Οι χώροι James και James Tree

download Οι χώροι James και James Tree

of 83

Transcript of Οι χώροι James και James Tree

  • 7/23/2019 James James Tree

    1/83

    James James Tree

    :

    I

    :

    2014

  • 7/23/2019 James James Tree

    2/83

    2

  • 7/23/2019 James James Tree

    3/83

    . .

    . - , , . . . -. . . .E .

    . - . . , .

    , . .

    A 2014

    3

  • 7/23/2019 James James Tree

    4/83

    4

  • 7/23/2019 James James Tree

    5/83

    A ,

    5

  • 7/23/2019 James James Tree

    6/83

    6

  • 7/23/2019 James James Tree

    7/83

    ........................................................................................................................9

    1. X anach Schauder

    1.1 ..............................................................................................111.2 B ...............................................................................................191.3 I ........................................................................................221.4 lock ...................................................................................................271.5 I shrinking boundedly complete ......................................31

    2. O James

    2.1 O J

    .................................................................412.2 ........................................................................452.3 .....................................................................492.4 O J 2-saturated...........................................................................................53

    3. O James Tree

    3.1 O J T ..............................................................573.2 O1 J T......................................................633.3 ................................................69

    3.4 J T 2-saturated........................................................................................74B.......................................................................................................................83

    7

  • 7/23/2019 James James Tree

    8/83

    8

  • 7/23/2019 James James Tree

    9/83

    James James Tree. -

    Banach . James R.C.James 1954 - , . James Tree R.C.James 20 -, anach 1. - .

    Schauder Banach . Schauder

    . Hamel , , Schauder -. Schauder, - .

    , R.C.James, J. J - 1 c0. James, J .

    J - . J . o J, J, 2-saturated 2. J J .

    James Tree, J T. , J T 1974 R.C.James Banach - 1. - (tree basis)

    . J J T.E J T James. A J T J James. HoBanach anach .

    9

  • 7/23/2019 James James Tree

    10/83

    10

  • 7/23/2019 James James Tree

    11/83

    1

    Banach Schauder

    1.1 , Banach , -

    . , .

    (1.1.1)

    X Banach {en}nN . {en}nN Schauder x X {n}nN R

    x=n=1

    nen

    (1.1.2)

    {en}nN. {en:n N} - en= 0 n N.

    A

    , o . k1, k2,...,kn N ik1, k2,...,kn R , , k1ek1 +k2ek2 +...+kneknn = 0. 0.

    11

  • 7/23/2019 James James Tree

    12/83

    - Banach Schauder. P.Eno [2].

    (1.1.3)

    {en}nN. .

    D=

    n

    i=1riei:{ri}ni=1 Q, n N

    ToD . A D -

    X. x =n=1

    nen X. T > 0N N {ri}iN Q

    ||ni=1

    nen x||< 2

    n > N |i ri|||ei||< 2i+1

    i N

    n > N

    ||ni=1

    riei x|| ni=1

    |i ri|||ei|| + ||ni=1

    iei x||

    0 ||x|| |||x||| K||x|| xX

    ||x|| = limn

    ||Pn(x)|| |||x|||. , (X,

    ||||||) Banach.

    || || ||| |||. y(k)kN

    Cauchy (X, ||| |||). > 0k0 N

    |||y(i) y(j)|||< i, j > k0 ||Pn(y(i)) Pn(y(j))||< i, j > k0, n N

    Pn(y(k))kN

    Caychy

    < e1,...,en >. Pn(y(k))kN n N. zn= lim

    kPn(y(k)). T {zn}nN |||| -

    . , >0k, N N

    ||Pn(y(k)) Pn(y(j))||< 3

    j > k, n N ||Pn(y(k)) zn||< 3

    n N ||Pn(y(k)) Pm(y(k))||<

    3 n, m > N

    13

  • 7/23/2019 James James Tree

    14/83

    n, m > N o

    ||zn zm|| ||zn Pn(y(k))|| + ||Pn(y(k)) Pm(y(k))|| + ||Pm(y(k)) zm||< {zn}nN ||||-Cauchy. (X, || ||) Banach, {zn}nN . z

    ||||= lim

    nzn. m > n N

    Pn(zm) = Pn(limk

    Pm(y(k))) = lim

    kPn(Pm(y

    (k))) = limk

    Pn(y(k))) = zn. -

    Pn - < e1,...,en >.

    {i}iN zn =ni=1

    aiei n N. , z1 < e1 > 1 R z1 = 1e1. P1(z2) = z1 {en}nN , 2

    R z2=1e1+2e2. ,

    1, ...n, n+1 .

    z= limn

    zn, Pn(z) =ni=1

    iei = zn n N. >0. k0 N k > k0

    sup||zn Pn(y(k))||: n N < sup ||Pn(z) Pn(y(k))||: n N <

    |||z y(k)|||< limk

    y(k) =z

    E (X, ||||||) Banach .

    (1.1.5)

    .

    n N x X. ||Pn(x)|| |||x||| K||x|| .

    ,

    supnN

    ||Pn||

  • 7/23/2019 James James Tree

    15/83

    n . 1 . n

    N en : X

    R

    en(x) =en(

    k=1

    kek) =n

    x =n=1

    en(x)en. T o

    (1.1.6)

    {en}nN .

    n N x =n=1

    nenX.

    |en(x)| =||en(x)en||

    ||en|| =||

    ni=1

    iei n1i=1

    iei||

    ||en|| 2|||x|||||en||

    2K

    ||en|| ||x||

    .

    T {en}nN {en}nN. , . .

    (1.1.7)

    Banach {en}nNX. :i) {

    en}nN Schauder Xii) :

    en= 0 n N [en: n N] =X [en:n N] =< en:n N > K >0 m > n N 1,...,m R

    ||ni=1

    iei|| K||mi=1

    iei||

    15

  • 7/23/2019 James James Tree

    16/83

    A

    i)ii)m > n N 1,...,m R. T

    ||ni=1

    iei|| =||Pn(x)||=||Pn(Pm(x))|| ||Pn||||Pm(x)|| bc({en}nN)||mi=1

    iei||

    ii)i)A {en:n N} . -, , n N 1,...,n R 1e1+...+nen = 0. T

    |i|||ei||=||i

    j=1jej

    i1

    j=1jej2K||

    n

    i=1iei||= 0i= 0 i= 1,...,n

    n N

    pn:< en:n N >< en: n N > pn(mi=1

    iei) =

    min{n,m}i=1

    iei

    Opn {en : n N} -

    . , ||pn(m

    i=1iei)||=||

    min{n,m}

    i=1iei|| K||

    m

    i=1iei||

    pn ||pn|| K n N. < en : n N > X, pn

    pn : X< en : n N >||pn|| K n N. E m > nx X pn(x) = pn(pm(x)). - (1.1.4) x X - {i}iN pn(x) =

    ni=1

    iei n N.

    limn

    pn(x) =x. , >0. z=k

    i=1iei< en:n N >

    ||x z||<

    K+ 1 . m > kpm(z) =z.

    ||x pm(x)| | | |x z|| + ||zpm(z)|| + ||pm(z) pm(x)|| (1 + ||pm||)||x z||<

    E .

    16

  • 7/23/2019 James James Tree

    17/83

    (1.1.8)

    1 < p n N 1,...,m R

    ||ni=1

    iei||= (ni=1

    |i|p)1/p (mi=1

    |i|p)1/p =||mi=1

    iei||

    . c0 .

    (1.1.9)

    Banach {en}nN -K0 m > n N 1,...,m R

    ||ni=1

    iei|| K||mi=1

    iei||

    .

    K o (1.1.7) , bc({en}nN), . - . , K. x X||x|| 1 n N||Pn(x)|| K||Pm(x)|| m > n. n ||Pn(x)|| K||x|| K .

    17

  • 7/23/2019 James James Tree

    18/83

    , - .

    (1.1.10)

    . x X, x= 0 {xn}nNX sup

    nN

    ||xn||= M 0. N, n0 N

    ||sN x||< 3 max {M, ||x||} |x

    n(sN) x(sN)|0 m > n N 1,...,m R

    ||ni=1

    ixi|| K||mi=1

    ixi||

    (1.2.3)

    Banach {en}nN . T - *. E x [en : n N] x =

    n=1

    x(en)en.

    m > n N 1,...,m R. x X||x|| 1.

