dioxide (CO2) and the alcohol ethanol (CH3-CH2-OH). The carbon dioxide gas makes the bread rise. The ethanol evaporates during baking.

Page 11: 02 Introducción a la fisiología microbiana

• Chocolate: Chocolate is prepared with the help of microbes. Chocolate comes from the seeds of cacao trees. These seeds are in a white fleshy pod. To get the seeds out of the pod, the pod is allowed to ferment with naturally occurring microbes that include yeasts and bacteria such as Lactobacilli and Acetobacter.

• Natto: A favorite food of some Japanese, naato is served with rice. This mucous-like

mush that smells like ammonia is made by the action of microbes on soybeans that have been soaked in water. The bacterium used for this fermention is Bacillus subtilis (also known as B. subtilis natto).

• Wine: Fruit juice is converted to wine with the help of yeast. • Yoghurt: Yoghurt is made from fermented milk. Milk is rich in sugars, particularly the

sugar lactose. Since microbes like sugars, milk is a great feast for microbes. Lactobacilli are the bacteria that convert milk to yoghurt. In the process of using the milk sugar, Lactobacillus produces acid which makes the yoghurt sour and a less hospitable place for other microbes.

Page 12: 02 Introducción a la fisiología microbiana

Microbes inhabit the farthest reaches of the biosphere, floating up to six miles into the atmosphere. Microbes may inhabit space beyond our world. If life exists on other planets, it is most probably microbial life. If we humans are to ever colonize another planet or moon or go for long space flights, we must build life support systems using the help of microbes.

Page 13: 02 Introducción a la fisiología microbiana

El paradigma de Escherichia coli

La fisiología microbiana es una disciplina muy amplia que involucra el estudio de cientos de organismos distintos. Sin embargo, se pueden establecer una serie de fundamentos sólidos utilizando la información disponible sobre un número limitado de organismos para ilustrar los conceptos claves en esta área.

La bacteria E. coli es utilizada como paradigma, sin embargo se

utilizará información de otros microorganismos con fines comparativos para ilustrar cada tema y concepto que así lo requiera.

(adecuado de: Microbial Physiology. Albert G. Moat, John W. Foster and Michael P.

Spector. 2002 by Wiley-Liss, Inc.) Paradigma: Ejemplo que sirve de norma

Page 14: 02 Introducción a la fisiología microbiana

Aproximaciones para el estudio de los microorganismos

Page 15: 02 Introducción a la fisiología microbiana

Aproximaciones -ómicas

Page 17: 02 Introducción a la fisiología microbiana

Funding Relevance of Bacterial Genome Projects

Page 18: 02 Introducción a la fisiología microbiana

Tamaño de genomas microbianos (Bacteria y Archaea)

http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/chroms-genes-prots/genomes.html

Page 19: 02 Introducción a la fisiología microbiana

Características

Nanoarchaeum equtans: • Simbionte obligado • Genoma: 0.491 Mbp (491 Kbp 491 genes) • Carece de genes requeridos para la biosíntesis de

o Lípidos o Aminoácidos o Nucleótidos o Vitaminas

Mycoplasma genitalium: • Patógeno intracelular obligado • Genoma: 0.58 Mbp (580 Kbp 580 genes) • Carece de genes requeridos para la biosíntesis de

o Aminoácidos o Síntesis de peptidoglicanos o TCA o Otros genes biosintéticos

Page 20: 02 Introducción a la fisiología microbiana

Análisis del genoma de Micobacterium genitalium: • Los micoplasmas son parásitos obligados que viven en ambientes

poco cambiantes y requieren muy pocas capacidades adaptativas.

• M. genitalium, es un patógeno urogenital de humanos. Es la manifestación más extrema de parsimonia genómica: posee solo 482 genes codificantes de proteínas y el tamaño de genoma más pequeño de cualquier organismo de vida libre capaz de ser cultivado: – Identificación de 382 de los 482 genes que codifican

proteínas como esenciales.

Page 21: 02 Introducción a la fisiología microbiana
Page 22: 02 Introducción a la fisiología microbiana
Page 23: 02 Introducción a la fisiología microbiana

Implicaciones biotecnológicas

Page 24: 02 Introducción a la fisiología microbiana

http://www.hmpdacc.org/micro_analysis/microbiome_analyses.php

Page 25: 02 Introducción a la fisiología microbiana

Nature Reviews Genetics, 2012. Vol 13. 260-270

Page 26: 02 Introducción a la fisiología microbiana
Page 27: 02 Introducción a la fisiología microbiana