σ γ / k 0 measurements at Budapest PGAA facility

54
σ γ / k 0 measurements at Budapest PGAA facility Zsolt Révay, László Szentmiklósi Institute of Isotopes Budapest

description

σ γ / k 0 measurements at Budapest PGAA facility. Zsolt R évay , László Szentmiklósi Institute of Isotopes Budapest. Practice of PGAA in Budapest. k 0 method Relative standardization Inelastic neutron scattering ( n,n’ γ ) background Using Hypermet - PowerPoint PPT Presentation

Transcript of σ γ / k 0 measurements at Budapest PGAA facility

Page 1: σ γ  /  k 0  measurements  at Budapest PGAA facility

σγ / k0 measurements at Budapest PGAA facility

Zsolt Révay, László Szentmiklósi

Institute of Isotopes

Budapest

Page 2: σ γ  /  k 0  measurements  at Budapest PGAA facility

Practice of PGAA in Budapest

• k0 method

– Relative standardization

• Inelastic neutron scattering (n,n’γ) background– Using Hypermet

• Handling asymmetric peaks and overlaps

– Non-linearity– Efficiency

Page 3: σ γ  /  k 0  measurements  at Budapest PGAA facility

Why k0 method?

• Most accurate source of needed data

• k0 philosophy guarantees the highest reliability in measurements

• k0 idea can be better approximated in a beam

• Should be improved

Page 4: σ γ  /  k 0  measurements  at Budapest PGAA facility

Advantages of measurements in (cold) neutron beam

• No epithermal neutrons

• No non-1/v behavior (in cold beam)

• Lambert-Beer type self-shielding (low-divergence beam instead of isotropic neutron field)

Page 5: σ γ  /  k 0  measurements  at Budapest PGAA facility

• 20 MW

• water cooled

• water moderated

• thermal flux

1014 cm-2 s-1

Research Reactor

Page 6: σ γ  /  k 0  measurements  at Budapest PGAA facility

Neutron guides

• Ni or supermirror guides

• relatively small losses

• low background

Page 7: σ γ  /  k 0  measurements  at Budapest PGAA facility

Cold neutron

source at Budapest

400 cm3 20 K liquid H2

Page 8: σ γ  /  k 0  measurements  at Budapest PGAA facility

Budapest PGAA facilityC o n c re te

L e a d

A l tu b e

Va c u u m f it t in gL i-p o ly m e r

B G O C o m p to n su p p re s so r

• 10 MW• LH cold source• curved guide• Compton-

suppressed HPGe

• chopper

Page 9: σ γ  /  k 0  measurements  at Budapest PGAA facility

Budapest PGAA and NIPS facilities

Page 10: σ γ  /  k 0  measurements  at Budapest PGAA facility

PGAA facility

Page 11: σ γ  /  k 0  measurements  at Budapest PGAA facility

Compton suppression

2000 4000 6000 8000 10000 12000 14000 160001

10

100

1k

10k

100k

1M

Co

un

ts/C

ha

nn

el

Channel number

2000 4000 6000 8000 10000

1

10

100

1k

10k

100k

1M

E (keV)

Page 12: σ γ  /  k 0  measurements  at Budapest PGAA facility

1992 upgraded reactor starts1995 first PGAA measurement on the thermal beam1997–1998 establishment of PGAA data library1999–2000 applications2001 new cold beam2002 –2004 Handbook and Atlas

Page 13: σ γ  /  k 0  measurements  at Budapest PGAA facility

Main results in methodology• Data library transportable to other labs

• evaluation software

• complete analysis– analytical precision for the important

elements relative uncertainty: 1–2%

• application of chopped beam

Page 14: σ γ  /  k 0  measurements  at Budapest PGAA facility

Hypermet-PC

Page 15: σ γ  /  k 0  measurements  at Budapest PGAA facility

Hypermet-PC

• Asymmetric peak shape

• Non-linearity

• Efficiency fit

• Partial peak shape calibration

Page 16: σ γ  /  k 0  measurements  at Budapest PGAA facility

Efficiency

• One absolute source

• Lines from relative sources are normalized to it

• 200-300 data points

• 0.2% uncertainty at mid energy range

• 2% uncertainty at high energy range

Page 17: σ γ  /  k 0  measurements  at Budapest PGAA facility

Semiempirical efficiency function

102

103

104

10-6

10-5

10-4

10-3

Eff

icie

ncy

Energy (keV)

dead layer Al window total efficiency full-energy eff. photo single Compton multiple Compton pair