    19

  • 7/23/2019 James James Tree

    20/83

    |ni=1

    iei (x)| =|

    mi=1

    iei (Pn(x))|=|Pn(

    mi=1

    iei )(x)| ||Pn ||||

    mi=1

    iei || K||

    mi=1

    iei ||

    ||ni=1

    iei || K||

    mi=1

    iei ||

    {en}nN , x [en : n N] - {n}nN x =

    n=1

    nen x

    (en) = n n N. .

    Schauder . . Banach . Mazur.

    (1.2.4) (S.azur)

    F - . >0 xX ||x||= 1

    ||y|| (1 +)||y+mx|| yF m R

    A F , SF | | | | k N y1,...,ykSF SF

    ki=1

    S(yi,

    2). S(y, )

    y . Hahn-Banach, j {1,...,k}yi

    SX y

    i (yi) =

    ||yi

    || = 1. O

    k

    i=1

    Ker(yi ) -

    1. X xX ||x||= 1 yi (x) = 0 i= 1,...,k. ySF 0<

  • 7/23/2019 James James Tree

    21/83

    m R

    ||y+mx

    || ||yj+ mx

    | || |y

    yj

    || yj (yj+ mx)

    2

    = yj (yj)

    2

    =

    ||yj

    ||

    2= 1

    2 1

    1 + 0 < 0, ySF m R xSX(1 + )||y + mx|| 1. yFy= 0. T >0m R xSX

    1(1 +) y||y|| + mx||y||

    ||y|| (1 +)||y+mx||

    T .

    (1.2.5) (S.Banach)

    Banach . - Banach .

    A

    >

    0. A - {n}nN ln(1 +n)

    ln(1 +)

    2n n N.

    ni=1

    ln(1 +n)ln(1 +) n N n=1

    (1 +n)1 +

    H .x1 X ||x1|| = 1. F1 =< x1 >. A Mazur x2X ||x2||= 1 ||y|| (1 +2)||y+mx2|| yF1, m RF2 =< x1, x2 >. A Mazur x3 X ||x3|| = 1

    ||y||

    (1 +3)||

    y+mx3||

    y

    F2,

    m

    R. Fn =< x1, x2,...,xn > xn+1 X||xn+1|| = 1||y|| (1 +n+1)||y +mxn+1|| y Fn, m R. {xn}nN X. 1 +. , m > n N 1,...,m R.

    yk =ki=1

    ieiFk k N

    21

  • 7/23/2019 James James Tree

    22/83

    T

    ||ni=1

    iei|| = ||yn|| (1 +n+1)||yn+n+1xn+1||= (1 +n+1)||yn+1|| (1 +n+1)(1 +n+2)||yn+1+n+2xn+2||= (1 +n+1)(1 +n+2)||yn+3||

    m

    i=n+1

    (1 +i)||ym|| (1 +)||mi=1

    iei||

    {xn}nN 1 +.

    1.3

    (1.3.1)

    , Banach {xn}nN X, {yn}nN Y . O{xn}nN {yn}nN c, C>0 n N 1,...,n R

    c||ni=1

    nxn|| ||ni=1

    nyn|| C||ni=1

    nxn||

    (1.3.2)

    , Banach {xn}nNX, {yn}nNY . . :i)O{xn}nN {yn}nN .ii) {n}nNR

    n=1

    nxn , n=1

    nyn

    .iii) T : [xn:n N][yn:n N] T(xn) =yn n N.

    i)ii) {n}nN n=1

    nxn . o ni=1

    iyi

    nN

    Cauchy. , > 0N N

    22

  • 7/23/2019 James James Tree

    23/83

    m > n > N

    ||m

    i=n+1ixi|| Tn(i=1

    ixi) =ni=1

    iyi

    Fn:< x1,...,xn >< y1,...,yn > Fn(ni=1

    ixi) =ni=1

    iyi

    T nN Tn =Fn PnPn - (yn)nN. Tn Fn Pn -. , Banach-Steinhauss, T T(x) = lim

    nTn(x) xX

    T 1-1 y =n=1

    nynx =n=1

    nxn

    T(x) =y . T.

    iii) i) c = 1

    ||T1|| C=||T||.

    (1.3.3)

    Banach {xn}nN Banach. A {yn}nN c, C>0 n N 1,...,n R

    23

  • 7/23/2019 James James Tree

    24/83

    c||n

    i=1

    nxn|| ||n

    i=1

    nyn|| C||n

    i=1

    nxn||

    .

    A

    {yn}nN , . , m > n N 1, ...m R.T

    ||ni=1

    iyi|| C K||mi=1

    ixi|| CKc ||

    mi=1

    iyi||

    - . - .

    (1.3.4)

    Banach T : X X . (0, 1) xX ||xT(x)|| ||x||, T .

    T . ,

    ||T(x)| || |x|| ||x| | | |T(x)|| (1 +)||x||

    ||x| || |T(x)|| ||x|| (1 )||x|| ||T(x)||

    T , , , T(X) X.E T , T(X) . , Hahn-Banach, x0 SX x0(x) = 0 x T(X). 0 < < 1, x0X ||x0||= 1x0(x0)> . E

    ||x0 T(x0)|| = sup {x(x0 T(x0)) :||x||= 1} ||x0 T(x0)|| x0(x0 T(x0)) =x0(x0)> =||x0||

    24

  • 7/23/2019 James James Tree

    25/83

    .

    .

    (1.3.5)(Small Perturbation Lemma)

    Banach {xn}nN , {yn}nN {xn}nN K =inf{||xn||: n N}> 0.

    n=i

    ||xn yn||< 3K

    {yn}nN {xn}nN

    A

    o T : X XT(xn) = yn. {yn}nN {xn}nN. m > n1,...,m R

    |ni=1

    iyi|| ||T|||ni=1

    ixi|| ||T||K||mi=1

    ixi|| ||T||K||T1||mi=1

    iyi||

    {yn

    }nN . H

    n N 1, ...n R 1

    ||T1|| ||ni=1

    ixi|| ||ni=1

    iyi|| ||T||||ni=1

    ixi||

    n N. T x[xn:n N]

    |xn(x)|||xn||=||ni=1

    xi (x)ei n1i=1

    xi (x)ei||||xn|| 2K||x|| ||xn|| 2K

    n N o, Hahn-Banach, xnX - . xX

    n=1

    xn(x)(ynxn) X Banach . ,

    n=1

    |xn(x)|||yn xn|| 2K

    ||x||

    n=1

    ||yn xn||< 23||x||

    25

  • 7/23/2019 James James Tree

    26/83

    Oo

    T :X

    X T(x) =x +

    n=1

    xn(x)(yn

    xn)

    T oT , T(xn) =yn n N

    ||x T(x)||=||n=1

    xn(x)(yn xn)|| ||x||n=1

    ||xn||||yn xn||0

    n N k, m N :n < k < m ||sk sm|| () () {pn}nN N

    ||sp2n sp2n1|| n N

    un=sp2nsp2n1 un w0 ||un|| n N. {zn}nNzn =

    un

    ||un|| Y.

    1.4 Block block -

    . block .

    O (1.4.1)

    Banach {en}nN. {un}nN block {i}iN

    {ni

    }iN k

    N

    uk =

    nk+1i=nk+1

    iei

    (1.4.2)

    Banach {en}nN. . T block .

    {un}nNblock . Tun= 0 n N m > k N1,...,m R

    27

  • 7/23/2019 James James Tree

    28/83

    ||k

    j=1

    juj|| = ||k

    j=1

    j

    nj+1i=nj+1

    iei||=||k

    j=1

    nj+1i=nj+1

    jiei||

    K||mj=1

    nj+1i=nj+1

    jiei|| K||mj=1

    juj||

    {un}nN K.

