Μέθοδος Πολυπλέγματoς -...
Embed Size (px)
Transcript of Μέθοδος Πολυπλέγματoς -...

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
Parallel CFD & Optimization Unit
Laboratory of Thermal Turbomachines
Μέθοδος Πολυπλέγματoς
(Multigrid)
Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ
Βαρβάρα Ασούτη, Δρ. Μηχ. Μηχανικός ΕΜΠ

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Example
Problem:
Boundary Conditions:
Initialization:
02 11 iii uuu
00 Muu
0 1 M M-1
M
ikui
sin
Mi 0
2

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Discretization
)(22
1
)()(2)(
02
0
1111
2
2
1111
2
11
2
2
iiiiii
iiiiii
ii
uuuuuxrhsu
xrhsuuuuuu
x
uuu
x
u
3

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
dx = 1.d0/dfloat(nx)
c1p = -1.d0
c1m = -1.d0
cc = 2.d0
do ic=0,ncyc
do i=0,nx
du(i) = 0.d0
enddo
restot = 0.d0
do i=1,nx-1
au = -u(i-1) + 2.d0*u(i) - u(i+1)
resid(i) = rhs(i) - au
du(i) = (dx*dx*rhs(i)-au - c1m*du(i-1) - c1p*du(i+1))/cc
restot = restot + resid(i)*resid(i)
enddo
restot = dsqrt(restot)/dfloat(nx+1)
error = 0.d0
do i=1,nx-1
u(i) = u(i) + du(i)
error = u(i)*u(i)
enddo
enddo
Coding
Compute Δu
Update u
4

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Convergence
5

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Geometric Multigrid: The Idea
Different grid sizes:
Ability to solve all wave lengths
Rapid convergence
6
x
2x
4x

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Operators
Restriction
Mapping from the fine grid to the coarse grid
Injection
Full weighting
Prolongation
Mapping from the coarse grid to the fine grid
h
i
H
i uu 2
h
i
h
i
h
i
H
i uuuu 12212 24
1
H
i
H
i
h
i
H
i
h
i
uuu
uu
112
2
2
1
7
hh
H
H
hHh
H
I
I
:
HH
h
h
HhH
h
I
I
:
h: Fine grid
H: Coarse grid

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
V-cycle using two grids (fine/h, coarse/H) :
1. Solve (2-3 Jacobi or Gauss-Seidel iterations)
2. Restrict the residual to the coarse grid
3. Solve (2-3 Jacobi or Gauss-Seidel iterations)
4. Prolongate (interpolate) to fine grid
and correct
5. Go to step 1, using the updated
Multigrid Algorithm
hhh ubuA
hhhh uAbr h
H
hH rIr
HHHH ErEA
HE
hhh Euu
hu
H
h
Hh EIE
8

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Multigrid Schemes
9
4 (h)
3 (2h)
2 (4h)
1 (8h)
V-cycles
and
W-cycles
Full Multigrid
(FMG-cycles) 4 (h)
3 (2h)
2 (4h)
1 (8h)

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Multigrid in 2 dimensions
Fine grid:
Coarse grid:
10

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
2D Restriction
Injection:
Weighting:
Half
Full
0 0 0
0 0 1
0 0 0
0 0 1/8
1/8 1/8 1/2
0 0 1/8
1/16 1/16 1/8
1/8 1/8 1/4
1/16 1/16 1/8
h
ji
H
ji uu 2,2,
h
ji
h
ji
h
ji
h
ji
h
ji
h
ji
h
ji
h
ji
h
ji
H
ji
uuuu
uuuuuu
12,1212,1212,1212,12
12,212,22,122,122,2,
16
1
8
1
4
1
h
ji
h
ji
h
ji
h
ji
h
ji
H
ji uuuuuu 12,212,22,122,122,2,8
1
2
1
11

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
2D Prolongation
1/4 1/4 1/2
1/2 1/2 1
1/4 1/4 1/2
H
ji
H
ji
H
ji
H
ji
h
ji
H
ji
H
ji
h
ji
H
ji
H
ji
h
ji
H
ji
h
ji
uuuuu
uuu
uuu
uu
1,11,,1,12,12
1,,12,2
,1,2,12
,2,2
4
1
2
1
2
1
12

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Algebraic Multigrid (AMG)
Method to solve linear systems based on multigrid principles, without
explicit knowledge of the problem geometry (only matrix coefficients)
Determines coarse “grids”, inter-grid transfer operators and the coarse grid
equations are exclusively based on the matrix entries
Two-grid algorithm:
1. Solve
2. Compute residual
3. Solve with
4. Correct
5. Solve
Prolongation: matrix
Restriction:
13
hhh ubuA
hhhhhh eAuAbr
H
T
HH rPeA
Hhh Peuu
hhh ubuA
PRAA hH
Hh
nnnnRRP hH ,:
R

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Agglomeration
14
Mavriplis D., Mani K., “Unstructured Mesh Solution Techniques using the NSU3D Solver”, AIAA Paper 2014-0081

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
Applications
Transonic flow around the M6 wing
M ∞ =0.8395
α ∞ =3.06ο
Re=11.72 106
Fine grid: ~67k nodes
Coarse grid: ~11k nodes
17
Lambropoulos N., “Multigrid techniques and parallel
processing for the numerical prediction of flowfields thtough
thermal turbomachines, using unstructured grids”, Phd
Thesis, NTUA, 2005 (in greek)

K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece
References
18
Brandt A. “Multi-level Adaptive Solutions to Boundary Value Problems”
Mathematics of Computation, 31:333-390, 1977.
Brandt A. “Guide to Multigrid Development” 1984.
Hackbusch W., “Multigrid Methods and Applications” Springer – Verlag 1985.
Briggs W, Henson, V., McCormick S., “A Multigrid Tutorial”, 2nd edition, SIAM
publications 2000.