Page 18: σ γ  /  k 0  measurements  at Budapest PGAA facility

e-3 e-2 e-1 e0 e1 e2

Resid

uals

-3

0

3

Energy (MeV)

0.1 1 10

Efficien

cy

10-5

10-4

10-3

Ba-133Eu-152Bi-207Na-24N-15Poly8

Measured efficiency

Page 19: σ γ  /  k 0  measurements  at Budapest PGAA facility

Incorrect linear interpolation of the efficiency

0.02

0.025

0.03

0.035

0.04

0.045

0.05

100 1000 10000

energy (keV)

effi

cien

cy*E

^0.

73

1997-1999

2004

linear

Page 20: σ γ  /  k 0  measurements  at Budapest PGAA facility

The “elbow” of the efficiency

0.042

0.042435

0.04287

0.043305

0.04374

0.044175

0.04461

100 1000 10000

energy (keV)

effi

cien

cy*E

^0.

73

Page 21: σ γ  /  k 0  measurements  at Budapest PGAA facility

Prompt k0 project

Page 22: σ γ  /  k 0  measurements  at Budapest PGAA facility

Measurements of elements1 H

O1 D

O

2 He

3 Li

CO3,C-F

4 Be* O

5 B

C, H-O

6 C**

H

7 N

C-D-O,NO3

8 O

H, Be

9 F

C

10 Ne

11 Na* CO3 ,C-H-O

12 Mg*

13 Al** O

14 Si* O

N

15 P* O

16 S**

17 Cl

C,C-H

18 Ar*

19 K

HCO3

20 Ca* O

CO3

21 ScO

22 Ti** O

23 VO

24 Cr* O-H

25 Mn* O

26 Fe**

27 Co*

28 Ni**

29 Cu* O

30 Zn* O

31 Ga**

32 Ge* O

33 AsO

34 Se* O-H

35 Br*

C-H

36 Kr*

37 RbO

CO3

38 Sr

CO3

39 YO

40 ZrO

41 NbO

42 Mo**

43 (Tc) 44 Ru**

45 Rh*

C-H

46 Pd*

47 Ag**

48 Cd**

49 In*

50 Sn**

51 SbO

52 Te**

53 I*

C-H

54 Xe

F

55 CsO

56 Ba

OH,CO3

57 LaO

72 Hf* O

73 Ta* O

74 WO

75 Re*

76 Os* O

C-H

77 Ir* O

78 Pt*

79 Au*

80 Hg** O

81 Tl*

82 Pb**

83 Bi**

84 (Po) 85 (At) 86 (Rn)

87 (Fr) 88 (Ra) 89 (Ac)