    (1.4.3) (Sliding hump argument )

    Banach {en}nN {xn}nN

    = infnN ||xn||

    >0 limn

    ek(

    xn) = 0

    kN

    . >

    0 -

    {xn}nN block{un}nN{en}nN n=1

    ||xnun||2 < 2.

    ||xn|| = 1 n N

    x

    n

    nN

    block {bn}nN {en}nNn=1

    ||xn bn||2 < 2

    o limn

    Pk(yn) = 0

    k

    N. , k

    N >0.

    N N i= 1,...,k |ei (xn)|||ei|| N

    n > N

    ||Pk(xn)||=||ki=1

    ei (xn)ei|| ki=1

    |ei (xn)|||ei||< ()

    o 0< < . () o .k1= 1n1 = 0. xk1 =

    i=1

    (1)

    i

    ei n2

    N n2 > n1

    ||

    n=n2+1

    (1)n en|| <

    2

    ||n=1

    (1)n en n2n=1

    (1)n en|| <

    2

    28

  • 7/23/2019 James James Tree

    29/83

    u1 =n2

    n=n1+1

    (1)n en ||xk1 u1||2 k1

    xk2 =

    i=1

    (2)i ei

    ||n2i=1

    (2)i ei|| n2

    ||

    i=n3+1

    (2)i ei|| 0

    {xn}nN block {un}nN {en}nNn=1

    ||xn un||< . -

    =

    3K , K {en}nN, {xn}nN

    block {un}nN .

    A

    -

    . =

    3K, Small

    Perturbation Lemma, {xn}nN .

    30

  • 7/23/2019 James James Tree

    31/83

    (1.4.5)

    Banach {xn}nN 1. T block {xn}nN 1. block .

    A 1 X, {yn)}nN X 1. m, M >0 m ||yn|| M n N. k N |xk(yn)| ||xk||M n N {xk(yn)}nN k N. - {yn}nN {yn}nN {xk(yn)}nN k

    N. zn = yn+1

    yn. k

    N

    limn

    xk(zn) = 0. E c, C > 0 m N 1,...,m R

    c

    mi=1

    |i| ||mi=1

    izi|| Cmi=1

    |i| infnN

    {||zn||}> 0

    E {zn}nN . sliding hump argument - {zn}nN block{un}nN {xn}nN -. {un}nN 1.

    1.5 I shrinking boundedly complete

    O (1.5.1)

    X Banach {en}nN. H shrinking X = [en:n N]. X Banach {xn}nN X. {xn}nN boundedly complete {n}nN

    supnN ||ni=1

    ixi||

  • 7/23/2019 James James Tree

    32/83

    i) ii) block{un}nN||un|| = 1 n N. un w 0. x X x =

    n=1

    nen. T >0k0

    k > k0 :

    ||

    n=k+1

    nen||< |

    n=k+1

    nen(x)|< ||x|| 1 ()

    uk =

    nk+1i=nk+1

    iei m N nm > k0, k > m

    nk > k0 (

    )

    |x(uk)|=|i=1

    iei (uk)|=|

    i=nk+1

    iei (uk)|< uk w0

    ii)i) {en}nN shrinking. Tx / [en : n N] ||x|| = 1. Pn(x) =

    ni=1

    x(ei)ei

    {Pn(x)}nN x. E > 0 {mk}kN

    ||x Pmk(x)|| 2 k N ()

    n1 = m1. () x1 =n=1

    (1)n en X, ||x1|| = 1

    |x(

    i=n1+1

    (1)i ei)| 2. o k2 Nmk2 > n1

    n2=mk2

    ||x

    ||||

    i=n1+1

    (1i )ei

    n2

    i=n1+1

    (1)i ei

    ||<

    |x(

    i=n1+1

    (1)i ei)

    |

    32

  • 7/23/2019 James James Tree

    33/83

    ()x2 =n=1

    (2)n en X ||x2||= 1, |x(

    i=n2+1

    (1)i ei)| 2.

    k3N

    mk3 > n2 n3=mk3

    ||x||||

    i=n2+1

    (2)i ei

    n3i=n2+1

    (2)i ei||< |x(

    i=n1+1

    (1)i ei)|

    block{uk}kN |x(uk)| > k N.H {uk}kN . {uk}kN ||uk||=||Pnk+1(xk)Pnk(xk)|| 2K||xk||= 2K, . zn=

    un

    ||un|| , .

    (1.5.3)

    Banach shrinking {en}nN . -x X

    1

    KsupnN

    ||ni=1

    x(ei )ei|| ||x|| supnN

    ||ni=1

    x(ei )ei||

    ||x||= limn

    ||ni=1

    x(ei )ei||.

    A

    n N. T ||n

    i=1

    x(ei )ei||= sup|n

    i=1

    x(ei )y(ei)|: y BX

    y BX . shrinking y =n=1

    y(en)en.

    |ni=1

    x(ei )y(ei)| = |x(

    ni=1

    y(ei)ei )| ||x||||

    ni=1

    y(ei)ei )|| K||x||||y|| K||x||

    33

  • 7/23/2019 James James Tree

    34/83

    ||ni=1

    x

    (e

    i )ei|| K||x

    || n N 1

    KsupnN ||ni=1

    x

    (e

    i )ei|| ||x

    ||

    x BX x =n=1

    x(en)en. T

    |x(x)| = |n=1

    x(en)x(en)|= lim

    n|ni=1

    x(ei)x(ei )| sup

    nN

    |x(ni=1

    x(ei )ei)|

    supnN

    ||n

    i=1

    x(ei )ei|| ||x|| supnN

    ||n

    i=1

    x(ei )ei||

    .

    (1.5.4)

    c0 boundedly complete.

    A

    {enk

    }kN c0.

    {enk

    }kN -

    . supkN

    || ki=1

    eni|| = 1 0 ||zn|| M n N. E en

    w 0, zn w 0 sliding humpargument block{un}nN X {znk}kN {zn}nN . {un}nN boundedly

    34

  • 7/23/2019 James James Tree

    35/83

    complete {xnk}kN . T {enk}kN boundedly complete .

    (1.5.6)

    Banach boundedly complete {en}nN . Y = [en, nN].E .

    A

    OJ : X Y J(x)(y) = y(x) y Y J . J ., xX. T

    |J(x)(y)|=|y(x)| ||x| | | |y|| yY ||J(x)|| ||x||

    o J .

    ox =n=1

    nen. xn =nn=1

    nen x= limn

    xn.

    ||

    xn||

    K

    ||J(xn)

    || n

    N J

    . , n N. .Hahn-Banach x X ||x|| = 1 |x(xn)| =||xn||. x Pn< e1,...,en > Y xn=Pn(xn)

    ||xn||=|(x Pn)(xn)|=|J(xn)(x Pn)| ||x| | | |Pn| | | |J(xn)|| K||J(xn)||

    E - ||J(x)|| =||x|| x X. M J . y Y. o

    n

    i=1y(ei )ei

    nN

    X.

    K2||y||. , n N

    ||ni=1

    y(ei )ei|| K||J(ni=1

    y(ei )ei)||= K||ni=1

    y(ei )J(ei)||

    35

  • 7/23/2019 James James Tree

    36/83

    A o ||ni=1

    y(ei )J(ei)|| K||y||. , y =n=1

    y(en)enY

    ||y||

    1,

    |ni=1

    y(ei )J(ei)(y)| = |y(ni=1

    y(ei)ei )| ||y||||

    ni=1

    y(ei)ei || ||y||K||y|| K||y||

    E boundedly complete i=1

    y(ei )ei . A

    x=n=1

    y(en)en y =J(x) .

    (1.5.7)(R.C.James)

    Banach {en}nN . -:i)H{en}nN shrinking boundedly complete.ii) .

    i)

    ii) shrinking X = [en, n

    N]. A

    , , J , X X .ii) i) shrinking. x X. T Pn(x

    ) =ni=1

    x(ei)ei

    w x n . X w- w- X

    Pn(x)

    wx X =< en, n N >w

    =< en, n N >||.||

    Mazur. shrinking.

    boundedly complete. {n}nN R sup

    nN

    ||

    ni=1

    iei||

    =M. n=1

    nen. A

    xn =ni=1

    iei E X , MBX w. ,

    36

  • 7/23/2019 James James Tree

    37/83

    X , x MBX {xnk}kN {xn}nNx = w lim

    kxnk . E i N ei w

    ei (x) =ei (w limk

    xnk) = limk

    ei (xnk) =i i N

    Ex=n=1

    en(x)en =n=1

    nen .

