PY3090 Preparation of Materials Lecture 1...Steels Cu Al Mg Ti

22
PY3090 PY3090 5 5 PY3090 PY3090 Preparation of Materials Preparation of Materials Lecture 5 Lecture 5 Colm Stephens Colm Stephens School of Physics School of Physics

Transcript of PY3090 Preparation of Materials Lecture 1...Steels Cu Al Mg Ti

  • PY3090 PY3090 –– 55

    PY3090PY3090Preparation of MaterialsPreparation of MaterialsLecture 5Lecture 5

    Colm StephensColm StephensSchool of PhysicsSchool of Physics

  • • Co < 2 wt% Sn• Result:

    --at extreme ends--polycrystal of α grains

    i.e., only one solid phase.

    Microstructures Microstructures in Eutectic Systems: Iin Eutectic Systems: I

    0

    L+ α200

    T(°C)

    Co, wt% Sn10

    2

    20Co

    300

    100

    L

    α

    30

    α+β

    400

    (room T solubility limit)

    TE(Pb-SnSystem)

    αL

    L: Co wt% Sn

    α: Co wt% Sn

  • • 2 wt% Sn < Co < 18.3 wt% Sn• Result:

    Initially liquid + αthen α alonefinally two phases

    α polycrystalfine β-phase inclusions

    Microstructures Microstructures in Eutectic Systems: IIin Eutectic Systems: II

    Pb-Snsystem

    L + α

    200

    T(°C)

    Co , wt% Sn10

    18.3

    200Co

    300

    100

    L

    α

    30

    α+ β

    400

    (sol. limit at TE)

    TE

    2(sol. limit at Troom)

    L: Co wt% Sn

    αβ

    α: Co wt% Sn

  • • Co = CE• Result: Eutectic microstructure (lamellar structure)

    --alternating layers (lamellae) of α and β crystals.

    Microstructures Microstructures in Eutectic Systems: IIIin Eutectic Systems: III

    Adapted from Fig. 9.14, Callister 7e.160μm

    Micrograph of Pb-Sneutectic microstructure

    Pb-Snsystem

    L + β

    α + β

    200

    T(°C)

    C, wt% Sn20 60 80 1000

    300

    100

    L

    α βL+α

    183°C

    40

    TE

    18.3

    α: 18.3 wt%Sn

    97.8

    β: 97.8 wt% Sn

    CE61.9

    L: Co wt% Sn

  • • 18.3 wt% Sn < Co < 61.9 wt% Sn• Result: α crystals and a eutectic microstructure

    Microstructures Microstructures in Eutectic Systems: IVin Eutectic Systems: IV

    18.3 61.9

    SR

    97.8

    SR

    primary αeutectic α

    eutectic β

    WL = (1-Wα) = 50 wt%

    Cα = 18.3 wt% SnCL = 61.9 wt% Sn

    SR + S

    Wα= = 50 wt%

    • Just above TE :

    • Just below TE :Cα = 18.3 wt% SnCβ = 97.8 wt% Sn

    SR + S

    Wα= = 73 wt%

    Wβ = 27 wt%

    Pb-Snsystem

    L+β200

    T(°C)

    Co, wt% Sn

    20 60 80 1000

    300

    100

    L

    α βL+α

    40

    α+β

    TE

    L: Co wt% Sn LαLα

  • L+αL+β

    α + β

    200

    Co, wt% Sn20 60 80 1000

    300

    100

    L

    α βTE

    40

    (Pb-SnSystem)

    Hypoeutectic & HypereutecticHypoeutectic & Hypereutectic

    160 μmeutectic micro-constituent

    hypereutectic: (illustration only)

    β

    ββ

    ββ

    β

    175 μm

    α

    α

    α

    αα

    α

    hypoeutectic: Co = 50 wt% Sn

    T(°C)

    61.9eutectic

    eutectic: Co =61.9wt% Sn

  • Intermetallic CompoundsIntermetallic Compounds

    Note: intermetallic compound forms a line - not an area -because stoichiometry (i.e. composition) is exact.

    Mg2Pb

  • Eutectic Eutectic -- liquid in equilibrium with liquid in equilibrium with two solidstwo solids

    LL αα + + ββ

    EutecticEutectic

    coolheat

  • PeritecticPeritectic -- liquid + solid 1 liquid + solid 1 solid 2solid 2SS1 1 + + LL SS22

    δδ + + LL γγ (1493(1493ººC)C)coolheat

    EutectoidEutectoid -- solid phase in equilibrium solid phase in equilibrium with two solid phaseswith two solid phasesSS22 SS11++SS33

    γγ αα + Fe+ Fe33C C (727(727ººC)C)

    intermetallic compound - cementite

    coolheat

    Eutectoid & Eutectoid & PeritecticPeritectic

  • Example: Eutectoid & Example: Eutectoid & PeritecticPeritectic

    Cu-Zn Phase diagram

    Eutectoid transition δ γ + ε

    Peritectic transition γ + L δ

  • IronIron--Carbon Phase Diagram ExtractCarbon Phase Diagram Extract• 2 important

    points

    -Eutectoid (B):γ ⇒ α +Fe3C

    -Eutectic (A):L ⇒ γ +Fe3C

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ+Fe3C

    α+Fe3C

    α+γ

    L+Fe3C

    δ

    (Fe) Co, wt% C

    1148°C

    T(°C)