58 CeO

C-H-O

59 PrO

60 NdO

61 (Pm) 62 SmO

63 EuO

64 GdO

65 TbO

66 Dy*

67 HoO

68 ErO

69 TmO

70 YbO

71 LuO

90 Th

NO3

91 (Pa) 92 UO

C-H-O

Page 23: σ γ  /  k 0  measurements  at Budapest PGAA facility

Standardization1 Halap

1 D

H

2 He

3 Li

C,N

4 Be

N, O

5 BH

6 CH

N

7 NH Cl

8 OH

9 F

K,C,Ca

10 Ne

11 NaH Cl

S B

12 MgH Cl

S,Fe*B

13 AlH Cl

S,Fe*B

14 SiN O

Fe*

15 PH

Na

16 SH

Na, Al

17 Cl3H

B

18 Ar

absz: Cl

19 KH Cl

B

20 CaCl

Fe*

21 ScH

S,Ti B

22 TiCl

23 VH

B

24 CrH Cl

25 MnH Cl

B

26 Fe2Cl

27 CoH Cl

B

28 NiH Cl

B

29 CuH Cl

30 ZnCl

B

31 GaH

N B

32 Ge

Co B

33 AsH

Na B

34 SeH

B

35 BrH Cl

B

36 Kr

37 RbCl

B

38 SrCl

B

39 YCl

B

40 ZrCl

N

41 NbCl

42 MoCl

43 (Tc) 44 RuH Cl

45 RhH Cl

46 PdCl

47 AgH Cl

48 CdH Cl

49 In

Sb B

50 SnH Cl

51 Sb

S

52 TeH Cl

53 IH Cl

54 Xe

F

55 CsCl

56 BaH Cl

57 LaCl

72 HfH Cl

73 TaH

Ti,H

74 WH

Na

75 ReCl

76 OsH

77 IrCl

78 PtCl

79 AuH Cl

80 HgCl

81 Tl

S

82 PbCl

N

83 BiCl

84 (Po) 85 (At) 86 (Rn)

87 (Fr) 88 (Ra) 89 (Ac)

58 Ce

H

C

59 Pr

H

S

60 Nd

H

S

61(Pm) 62 Sm

H

S

63 Eu

H

S B

64 Gd

H

S

65 Tb

H

S

66 Dy

H

S

67 Ho

H

S

68 Er

H

Cl

69 Tm

H

S

70 Yb

H

71 Lu

H

S

90 ThHN B

91 Pa 92 UHC B

Page 24: σ γ  /  k 0  measurements  at Budapest PGAA facility

PGAA libraryZ El A MW # E dE d% RI Area cps/g1 H 1 1.01 1 2223.259 0.019 0.3326 0.2 100.00 100.00 64.1831 H 2 1.01 2 6250.204 0.098 0.000492 5.0 0.15 5.00 0.02863 Li 6 6.94 5 477.586 0.050 0.001399 5.9 3.52 10.14 0.12183 Li 7 6.94 2 980.559 0.046 0.004365 5.1 10.97 18.74 0.22513 Li 7 6.94 3 1051.817 0.048 0.004364 5.1 10.97 17.83 0.21413 Li 7 6.94 1 2032.310 0.070 0.0398 5.0 100.00 100.00 1.20073 Li 6 6.94 6 6769.633 0.263 0.001354 6.5 3.40 0.84 0.01013 Li 6 6.94 4 7246.800 0.275 0.002106 8.4 5.29 1.17 0.0144 Be 9 9.01 4 853.631 0.011 0.00165 8.9 26.69 100.00 0.07234 Be 9 9.01 3 2590.014 0.025 0.00188 8.9 30.41 49.08 0.03554 Be 9 9.01 2 3367.484 0.035 0.002924 8.9 47.30 58.96 0.04274 Be 9 9.01 5 3443.421 0.036 0.000993 8.9 16.06 19.54 0.01414 Be 9 9.01 6 5956.602 0.092 0.000146 9.1 2.36 1.41 0.0014 Be 9 9.01 1 6809.579 0.099 0.006181 9.0 100.00 48.52 0.03515 B 10 10.81 1 477.600 5.000 712.5 0.3 100.00 100.00 398066 C 12 12.01 2 1261.708 0.057 0.00123 2.7 45.58 100.00 0.03066 C 12 12.01 3 3684.016 0.069 0.001175 3.5 43.53 38.02 0.01166 C 12 12.01 1 4945.302 0.066 0.002699 2.9 100.00 60.55 0.01867 N 14 14.01 22 583.567 0.031 0.000429 3.3 1.81 6.93 0.01597 N 14 14.01 12 1678.244 0.029 0.006254 1.5 26.34 47.15 0.10857 N 14 14.01 18 1681.174 0.043 0.001296 2.7 5.46 9.76 0.02257 N 14 14.01 21 1853.944 0.052 0.000474 4.5 2.00 3.31 0.00767 N 14 14.01 5 1884.853 0.031 0.0145 1.3 61.07 100.00 0.23017 N 14 14.01 24 1988.532 0.077 0.000294 5.8 1.24 1.94 0.00457 N 14 14.01 15 1999.693 0.032 0.003208 1.7 13.51 21.12 0.04867 N 14 14.01 13 2520.446 0.039 0.004246 1.8 17.88 22.98 0.0529