    , - Banach boundedly complete . - .

    (1.5.8)

    X X .

    T :X Y Y =T[X] X. E Y =X X =T[X] X.

    oT : X Y T(x)(y) =y(x) y Y . H . .

    ||T(x)

    || = sup

    {|T(x)(y)

    |: y

    BY

    }= sup

    {|y(x)

    |: y

    BY

    } sup

    {|x(x)

    |: x

    BX

    }= sup {|x(x)|: xBX}=||x||E

    ||T(x)||= sup {|y(x)|: yBY} sup {|x(x)|: x BX}=||x|| T . T[X] - Y. , X Banach T[X] Banach Y. Q: Y X Q(y) =y , : X X X X. H Q . P : Y

    Y P = T

    Q. HP -

    . . , Q T = IY IY o Y. ,(Q T)(x)(x) =T(x)(x) = x(x) =x(x) xX. P2 =T Q T Q=T Q = P. M P[Y] = T[X]. A Q.

    , x X. T y = xY

    Y. TQ(y) = x. E- T[X] Y Y =T[X] KerP.

    37

  • 7/23/2019 James James Tree

    38/83

    KerP = X. y X P(y)(y) = T(Q(y) = T(y )(y) = y(y ) = 0 y Y X

    KerP. , y

    KerP T(y

    ) = 0 T

    11 y = 0 y X KerP X. T Y = T[X] X. To Y =X

    (1.5.9)

    Banach . o (X/Y) - Y.

    A

    oT : (X/Y) Y T(x)(x) = x(x+Y). xY T(x)(x) = x(Y) = 0. xX |T(x)(x)|=|x(x + Y)| ||x||||x + Y|| ||x||||x|| T . . T . x Y. x :X/Y R x(x+Y) =x(x). T xX

    |x(x+Y)| = |x(x)|=|x(x y)| yY ||x| | | |x y|| yY |x(x+Y)| ||x| | | |x+Y||

    x (X/Y). T T(x) =x . x (X/Y).

    ||T(x)|| = sup {|T(x)(x)|: xBX} sup|T(x)(x)|: x+YBX/Y

    = sup|x(x+Y)|: x+YBX/Y =||x||

    xX ||x+Y|| 1. T |x(x+Y)| = |T(x)(x)|=|T(x)(x y)| yY ||T(x)| | | |x y|| yY

    |x

    (x+Y)| ||T(x

    )| | | |x +Y|| ||T(x

    )||

    E ||T(x)||=||x|| T .

    Banach boundedly complete .

    38

  • 7/23/2019 James James Tree

    39/83

    (1.5.10)

    nach boundedly complete Y = [en, n N]. X

    = X Y

    . dim(X

    /X) =dimY

    =dim(X

    /Y)

    .

    Y = T[Y] Y. - Y = J[X] Y = J[X]. J[X] =T[Y] J[Y] = Y.OX = X Y. (X/X)=Y (X/Y) dim(X/X) =dimY =dim(X/Y).

    39

  • 7/23/2019 James James Tree

    40/83

    40

  • 7/23/2019 James James Tree

    41/83

    2

    James

    2.1 J n, m N n m [n, m] ={k N :nkm}. T

    , , . n N [n, ) ={k N :nk}. T .

    J =

    x={xn}nN R :sup m

    i=1|nIi

    xn|2

  • 7/23/2019 James James Tree

    42/83

    T

    (m

    i=1 |

    nIi

    (xn

    +yn

    )|2)1/2 = [(

    nI1

    xn

    + nI1

    yn

    )2 +...+ (nIm

    xn

    + nIm

    yn

    )2]1/2

    (mi=1

    |nIi

    xn|2)1/2 + (mi=1

    |nIi

    yn|2)1/2 ||x|| + ||y|| ||x+y|| ||x|| + ||y||

    inkowski. Banach.

    x(n)nN

    Cauchy J. T > 0N m > n > N ||x(m) x(n)|| < . i N Ii ={i} |x(m)i x(n)i |< m > n > N.

    x

    (n)

    inN i N. xi = limn x

    (n)

    i . x ={xi}iN. o x J x = lim

    nx(n). > 0 M N

    m > n M ||xn xm|| < 2 . o {Ii}ki=1

    (ki=1

    |jIi

    (x(m)j x(n)j )|2)1/2 nM m

    (k

    i=1

    |jIi

    (x(n)j xj)|2)1/2

    2 < nM ()

    n = M () x(M) x J x J x= lim

    nx(n)

    , n N, en =X{n}

    (2.1.2)

    x J

    . k

    N sk =k

    i=1

    xiei.

    ||sk||2 + ||x sk||2 ||x||2

    42

  • 7/23/2019 James James Tree

    43/83

    A

    {Ii}mi=1 l {1,...,m 1} Ii[1, n] i= 1,...,lIi[n+ 1, +) i= l + 1,...,m. T

    li=1

    |nIi

    sn|2 +m

    i=l+1

    |nIi

    (x sn)|2 =mi=1

    |nIi

    xn|2 ||x||2

    ||sk||2 + ||x sk||2 ||x||2

    (2.1.3)H{en}nN= (X{n})nN Schauder J.

    A

    en = 0 n N||en|| = 1 n N. J = [en : n N]. x ={xn}nN J. sn =

    ni=1

    xiei.

    x = limn

    sn., > 0. T

    {Ii

    }m

    i=1

    mi=1

    |nIi

    xn|2 >||x||2 2 ()

    n0 = max

    n: n

    mi=1

    Ii

    ()

    ||x||2 ||sn||2 < 2 nn0 nn0 ||xsn||2 =||xsn||2+||sn||2||sn||2 ||x||2||sn||2 < 2 . x = lim

    n

    sn.T k, nN

    k > n1,...,k R o {Ii}mi=1Ii[1, n] i= 1,...,m.

    (mi=1

    |jIi

    j|2))1/2 ||ki=1

    iei|| ||ni=1

    iei|| ||ki=1

    iei||

    43

  • 7/23/2019 James James Tree

    44/83

    (2.1.4)

    H J boundedly complete. c0 - J.

    {n}nN supnN

    ||ni=1

    iei|| 0

    n0 N m > n > n0 ||mi=1

    iei||2 ||ni=1

    iei||2 < 2 E (2.1.2)

    ||m

    i=n+1

    iei||

    ||mi=1

    iei||2 ||ni=1

    iei||2 <

    J Banach, n=1

    nen.

    (2.1.5)

    A J < c00(N) > c00(N) Banach Hamel . E J < c00(N)> . J.

    (2.1.6)

    I . I =nI

    en. I J.

    I. x J > 0 n0 N m > n > n0 |

    mi=n+1

    ei (x)| < .

    44

  • 7/23/2019 James James Tree

    45/83

    K nI

    en(x) x J. I :J R

    I(x) = nI

    en(x)

    x

    J, I

    Banach-Steinhauss I J. I w=nI

    en||I|| = 1

    I. s w

    =n=1

    en.

    E s / [en : n N]. , s

    ||.||=

    n=1

    en 0 <

  • 7/23/2019 James James Tree

    46/83

    (2.2.1)

    {dn}nN J d1=e1dn=en en1, n >1. {dn}nN Schauder J.A

    < dn, n N >=< en, n N > [dn, n N] =J.nN 1,...,n, n+1 R. {Ii}mi=1[1, n]. An /

    mi=1

    Ii

    (m

    i=1 |

    Ii(n

    i=1

    idi)

    |2)1/2 = (

    m

    i=1 |

    Ii(n+1

    i=1

    idi)

    |2)1/2

    ||

    n+1

    i=1

    idi|| ||

    n

    i=1

    idi|| ||

    n+1

    i=1

    idi||

    Im = [i, n] -in.

    (mi=1

    |Ii(ni=1

    idi)|2)1/2 = (m1i=1

    |Ii(ni=1

    idi)|2 + |Im(ni=1

    idi)|2)1/2

    = (m1

    i=1|Ii(

    n+1

    i=1idi)|2 +2i )1/2 ||

    n+1

    i=1idi|| ||

    n

    i=1idi|| ||

    n+1

    i=1idi||

    ||ni=1

    idi|| ||n+1i=1

    idi|| {dn}nN- .