    α 727°C = Teutectoid

    ASR

    4.30

    γ γγγ

    R S

    0.76

    Ceu

    tect

    oid

    B

    Fe3C (cementite-hard)α (ferrite-soft)

  • PearlitePearlite

    Fe3C (cementite-hard)

    α (ferrite-soft)

    Result: Pearlite = alternating layers ofα and Fe3C phases

    120 μm

  • HypoeutectoidHypoeutectoid SteelSteel

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ + Fe3C

    α+ Fe3C

    L+Fe3C

    δ

    (Fe) Co, wt% C

    1148°C

    T(°C)

    α727°C

    (Fe-C System)

    C0

    0.76

    r s

    wα =s/(r+s)wγ =(1- wα)

    γγ γ

    γαα

    α

    γγγ γ

    γ γγγ

    α

    wα =S/(R+S)wFe3C =(1-wα)

    wpearlite = wγpearlite

  • Hypoeutectoid SteelHypoeutectoid Steel

    Proeutectoidferrite

    pearlite

    100 μmα

    wα =S/(R+S)wFe3C =(1-wα)

    wpearlite = wγpearlite

  • Hypereutectoid SteelHypereutectoid Steel

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ +Fe3C

    α +Fe3C

    L+Fe3C

    δ

    (Fe) Co, wt%C

    1148°C

    T(°C)

    α

    (Fe-C System)

    0.76

    Co

    R S

    wα =S/(R+S)wFe3C =(1-w α)

    wpearlite = wγpearlite

    sr

    wFe3C =r/(r+s)wγ =(1-w Fe3C)

    Fe3C

    γγγ γ

    γγγ γ

    γγγ γ

  • Hypereutectoid SteelHypereutectoid Steel

    proeutectoid Fe3C

    60 μm

    pearlite

    wα =S/(R+S)wFe3C =(1-w α)

    wpearlite = wγpearlite

  • ExampleExample

    For a 99.6 wt% FeFor a 99.6 wt% Fe--0.40 wt% C at a 0.40 wt% C at a temperature just below the temperature just below the eutectoid, determine the followingeutectoid, determine the following

    a)a) the amount of the amount of pearlitepearlite and and proeutectoidproeutectoid ferrite (ferrite (αα) per 100 g of ) per 100 g of steelsteel

    b)b) composition of Fecomposition of Fe33C and ferrite (C and ferrite (αα))c)c) the amount of carbide (cementite) in the amount of carbide (cementite) in

    grams that forms per 100 g of steelgrams that forms per 100 g of steel

  • SolutionSolutiona. the amount of pearlite and proeutectoid ferrite (α)

    note: amount of pearlite = amount of γ just above TE

    Co = 0.40 wt% CCα = 0.022 wt% CCpearlite = Cγ = 0.76 wt% C

    γγ + α

    =Co −CαCγ −Cα

    x 100 = 51.2 g

    pearlite = 51.2 gproeutectoid α = 48.8 g

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ + Fe3C

    α + Fe3C

    L+Fe3C

    δ

    Co, wt% C

    1148°C

    T(°C)

    727°C

    CO

    R S

    CγCα

  • SolutionSolution

    g 3.94g 5.7 CFe

    g7.5100 022.07.6022.04.0

    100xCFe

    CFe

    3

    CFe3

    3

    3

    =

    =−−

    =

    −−

    =α+ α

    α

    x

    CCCCo

    c) the amount of carbide (cementite) in grams that forms per 100 g of steel

    b) composition of Fe3C and ferrite (α)

    CO = 0.40 wt% CCα = 0.022 wt% CCFe C = 6.70 wt% C3

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ + Fe3C

    α + Fe3C

    L+Fe3C

    δ

    Co, wt% C

    1148°C

    T(°C)

    727°C

    CO

    R S

    CFe C3Cα

  • Alloying Steel with More ElementsAlloying Steel with More Elements

    • Teutectoid changes:

    TE

    utec

    toid

    (°C

    )

    wt. % of alloying elements

    Ti

    Ni

    MoSi

    W

    Cr

    Mn

    • Ceutectoid changes:

    wt. % of alloying elements

    Ceu

    tect

    oid

    (wt%

    C)

    Ni

    Ti

    Cr

    SiMn

    WMo

  • Taxonomy of MetalsTaxonomy of MetalsMetal Alloys

    Ferrous Nonferrous

    Cu Al Mg TiSteels

  • SteelsSteels

    increasing strength, cost, decreasing ductility

    PY3090�Preparation of Materials�Lecture 5Microstructures �in Eutectic Systems: IMicrostructures �in Eutectic Systems: IIMicrostructures �in Eutectic Systems: IIIMicrostructures �in Eutectic Systems: IVHypoeutectic & HypereutecticIntermetallic CompoundsEutecticEutectoid & PeritecticExample: Eutectoid & PeritecticIron-Carbon Phase Diagram ExtractPearliteHypoeutectoid SteelHypoeutectoid SteelHypereutectoid SteelHypereutectoid SteelExampleSolutionSolutionAlloying Steel with More ElementsTaxonomy of MetalsSteels