Page 25: σ γ  /  k 0  measurements  at Budapest PGAA facility

Verification1 Hkompoldatok

1 D

H

2 He

3 Li 4 Be 5 BH,üveg

GEO

6 Ckarbo-nátok

7 Nkomp

8 Ooxidok

9 FCa

10 Ne

11 Nakomp

üveg

12 Mgüveg

13 Alcem,kat,GEO

14 Siüveg,kat,GEO

15 PH

Na

16 SkompcemGEO

17 Clkomp

18 Ar

19 KSRM

20 CaSRM,cem

21 Sc 22 TiCl

GEO

23 Vkat

24 CrSRM,

kat

25 MnSRM

GEO

26 FeSRM,GEO

27 Cooldat

28 Nikat,fémüveg

29 CuAg-Cu

30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr

37 RbB38 Sr 39 Y 40 Zr

fémüveg41 Nbkat

42 Mokat

43 (Tc) 44 Ru 45 Rh 46 Pdfémüveg

47 AgAg-Cu

48 CdSRM

GEO

49 In 50 SnSn-Cd

51 Sb 52 Te 53 I 54 Xe

55 Cs 56 Ba 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Ptkat

79 Aukomp

80 Hg 81 Tl 82 PbPb-Cd

83 Bi 84 (Po) 85 (At) 86 (Rn)

87 (Fr) 88 (Ra) 89 (Ac)

58 Ce 59 Pr 60 Nd 61(Pm) 62 Sm 63 Eu 64 Gd

üveg,GEO

65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu

90 Th 91 Pa 92 U

Page 26: σ γ  /  k 0  measurements  at Budapest PGAA facility

Prompt k0 factors

• relative to Cl 1951 keV line• relative to H 2223 keV line

• σγ = θ γ σ

x

c

cc

xx

x

c

c

xc n

n

A

A

M

Mk

/

/

,

,,0

Page 27: σ γ  /  k 0  measurements  at Budapest PGAA facility

Decay gammas in PGAA spectra

• can be used for analysis, too

• k0-s can be measured

• depending on half-life, saturation correction needed

Page 28: σ γ  /  k 0  measurements  at Budapest PGAA facility

Prompt saturation factor

• activation and decay at the same time

11

teB

t

Page 29: σ γ  /  k 0  measurements  at Budapest PGAA facility

Activation

0 1 2 3 4 5 *t

rel.