    (2.2.2)

    H{dn}nN shrinking. .

    I A{un}nN block {dn}nN M = supnN

    ||un|| n=1

    un

    n .

    A

    46

  • 7/23/2019 James James Tree

    47/83

    m > k N ||mi=k

    ui

    i||2 5M2

    mi=k

    1

    i2 -

    J

    Banach. A

    uk =

    nk+1i=nk+1

    idi,

    mi=k

    ui

    i = nk+1

    k enk +

    nk+1 nk+2k

    enk+1+...+nk+11 nk+1

    k enk+11+

    + (nk+1

    k nk+1+1

    k+ 1 )enk+1+

    nk+1+1 nk+1+2k+ 1

    enk+1+1+

    + ...+

    + (nm1

    m 1nm+1

    m

    )enm+ ...+nm+11 nm+1

    m

    enm+11+nm+1

    m

    enm+1

    {Ij}j=1. To{1,...,}- .

    Fk = {j {1,...,}: Ij[nk, nk+1 1]}Fs = {j {1,...,}: Ij[ns+ 1, ns+1 1]} , s= k + 1,...,m 1

    Fm = {j {1,...,}: Ij[nm+ 1, nm+1]}

    F =m

    i=kFi

    U = {j {1,...,}:s1 < s2 {k+ 1,...,m}: Ij supp(us1)=, Ij supp(us2)=}

    F, U {1, ...}. s= k, k+ 1,...,mFs=,

    jFs

    |Ij (mi=k

    ui

    i)|2 = 1

    s2

    jFs

    |Ij (us)|2 M2

    s2

    jF

    |Ij (mi=k

    ui

    i)|2 M2

    mi=k

    1

    i2

    A jU, sj,1 = min

    {i

    {1,...,m

    }: Ij

    supp(ui)

    =

    }sj,2 = max {i {1,...,m}: Ij supp(ui)=}

    |Ij (mi=k

    ui

    i)|2 = |Ij (

    usj,1sj,1

    +usj,2

    sj,2)|2 2M

    2

    s2j,1+

    2M2

    s2j,2 4M

    2

    s2j,1

    47

  • 7/23/2019 James James Tree

    48/83

    E |U| m k+ 1

    jU

    |I

    j (

    mi=k

    ui

    i )|2

    4M2mi=k

    1

    i2

    ||mi=k

    ui

    i||2 5M2

    mi=k

    1

    i2.

    n=1

    un

    n. A x =

    n=1

    un

    n.

    A

    A (dn)nN shrinking, (1.5.2) x X, > 0 (un)nN block (dn)nNx(un) >

    n N. Tx(x) =n=1

    x(un)

    n >

    n=1

    1

    n = +, .

    (2.2.3)

    J = [en, n N] < s >. J 1 J.

    A

    < dn

    , n

    N >=< en

    , n

    N >

    < s >.

    J = [dn, n N] =< en, n N >< s > [en, n N]< s >= [en, n N]< s >

    dim < s >= 1< +. J = [en, n N]< s >

    (2.2.4)

    T 1 c0 J. , J , unconditional (.[7]unconditional ).

    48

  • 7/23/2019 James James Tree

    49/83

    2.3

    J .

    - J. J J R.C.James - . J .

    (2.3.1)

    Ye J \ J en we [en, n N] = [e]

    A

    o {en}nNw-Cauchy. , x J. A (2.2.3) x =

    n=1

    nen+s

    .

    x(en) =n+n

    nn 0. anach-Steinhauss e J en w

    e - e /

    J. , e w

    e(s) =n=1

    e(en) = 0. e(s) = lim

    ns(en) = 1. T -

    [en, n N] = [e]. x =n=1

    nen [en, n N]. T

    e(n=1

    nen) =

    n=1

    ne(en) = 0< e >[en:n N]

    A, x [en: n N] x J.

    y [en:n N] R :x =y +s x(x) = x(s) =x(s)e(x)x = x(s)e

    [enn: N] < e >. [en, n N] =< e >

    49

  • 7/23/2019 James James Tree

    50/83

    (2.3.2)

    J = J [e]. A - J quasi-reexive -1dim(J/J) = 1

    A

    {en}nN boundedly complete , (1.5.10) .

    O James, J | | | |1 | | | |2. ,

    J (

    J,|| ||

    1) (J

    ,|| ||

    2) . J . O

    J ={xn} c0 : sup (xp1 xp2)2 + (xp2 xp3)2 +...+ (xpm1 xpm)2

  • 7/23/2019 James James Tree

    51/83

    A

    (1.3.2) o n N 1,...,nR ||

    ni=1

    idi|| = ||ni=1

    iei||1. , m N 1 p1 p1 < p2 p2 < . . . < pm pm n. Ij = [pj, p

    j ] j = 1,...,m n+1 = 0

    mj=1

    |Ij (ni=1

    idi)|2 = (p1 p1+1)2 + (p2 p2+1)2 +...+ (pm pm+1)2

    ||n+1

    i=1iei)||21 = ||

    n

    i=1iei)||21 ||

    n

    i=1idi)|| ||

    n

    i=1iei)||1

    mN p1 < ... < pmn + 1, Ij = [pj , pj+1 1], j= 1,...,m

    (p1 p2)2 +...+ (pm1 pm)2 =mj=1

    |Ij (ni=1

    idi)|2 ||ni=1

    idi||2

    ||ni=1

    iei||1 ||ni=1

    idi||

    .

    (2.3.4)

    {en}nN shrinking (J, | | | |1) (J, | | | |2).

    A

    A ||n

    i=1 idi|| =||n

    i=1 iei||1 1,...,n R, n N || ||1 || ||2 o (2.2.2) {un}nN block {en}nN

    n=1

    un

    n

    . (2.2.2).

    51

  • 7/23/2019 James James Tree

    52/83

    (2.3.5)

    x J {x(en)}nN.

    A

    x J. ||||1. {en}nN - shrinking, (1.5.3) ||x||1= lim

    n||

    ni=1

    x(ei )ei||1

    n N xn=ni=1

    x(ei )ei. T N N

    ||x||21 ||xN||21 < 2 ()E k N p1 < ... < pkN+1 ||xN||1=[x(ep1) x(ep2)]2 +...+ [x(epk1) x(epk)]2.T m > nN+ 2 |x(em) x(en)|< , (x(en))nN Cauchy . m N ||xm||1 >||x||1 ||x||1 =sup

    nN||

    ni=1

    x(ei )ei||1.

    (2.3.6)

    O(J, | | | |2) .

    o :J J (x) = (, x(e1) , x(e2) , ...) =limn

    x(en), (2.3.5).

    . 1=,...,n=x(en1) (x) =

    n=1

    nen

    ||(x)||2 =||n=1

    nen||2 = supnN

    ||ni=1

    iei||2=supnN

    ||ni=1

    x(ei )ei||2 =||x||2

    {en}nN shrinking (J, | | | |2). . x={xn}nN J.TsupnN

    ||ni=1

    (xi+1 x1)ei||2

  • 7/23/2019 James James Tree

    53/83

    J , x J {yn}nN {yn}nN yn wx x(en) =xn+1x1 n N.E (x) =x.

    (2.3.7)

    J (J, | | | |2)o J - (J, | | | |2) .

    2.4 J 2-saturated J 2-saturated -

    2. J .

    (2.4.1)

    {un}nN block {en}nN. m N 1,...,m R

    (m

    i=1

    2i

    )1/2

    ||

    m

    i=1

    i

    ui||

    A

    X m N 1,...,m R mi=1

    2i = 1. 1 ||mi=1

    iui||., ||ui|| = 1 i = 1,...,m {un}nN block {Ij}j=1 1 < 1 < ... < m1 < 0= 1m =

    {Ij

    }i

    j=i1 supp(ui)

    i= 1,...,m

    ij=i1

    |Ij (ui)|2 = 1 i= 1,...,m

    j=1

    |Ij (mi=1

    iui)|2 =mi=1

    2i = 11 ||mi=1

    iui||

    53

  • 7/23/2019 James James Tree

    54/83

    (2.4.2)

    {un}nN block {en}nN limn

    s(un) = 0. T >0

    {un}nN m N 1, ...m R

    (1 2

    )(mi=1

    2i )1/2 ||

    mi=1

    iui|| (

    5 +

    2)(

    mi=1

    2i )1/2

    A

    A uk =

    nk+1i=nk+1

    iei, yk = uk s(uk)enk+1.

    ||yk

    || 1 +

    |s(uk)

    | k

    N lim

    k ||uk

    yk

    || = 0, -

    {yn}nN (yn)nN {un}nN {un}nN

    k=1

    ||uk yk||2 < 2

    16 ||yk||< 1 +

    2

    128 k N

    m N 1,...,m R mi=1

    2i = 1. T

    1 2

  • 7/23/2019 James James Tree

    55/83

    sj,2 =max {i {1,...,m}: Ij supp(yi)=}.T

    jU

    |Ij (mi=1

    iyi)|2 =

    jU

    |Ij(sj,1ysj,1) +Ij(sj,2ysj,2)|2

    jU

    (22sj,1 |Ij(ysj,1)|2 + 22sj,2|Ij(ysj,2)|2)4 + 2

    32

    X F, U {1,...,},

    ||mi=1

    iy

    i||< 5 + 2

    16 < 5 +

    4

    ||mi=1

    iui||

    mi=1

    |i|||ui yi|| + ||mi=1

    iyi|| (

    mi=1

    ||ui yi||2)1/2 +

    5 +

    4

    5 +

    2

    (2.4.3)O J 2-saturated. E J

    {xn}nN > 0 {xn}nN{xn}nN m N 1,...,m R

    (1 )(mi=1

    2i )1/2 ||

    mi=1

    ixi|| (

    5 +)(

    mi=1

    2i )1/2

    A

    J 1 (1.3.7) {xn}nN J . sliding hump argument block{un}nN {xn}nN {xn}nN

    n=1

    ||xn un||2 < 2

    4

    55

  • 7/23/2019 James James Tree

    56/83

    m N 1,...,m R mi=1

    2i = 1

    ||mi=1

    ixi||

    mi=1

    |i|||xi ui|| + ||mi=1

    iui||

    5 +

    ||mi=1

    iui|| mi=1

    |i|||xi ui|| ||mi=1

    ixi|| 1 ||

    mi=1

    ixi||

    To (1.3.3).

    56

  • 7/23/2019 James James Tree

    57/83

    3

    O James Tree

    3.1 O J T Cantor

    o . O - . J T - . J , 2.

    O (3.1.1)

    O2

  • 7/23/2019 James James Tree

    58/83

    i= j. - 1,...,n.

    I

    2

  • 7/23/2019 James James Tree

    59/83

    sup {Ii}mi=1. J T - .

    x J T o||x|| = sup mi=1

    |tIi

    x(t)|2

    1/2

    , sup

    - {Ii}mi=1

    (3.1.3)

    O(J T, | | | |) Banach.

    H (2.1.1).

    . || || . . x, y J T {Ii}mi=1 . T

    (mi=1

    |tIi

    (x(t) +y(t))|2)1/2 = [(tI1

    x(t) +tI1

    y(t))2 +...+ (tIm

    x(t) +nIm

    y(t))2]1/2

    (

    m

    i=1 |tIi

    x(t)

    |2)1/2 + (

    m

    i=1 |tIi

    y(t)

    |2)1/2

    ||x

    ||+

    ||y

    || ||x+y

    || ||x

    ||+

    ||y

    || inkowski. Banach.

    {xn}nN Cauchy J. T > 0N m > n N ||xm xn|| < . t 2 n > N. {xn(t)}nN t2 n M ||xnxm|| < 2

    .

    o {Ii}k

    i=1

    (ki=1

    |tIi

    |xm(t) xn(t))|2)1/2 < 2

    m > nM m

    (ki=1

    |tIi

    |xn(t) x||2)1/2 2

    < nM ()

    59

  • 7/23/2019 James James Tree

    60/83

    n = M() xM x J T x J T x= lim

    nxn

    (3.1.4)

    x JT. k N sk =ki=1

    xiei.

    ||sk||2 + ||x sk||2 ||x||2

    (2.1.2)

    (3.1.5)H{en}nN Schauder J T.

    A

    en = 0 n N ||en|| = 1 n N. o J T = [en :nN]. x J T. sn =

    ni=1

    x(ti)ei.

    x = limn

    sn., > 0. T

    {Ii

    }m

    i=1 ,

    mi=1

    |tIi

    x(t)|2 >||x||2 2 ()

    n0 = max

    |t|: t

    mi=1

    Ii

    ()

    ||x||2 ||sn||2 < 2 n2n0+1 n2n0+1 ||xsn||2 =||xsn||2 + ||sn||2||sn||2 =||x||2||sn||2 < 2 . x= lim

    nsn. T n N

    1,...,n, n+1 R o {Ii}mi=1tn+1 /

    mi=1

    Ii.

    (mi=1

    |tjIi

    j|2))1/2 ||n+1i=1

    iei|| ||ni=1

    iei|| ||n+1i=1

    iei||

    60

  • 7/23/2019 James James Tree

    61/83

    .

    (3.1.6)H{en}nN boundedly complete . c0 -

    J T.

    (2.1.4).

    (3.1.7)

    J T < c00(2 .

    (3.1.8)

    K (2.1.6), I ,

    I =sI

    es JT. A, I , I w

    =sI

    es JT.

    ||I|| = 1 I.E, 2N

    w

    =n=1

    e|n. I /[en : n N], I, {en}nN shrinking J T . , x

    J T,

    ||x||= sup mi=1

    |Ii(x)|21/2

    {Ii}mi=1 , , .

    (3.1.9)

    2N

    o[e|n

    , n

    N] J.

    T :< e|n, n N > J T(ni=1

    ie|i) = (1,...,n, 0,...). H T -

    . N, I1= [n1, n1], ...Im=

    61

  • 7/23/2019 James James Tree

    62/83

    [nm, nm] 2

    0

    N N m > n > N ||m

    i=n+1

    ie|i||=||m

    i=n+1

    iei||<

    E

    n=1

    ne|n T(

    n=1

    ne|n) =

    n=1

    nen. E

    .

    (3.1.10)

    O J T .

    A

    :2N 1-. 1=2 s2

  • 7/23/2019 James James Tree

    63/83

    (e|k)kNwCauchy. x J T x

    [e|n :

    nN]

    [e|n :n N] k N

    x(e|k) =n=1

    nen(T(e|k))+s

    (T(e|k)) =n=1

    nen(ek)+s

    (ek) =k+ k

    kk 0. JT =w lim

    ke|k.

    / J T.I () = limn

    (e|n) = 1. A o

    J T w () =

    n=1(e|n) = 0

    . .

    3.2 O 1 J T 1 J T.-

    J J -, J T .

    {In}nN 2

  • 7/23/2019 James James Tree

    64/83

    x J T. K BJT sup {k(x) :k K} ||x||. n N xn=

    ni=1

    ei (x)ei. T

    {Ii}mi=1 ||xn|| 1n < (mi=1

    |Ii(xn)|2)1/2.

    i= Ii(xn)

    (mi=1

    |Ii(xn)|2)1/2 k =

    mi=1

    iIiKk(xn) = (

    mi=1

    |Ii(xn)|2)1/2

    o ||xn|| 1n < k(xn)sup {k(xn) :k K}n ||x|| sup {k(x) :k K}

    . H .

    (3.2.2)

    To K w- J T

    A

    J T , (BX, w) , K . kn = w

    n=1i,nI

    i,n

    K. n N|i+1,n| |i,n| i N . .

    {In}nN . T {Ikn}nN IIkn

    wI. {Ikn}nN

    Ikn(es)

    nN

    s

    2

  • 7/23/2019 James James Tree

    65/83

    M [N], {i}iNB2i,n

    nM i i N {Ii}iN Ii = w limnM

    Ii,n. {Ii}iN

    . k = w n=1

    iIi K.

    k = w limnM

    kn. s 2 0. N N

    (

    i=N+1

    2i )1/2

    limsupnL

    L2(un)+liminf

    nLL

    2(un)>2

    2 () k N k

    2

    4 > M2.