nu

mb

er

of

cou

nts

promptdecayshifted prompt

Page 30: σ γ  /  k 0  measurements  at Budapest PGAA facility

Advantages of the in-beam measurement compared to

cyclic activation• uncertainties from

– half-life– timing

do not accumulate

Page 31: σ γ  /  k 0  measurements  at Budapest PGAA facility

k0-s for short lived nuclidesFinal

nuclide

Energy

(keV)Half-life Theoretical k0

8k0

De Corte et al1

k0

Roth et al2

k0

present work

20F 1633.6 11.03 0.06 s (1.060.05) 10–3 (1.010.007) 10–3 (1.060.04) 10–3

24mNa 472.28 20.2 0.1 ms (4.820.05) 10–2 (3.630.02) 10–2 (4.340.03) 10–2

28Al 1778.99 2.2414 0.0001 m (1.79 0.02) 10–2 (1.750.01) 10–2 (1.800.02) 10–2

38mCl 671.33 0.715 0.003 s (6.7 1.4) 10–3 (7.950.14) 10–4 (7.60.8) 10–4

46Sc 142.53 18.7 0.05 s 0.282 0.033 0.227.002 0.226 0.002

51Ti 320.08 5.76 0.01 m (3.77 0.07) 10–4 (3.740.04) 10–4 (3.660.11) 10–4

52V 1434.08 3.75 0.01 m 0.2 0.005 0.196 0.002 0.197 0.004

56Mn 846.81 2.5785 0.0006 h 0.5 0.008 0.496 0.030 0.502 0.006

60mCo 1332.5 10.47 0.006 m 3.3 10–3 (3.200.09) 10–3

66Cu 1039.35 5.088 0.011 m (1.60.4) 10–3 (1.860.009) 10–3 (1.970.04) 10–3

77mGe 215.48 52.9 0.6 s 2.69 10–5 (2.68 0.13) 10–5

77mSe 161.92 17.45 0.1 s 0.0290.001 (2.570.001) 10–2 (2.240.04) 10–2

Page 32: σ γ  /  k 0  measurements  at Budapest PGAA facility

Chopped-beam PGAA

TOF

Page 33: σ γ  /  k 0  measurements  at Budapest PGAA facility

Beam chopper

• Variable opening: 0.2 – 50%

• variable frequency: 3 – 100 Hz

• Beam periodically shielded by Gd, 6Li

Page 34: σ γ  /  k 0  measurements  at Budapest PGAA facility

Time of flight

n

gamma radiation

detectorchopper

Rotating and standing slits

Page 35: σ γ  /  k 0  measurements  at Budapest PGAA facility

Cold and thermal neutron spectra

Wavelength spectra of thermal and cold beams

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 5 10 15 20

wavelength (AA)

TN1

CN1

Page 36: σ γ  /  k 0  measurements  at Budapest PGAA facility
Page 37: σ γ  /  k 0  measurements  at Budapest PGAA facility

Candidates for in-beam measurement

< 1 s: Na,

< 1 min: F, Sc, Ge, Pd, Ag, In, Er, Hf, W,

< 10 min Mg, Al, V, Cr, Se, Br, Rh, Dy, Ir,

< 1 h: Ga, Rb, Sn, I, Pr, Nd, Ta, Re,

<1 day: Mn, Cu, Sr, Cs, Ba, Eu, Lu,

longer: As, Ru, La, Ce, Tb, Ho, Yb, Au,

Page 38: σ γ  /  k 0  measurements  at Budapest PGAA facility

Isotopes with high Er

Q0 Er Isot sigma1.12 2280 37S 0.151.14 1040 64Cu 2.171.908 2560 65Zn 0.762.38 3540 75mGe 0.171.57 3540 75Ge 0.345.93 4300 90mY 0.0015.05 6260 95Zr 0.04991.8 2950 131I 6.21.2 1540 143Ce 0.95

Page 39: σ γ  /  k 0  measurements  at Budapest PGAA facility

First prototype of chopper

Page 40: σ γ  /  k 0  measurements  at Budapest PGAA facility

Budapest PGAA facility (L. Sz.)

Page 41: σ γ  /  k 0  measurements  at Budapest PGAA facility

Simultaneous PGAA and NAA measurement with a chopper

• Beam open

prompt gamma rays

decay gamma rays

Usual PGAA spectrum

• Beam closed

only decay gamma rays

cyclic NAA spectrum

Page 42: σ γ  /  k 0  measurements  at Budapest PGAA facility

21

14

Mn

18

48

18

11

Mn

17

79

Al

15

13

13

64

13

26

11

31

10

268

47

Mn

82

3

69

0

51

1 A

nn

ih.