    L0 [M]1 2N (). T lim sup

    nL0

    12(un) lim inf

    nL01

    2(un) 2

    4.

    L1[L0] limnL1

    12(un)>

    2

    4 22N (). -

    1

    =2. Lk

    Lk1

    , ...,

    L1

    N

    1,...,k2N limnLi

    i2(un) >

    2

    4

    i = 1,...,k limnLk

    i2(un) >

    2

    4 i = 1,...,k. E N Lk

    i = 1,...,k i2(un) >

    2

    4 n Lk : n NE 1,...,k

    {un}nN block

    n0 Lk n0 N ||un0||2 ki=1

    i2(un0) > k

    2

    4 > M2

    , .

    (3.2.7)

    K J T wCauchy .

    68

  • 7/23/2019 James James Tree

    69/83

    1 J T 1- Rosenthal.

    (3.2.8)

    J T 1c0. unconditional.

    3.3

    J T . - . R.Haydon - .(.[3])

    (3.3.1)(R.Haydon)

    Banach 1. T ow-

    KX convw

    (K) =conv||.||(K)

    M J T.

    (3.3.2)

    J T = [I :I 2

  • 7/23/2019 James James Tree

    70/83

    .

    2(2N) =

    f : 2N R :supF

    |f()|2 :F 2N =sup

    F

    f()g() :F 2N 1/2

    2(2N) Hilbert. - Riesz Hilbert S : 2(2

    N) 2(2N)S(f)(g) =< f, g > g2(2N) .

    (3.3.3)

    f 2(2N). T {n}nN 2 {n}nN 2N f=

    n=1

    nX{n}

    A

    suppf =n=1

    2N :|f()|> 1

    n

    . suppf

    .

    2N :|f()|> 1

    n

    n

    N. n

    N k N 1,...,k 2N |f(i)| > 1n i = 1,...,k.

    k

    n2 m1. y2Ym2 . , ykYmk mk+1N yk+1Ymk+1, -mk+1 =max

    mk, m

    k+1

    + 1. E {mk}kN

    . dist(x, Ymk) d(x, yk) k N limm

    dist(x, Ym) =

    limk

    dist(x, Ymk) limk

    d(x, yk) = d(x, y) limm

    dist(x, Ym) dist(x, Y). - dist(x, Y) = lim

    mdist(x, Ym).

    Y = [es :s N]. -Q:J T J T/Y Q(x) =x +Y . E

    J T/Y = Q[J T] =Q(< I :I >Q[< I :I >]= [I +Y :I ]

    J T/Y = [I +Y :I ].

    (3.3.5)O J T/Y 2(2N).

    A < I + Y :I 2 . E I , S

    71

  • 7/23/2019 James James Tree

    72/83

    I + Y =S + Y (I) =(S) I S Y . E- U :< I +Y : I 2 2(2N)

    U(

    ni=1

    iIi + Y) =

    ni=1

    iX{(Ii)}. HU . . X , I1,...,In

    1,...,n Rni=1

    2i = 1.A ||ni=1

    iIi+Y||= 1.

    T

    |ni=1

    iIi(x)| (

    ni=1

    2i )1/2(

    ni=1

    Ii2(x))1/2 ||x|| x J T

    ||

    n

    i=1

    iIi || 1 ||

    n

    i=1

    iIi +

    Y|| 1

    , N I1,...,In.

    Ym =< es :|s| m >. T Y =

    m=1

    Ym. m N,

    xm=ni=1

    ie(Ii)|m+1 . ||xm||= 1 mN.T mNy Ym

    |ni=1

    iI

    i(xm) y

    (xm)|=|ni=1

    iI

    i(xm)|= 11 ||ni=1

    iI

    i y

    || y

    Ym

    1dist(ni=1

    iIi, Ym) mN ||

    ni=1

    iIi +Y||= dist(

    ni=1

    iIi, Y) =

    = limm

    dist(ni=1

    iIi, Ym)1 (3.3.4)

    K U J T/Y U. M . f=

    n=1

    nX{n}= limk

    U(kn=1

    nn+Y).

    E f U[J T/Y]. E J T/Y Banach, U[J T/Y] Banach . U[J T/Y] 2(2N)f U[J T/Y]. U .

    J.

    72

  • 7/23/2019 James James Tree

    73/83

    (3.3.6)

    J T quasi-reexive J T/ J T .

    J T boundedly complete (1.5.10) dim(J T/ J T) =dim((J T/Y)) =dim(2(2N)) =dim(2(2N)) = +

    (3.3.7)

    J T = J T [ : 2N]. E, x JT x = x +

    n=1

    nn x J T, {n}nN2

    {n}nN2N.

    A

    , (3.1.11), J T [ :2N] ={0}. J T boundedly complete (1.5.10) y Y y =

    n=1

    nn {n}nN2

    {n}nN 2N. TU (1.5.9) (3.4.5) S 2(2N) . A L = T US : 2(2N) Y L . L L(X{}) = 2N. 2N I 2

  • 7/23/2019 James James Tree

    74/83

    (3.3.8)

    O J T w J T x J T {xn}nN J T x =w limn xn.

    A

    x = x+j=1

    jj . x1 = x. n > 1kn

    1,...,n. xn= x +n

    j=1

    jej |kn . {xn}nN

    {n}nN 2. E, (1.1.10) I(xn) n

    j=1

    jj (I) I. ,

    I. A i N (I) = i n n0 I(xn) = i =

    n=1

    nn (I

    ). I(xn) = 0 =j=1

    jj (I

    ) n N.

    I I(xn)n

    j=1

    jj (I

    )

    .

    3.4 O J T 2-saturated J T 2saturated,

    2. - [1].

    . - Banach. , M , M(2) =

    {(n, m) :n, m

    M, n < m

    } [M]

    M.

    74

  • 7/23/2019 James James Tree

    75/83

    (3.4.1) (.Ramsey)

    A1,...,Ak N N(2)

    =

    ki=1 A

    i. T M [N] i {1,...,k} M(2) Ai.

    L [N]n N {n}(2)L ={n, m) :mL,n < m}. M1= N m1M1. M2[M1] i1 {1,...,k} {m1}(2)M2 Ai1 .m2 M2 m2 > m1. T M3 [M2] i2 {1,...,k} {m2}(2)M3 Ai2 . , -

    {mn

    }nN

    N,

    {Mn

    }nN

    [N]

    {in

    }nN

    {1,...,k} mp Mn p n{mn}(2)Mn+1 Ain n N.

    N =ki=1

    n N :{mn}(2)Mn+1 Ai

    . i {1,...,k}

    L =

    n N :{mn}(2)Mn+1 Ai

    .

    M ={mn : nL} [N]. T mn, mp M mn < mp n < p.Omp Mn+1 (mn, mp) Ai. M(2) Ai .

    Ramsey , .

    (3.4.2)

    {xn}nN block J T limn

    I(xn) = 0

    I. T > 0 {xn}nM S, in(S) =, |S(xn)| nM, n(S)M, S.

    > 0. Y K = supnN

    {||xn||}. n N n = min {supp(xn)}. Qn =

    t2 Stin(S) =t

    75

  • 7/23/2019 James James Tree

    76/83

    T n N

    2

    |Qn|< tQn |S

    t(xn)|2

    ||xn||2

    K2

    |Qn| K2

    2 n N

    N {0} L [N]|Qn| = n L. A = 0 (xn)nL, Qn = n L. 1. nL Qn ={ti,n: 1i}. i, j {1,...,}

    Ai,j ={n, mL : n < m S ti,n tj,m, |S(xn)|> }

    A A = N(2)

    \ 1i,j

    Ai,j . N(2)

    = A 1i,j

    Ai,j . ,

    Ramsey M [N]M(2) AM(2) Ai,j i, j {1,...,}. , i, j {1,...,} M(2) Ai,j . n, kM n + 1< k, (n, k), (n + 1, k)M(2). ti,nti,n+1. , S1 ti,n S2 ti,n+1 tj,k, |S1(xn)| > |S2(xn+1)| > . , - ti,n+1 S1. Sn,n+1 ti,n ti,n+1.

    |Sn,n+1(xn)

    |=

    |S1(xn)

    |> . I=

    n=1

    Sn,n+1. E

    I |I(xn)|=|Sn,n+1(xn)|> nM, lim

    nI(xn) = 0. M(2) A.