59

0

90

Tc-

99

53

8

12

01

172 Tc-100 p

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

0 500 1000 1500 2000 2500

E [keV]

Co

un

t ra

te [c

ps

]

Tc-100 decay

Tc-99 capture

Prompt and decay spectrum of Tc-99

Page 43: σ γ  /  k 0  measurements  at Budapest PGAA facility

Name Reactor Beam Vacuum Chopper Phase Backgound

(cps)

Room background off – – – – 0.63

Beam-off background on off – – – 1.5

Beam-on background

(in vacuum)

on on yes – – 4.0

Beam background in air on on no – – 5.6

Chopper background in

prompt phase

on on no on prompt 5.3

Chopper background in

decay phase

on on no on decay 4.6

Background

Page 44: σ γ  /  k 0  measurements  at Budapest PGAA facility

prompt spectrum decay spectrum gainEl E (keV)

rate S/N rate S/N

F 1633 1.63(2) 1300 1.63(6) 7000 5

Al 1779 2.62(1) 2000 2.61(1) 200,000 100

Sc 143 28(1) 200 29(1) 40,000 20

147 46.8(7) 400

V 125 20.0(2) 270

1434 9.3(1) 1200 8.8(4) 41,000 34

Cu 159 29.6(2) 200

1039 0.58(2) 90 0.55(2) 900 10

Ag 198 82(1) 62

658 7.16(15) 20 7.3(3) 1900 95

In 163 157(3) 53 146(6) 3700 70

Er 185 32(1) 400

208 14.6(8) 180 15.4(6) 11,000 60

Mea-sure-ments

Page 45: σ γ  /  k 0  measurements  at Budapest PGAA facility

0.0001

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000E (keV)

Inte

nsity

(cps

)

prompt

decay

background

Spectra

Page 46: σ γ  /  k 0  measurements  at Budapest PGAA facility

0.001

0.01

0.1

1

10

600 620 640 660 680 700

E (keV)

Inte

nsi

ty (

cps)

promptdecay

108Ag 110Ag

Prompt and decay spectrum of Ag

Page 47: σ γ  /  k 0  measurements  at Budapest PGAA facility

ResultsElement Half-life Energy (keV) decay

line

(barn)

prompt line

(barn)

F 11.16 s 1633 0.0093(3) –

Al 2.24 m 1779 0.233(4) <0.005

Sc 18.75 s 143 4.88(10) <0.13

V 3.75 m 1434 5.20(10) <0.3

Cu 5.12 m 1039 0.0600(12) <0.0023

Ag 24.6 s 658 1.93(4) <0.08

In 2.18 s 163 15.8(8) <1.1

Er 2.27 s 208 2.15(9) <0.18

Page 48: σ γ  /  k 0  measurements  at Budapest PGAA facility

Second prototype chopper

Page 49: σ γ  /  k 0  measurements  at Budapest PGAA facility

In-beam saturation factor (B) (LSz)

11

mt

m

eB

t

Type I nuclides, on-line counting

3 3 3233 1 2

3 2

( ) 1 1t t ttm gdR t N E F e e e e

Count rate of #3 from Bateman-Rubinson equations:

3 23

2 22 3

23 3 2 2 3

1 111 1

m mm

t tmt

gm m

e eeB F

t t

Type IV nuclides Type IV/B

nuclides

Type IV/A nuclides

Page 50: σ γ  /  k 0  measurements  at Budapest PGAA facility

Results 1/3 (LSz)

Sample Nuclide Energy, keV

k0,Au (Rel. unc %)

Literature Z-score

PTFE cylinder 20F 1633 0.00102 (2.2%) 9.98E-4 (1.2%) 1.01E-3 (0.7%)

0.87 0.44

Na2S2O3.5H2O 24Na 1369 0.047646 (1.8%) 4.68E-02 (0.6%) 0.94 2754 0.047591 (2.2%) 4.62E-02 (0.8%) 1.26 Al(OH)3

28Al 1779 0.017946 (1.1%) 1.75E-02 (0.8%) 1.80 MnCl2.4H2O 38mCl 671 0.000791 (5.1%) 7.95E-04 (1.7%) -0.09 38Cl 1642 0.00202 (6.1%) 1.97E-03 (1.4%) 0.43 2167 0.00280 (4.8%) 2.66E-03 (1.3%) 1.01 56Mn 847 0.499 (1.0%) 4.96E-01 (0.6%) 0.54 1811 0.1351 (1.1%) 1.35E-01 (0.4%) 0.09 2113 0.0728 (1.8%) 7.17E-02 (0.2%) 0.83 Sc2(SO4)3

46Sc 143 0.225 (2.1%) 0.2270 (0.7%) -0.42

Literature data taken from:F. De Corte, A. Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47.S. Roth, F. Grass, F. De Corte, L. Moens, K. Buchtela, J. Radioanal. Nucl. Chem. 169 (1993) 159.S. Van Lierde, F. De Corte, D. Bossus, R. Van Sluijs, S. Pommé, Nucl. Instr. Meth. A 422 (1999) 874.

Page 51: σ γ  /  k 0  measurements  at Budapest PGAA facility

Results 2/3 (LSz)

Sample Nuclide Energy, keV

k0,Au (Rel. unc %)

Literature Z-score

KBr+H2O 80Br 616 0.00675 (1.5%) 6.92E-03 (0.3%) -1.71

666 0.00122 (2.3%) 1.22E-03 (0.5%) -0.04

82Br 554 0.02315 (1.9%) 2.38E-02 (1.1%) -1.28 619 0.01387 (2.0%) 1.45E-02 (0.8%) -2.11 698 0.00917 (2.2%) 9.38E-03 (0.9%) -0.98 777 0.02756 (1.4%) 2.76E-02 (0.8%) -0.10 828 0.00753 (3.1%) 7.99E-03 (0.9%) -1.87 1044 0.00872 (2.7%) 9.14E-03 (0.7%) -1.71 1317 0.00828 (3.0%) 8.91E-03 (0.4%) -2.54 1475 0.00536 (3.5%) 5.42E-03 (0.5%) -0.33 KI+H2O 127I 443 0.0117 (0.9%) 1.12E-02 (1.7%) 2.12 527 0.0011 (2.0%) 1.07E-03 (1.4%) 1.40 HfOCl2.8H2O 179m1Hf 214 0.176 (1.6%) 0.1770 (0.2%) -0.36

Page 52: σ γ  /  k 0  measurements  at Budapest PGAA facility

Results 3/3 (LSz)

Sample Nuclide Energy, keV

k0,Au (Rel. unc %)

Literature Z-score

H2WO4 187W 134

0.0117 (1.6%) 1.13E-02 (0.7%) 2.04 478 0.0299 (1.4%) 2.97E-02 (1.0%) 0.34 552 0.00693 (1.4%) 6.91E-03 (0.5%) 0.21 618 0.00856 (1.4%) 8.65E-03 (0.7%) -0.64 625 0.00151 (2.2%) 1.48E-03 (–) – 686 0.0379 (1.6%) 3.71E-02 (0.5%) 1.21 773 0.00563 (1.4%) 5.61E-03 (0.7%) 0.19 RbNO3+H2O 86mRb 556 0.000999 (2.1%) 9.96E-04 (1.6%) 0.13 88Rb 898 0.00011 (4.8%) 1.01E-04 (1.5%) 2.32 1836 0.00017 (5.2%) 1.57E-04 (1.1%) 0.97 AgNO3+H2O 108Ag 434 0.00168 (4.8%) 1.59E-03 (2.0%) 1.07 619 0.00105 (6.7%) 9.33E-04 (0.8%) 1.72 633 0.00585 (1.6%) 6.01E-03 (0.8%) -1.50 110Ag 658 0.03627 (1.2%)=

1.881 b (1.2%) 1.93 b (2.1%)

1.06

Page 53: σ γ  /  k 0  measurements  at Budapest PGAA facility

Cross-section measurements for fissile material

• Uranium– 235U– 238U– Fission products

• Thorium – still going on

Page 54: σ γ  /  k 0  measurements  at Budapest PGAA facility

Conclusion

• In-beam activation can be used for σγ /k0 measurements– No epithermal activation– Short lived nuclides can be measured well– Simple self-shielding– No resonances in cold beam