    (xn)nM . , -S in(S) = n, m Mn < m |S(xn)| > |S(xm)| > . t1 S |t1|= n t2 S |t2|= m, QnQm, oi, j {1,...,} t1 = ti,nt2 = tj,m.(n, m)Ai,j , A

    1i,j

    Ai,j =.

    block (xn)nN

    J T, > 0, -

    M [N] S in(S) = |S(xn)| nM n(S), .

    (3.4.3)

    block {yn}nN J T limn

    I(xn) = 0

    I. T > 0, {yn}nN n N

    76

  • 7/23/2019 James James Tree

    77/83

    1,...,n R

    (

    ni=1

    2

    i )1/2

    ||ni=1

    iy

    i|| 2(1 +)(ni=1

    2

    i )1/2

    > 0. {k}kN R. , {Mk}kN [N] {yn}nMk k k N. k N S in(S) =, |S(yn)| k n Mk n(S) Mk. n N, n = min {supp(xn)} mn = 2n . - {pn}nN {kn}nN

    pnMkn n N n=1

    mn(

    l=n+1

    2kl)< 2

    k1= 1 p1Mk1 . En n 0L1[N]rL1

    2r < 2

    2m1

    k2 L1 k2 L1 p2 Mk2 p2 > p1. En nL1 0L2[L1]

    rL2

    2r < 2

    22m2

    k3 L2 k3 > k2 p3 Mk3 p3 > p2. {kn}nN {pn}nN, pn Mkn n N, {Ln}nN [N] kn Ln

    rLn2r n}. AA(S)=, (S) = minA(S)., (S) = +.

    n=(S)

    |S(yn)|2 ni(S)

    2n

    A(S) =

    {n1 < n2 < ... < nj < nj+1 < ...

    }. E

    (S) = n1 i(S) n1. j N (yn)nnj nj |S(ynj)|> nj |S(ynj+1| nj . E n=(S)

    |S(yn)|2 =

    ni(S):n=n1

    |S(yn)|2 =j=2

    |S(ynj )|2 +

    ni(S):n/A(S)

    |S(yn)|2

    j=1

    2nj+

    ni(S):n/A(S)

    2n=ni(S)

    2n

    nN 1,...,n

    R

    n

    i=1

    2i = 1. M

    (2.4.1) 1 ||ni=1

    iyi||.

    , U . S U, S=S0 S,

    S0 =

    tS :|t|< bi(S)

    S =

    tS :bi(S) |t|

    . , , , . S0, S S . S =S1 S

    S1 =

    tS:bi(S) |t|< bi(S)+1

    S

    =

    tS:bi(S)+1 |t|

    78

  • 7/23/2019 James James Tree

    79/83

    ToS

    S

    =S

    1 S2 S3

    S

    1 = tS:bi(S)+1 |t|< b(S)S

    2 =

    tS:b(S) |t|< b(S)+1

    S

    3 =

    tS:b(S)+1 |t|

    N (S

    ) = + b(S) = +. S = S0 S1 S1 S2 S3 . x=

    n

    i=1iy

    i

    SU

    |S(x)|2 =SU

    |S0(x) +S1(x) +S1 (x) +S

    2 (x) +S

    3 (x)|2

    4SU

    (|S0(x)|2 + |S1(x)|2 + |S2 (x)|2)) + 4

    SU

    |S1 (x) +S3 (x)|2

    R S0, S1, S

    2 , R(x) = iR(yi)

    i {1,...,n}. |R(x)|2 =ni=1

    2i |R(yi)|2. E

    SU

    (|S0(x)|2 + |S1(x)|2 + |S2 (x)|2)) =

    SU

    ni=1

    (2i (|S0(yi)|2 + |S1(yi)|2 + |S2 (y

    i)|2))

    =ni=1

    2i (SU

    (|S0(yi)|2 + |S1(yi)|2 + |S2 (y

    i)|2))

    ni=1

    2i ||yi||=ni=1

    2i = 1

    E S U,

    |S1 (x) +S

    3 (x)

    |2 =

    |

    n

    i=1,i=(S

    )

    iS(yi)

    |2

    (

    n

    i=1,i=(S

    )

    2i )(n

    i=1,i=(S

    ) |

    S(yi)

    |2)

    n=(S)

    |S(yn)|2

    ni(S)

    2n

    k N Uk ={S U :i(S) =k}. S Uk i(S) = k + 1

    79

  • 7/23/2019 James James Tree

    80/83

    SU|

    S

    1 (x) +S

    3 (x)

    |2 =

    k=1

    SUk |

    S

    1 (x) +S

    3 (x)

    |

    =k=1

    SUk

    ni(S)

    2n =k=1

    SUk

    nk+1)

    2nk=1

    mk(

    n=k+1

    2n)< 2

    , U

    SU|S(x)|2 < 4 + 42 0 {xn}nN n N 1,...,n R

    (1 )(ni=1

    2i )1/2 ||

    ni=1

    ixi || (2 + 3)(

    ni=1

    2i )1/2

    A

    Y JT. A 1 - J T, (1.3.7), {xn}nN Y . > 0. slidinghump argument {xn}nN block (yn)nN

    n=1

    ||xn yn||2 < 2 ()

    80

  • 7/23/2019 James James Tree

    81/83

    I(xn) n 0 () ||xn yn|| n 0.

    I

    |I(yn)| |I(xn)| + ||I||||xn yn|| n N lim

    nI(yn) = 0

    E, , > 0 - {yn}nN n N 1,...,n R

    (ni=1

    2i )1/2 ||

    ni=1

    iyi|| 2(1 +)(

    ni=1

    2i )1/2

    {xn

    }nN

    {xn

    }nN. n

    N 1,...,n R,

    ||ni=1

    ixi ||

    ni=1

    |i|||xi yi|| + ||ni=1

    iyi||

    (ni=1

    2i )1/2(

    ni=1

    ||xi yi||2)1/2 + 2(1 +)(ni=1

    2i )1/2

    (2 + 3)(ni=1

    2i )1/2

    ||ni=1

    iyi||

    ni=1

    |i|||xi yi| | | |ni=1

    ixi ||

    (ni=1

    2i )1/2 (

    ni=1

    2i )1/2(

    ni=1

    ||xi yi||2)1/2 ||ni=1

    ixi ||

    (1 )(ni=1

    2i )1/2 ||

    ni=1

    ixi ||

    (1 )(ni=1

    2i )1/2 ||

    ni=1

    ixi || (2 + 3)(

    ni=1

    2i )1/2

    (1.3.3).

    81

  • 7/23/2019 James James Tree

    82/83

    82

  • 7/23/2019 James James Tree

    83/83

    [1] I.Amemiya, T.Ito, Weakly null sequences in James spaces on trees, KodaiMathematical Journal 4, 3, 418425, 1981.

    [2] P.Eno,A counterexapmle to the approximation property in Banach spaces, Acta

    Math, 130, 309-317, 1973.

    [3] R. Haydon, Some more characterizations of Banach spaces containing l1,Mathematical Proceedings of the Cambridge Philosophical Society, 80, 269-276, 1976.

    [4] R.C. James,A non-reexive space isometric with its second conjugate space, Proc. Nat.Acad. Sci. U.S.A. 174-177, 1951

    [5] R.C. James,A separable somewhat reexive Banach space with non-separable dual,Bull. Amer. Math. Soc., 80, 738-743, 1974.

    [6] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain 1and whose duals are non separable, Studia Math., 54, 81-105, 1975.

    [7] J. Lindenstrauss and L. Tzafriri,Classical Banach spaces I and II, Springer, 1996.

    [8] W.Rudin,Real and Complex Analysis, McGraw-Hill, New York, 1966.