Ανάλυση Fourier Και Ολοκλήρωμα Lebesgue

download Ανάλυση Fourier Και Ολοκλήρωμα Lebesgue

of 295

description

Ανάλυση Fourier Και Ολοκλήρωμα Lebesgue

Transcript of Ανάλυση Fourier Και Ολοκλήρωμα Lebesgue

  • Anlush Fourier

    kai

    Oloklrwma Lebesgue

    Prqeirec Shmeiseic

    Tmma Majhmatikn

    Panepistmio Ajhnn

    Ajna, 2012

  • Perieqmena

    I Anlush Fourier 1

    1 31.1 pi . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 L2-: . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    2 Fourier 212.1 pi . . . . . . . . . . . . . . . . . . . . . . . 212.2 Fourier . . . . . . . . . . . . . . . . . . . . . . . . . 262.3 pi . . . . . . . . . . . . . . . . . . . . . . . . . . 322.4 Fourier . . . . . . . . . . . . . . . . . . . . . . . . . 39

    2.4 Cesa`ro Fejer . . . . . . . . . . . 392.4 Abel pi Poisson . . . . . . . . . . . . 43

    2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    3 Fourier 533.1 . . . . . . . . . . . . . . . . . . . . . . . . . 533.2 L2- Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . 593.3 pi . . . . . . . . . . . . . . . . 643.4 Fourier pi pi . . . 673.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    II Oloklrwma Lebesgue 77

    4 Lebesgue 794.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.2 Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.4 Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

  • iv

    4.5 Cantor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954.6 . . . . . . . . . . . . . . . . . . . . . . 994.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    5 1095.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095.2 CantorLebesgue . . . . . . . . . . . . . . . . . . . . . . . . 1165.3 pi pi . . . . . . . . 1185.4 Littlewood . . . . . . . . . . . . . . . . . . . . . . . . 1215.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    6 Lebesgue 1276.1 Lebesgue pi . . . . . . . . . . 1286.2 Lebesgue . . . . . . . . . . . . 1316.3 Lebesgue: pipi . . . . . . . . . . . . . . . . . 1386.4 Riemann . . . . . . . . . . . . . . . . . . . . 1436.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    7 Lp 1557.1 Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557.2 Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1587.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    III Metasqhmatismc Fourier 163

    8 Fourier 1658.1 Fourier R . . . . . . . . . . . . . . . . . . . . . . . . 1658.2 pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1738.3 pi Plancherel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1808.4 pi Poisson . . . . . . . . . . . . . . . . . . . . . . . . . 1838.5 Heisenberg . . . . . . . . . . . . . . . . . . . . . 1858.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    IV Upodexeic gia tic Askseic 193

    9 Fourier 1959.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1959.2 Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2069.3 Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

  • v

    10 Lebesgue 24910.1 Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24910.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26710.3 Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

  • Mroc I

    Anlush Fourier

  • Keflaio 1

    Eisagwg

    f : [pi, pi] R Riemann . Fourier f

    S[f ](x) =a02

    +

    k=1

    (ak cos kx+ bk sin kx),

    pi Fourier ak bk f pi

    ak = ak(f) =1

    pi

    pipi

    f(x) cos kx dx, k = 0, 1, 2, . . .

    bk = bk(f) =1

    pi

    pipi

    f(x) sin kx dx, k = 1, 2, . . . .

    f(x) cos kx f(x) sin kx Riemann , pi - ak bk . pipi, k

    |ak| 1pi

    pipi|f(x)| dx |bk| 1

    pi

    pipi|f(x)| dx.

    , {ak} {bk} . n- Fourier f

    sn(f)(x) =a02

    +

    nk=1

    (ak cos kx+ bk sin kx).

    pi pi pi pi pi sn(f) f. pi pi pi-, pi pi .

  • 4

    1.1 Trigwnometrik polunuma

    1.1.1 ( pi). pi- pipi cos kx sin kx.,

    (1.1.1) T (x) = 0 +

    nk=1

    (k cos kx+ k sin kx),

    pi n N k, k R. T n 0 pi T pi . Tn pi pi pi n. Tn pi 2pi-pi f : R R. 1.1.2. pi T (x) n pi cosx sinx n. , pi pi ( ) p(t, s) n

    (1.1.2) T (x) = p(cosx, sinx).

    pi pi .

    1.1.3. n 1, cosnx (sin(n + 1)x)/ sinx pi cosx n.

    pi. pi : n 1 pi a0,n, . . . , an1,n R

    (1.1.3) cosnx = 2n1 cosn x+n1j=0

    aj,n cosj x.

    (1.1.3) n = 1, n = 2

    cos 2x = 2 cos2 x 1.

    pi (1.1.3) cos kx, pi k 2. pi

    (1.1.4) cos[(k + 1)x] + cos[(k 1)x] = 2 cos kx cosx

    pi

    cos(k + 1)x = 2 cos kx cosx cos(k 1)x

  • 1.1 pi 5

    = 2 cosx

    2k1 cosk x+ k1j=0

    aj,k cosj x

    2k2 cosk1 x k2j=0

    aj,k1 cosj x

    = 2k cosk+1 x+

    kj=0

    aj,k+1 cosj x

    aj,k+1 R. , pi

    (1.1.5) sin[(k + 1)x] sin[(k 1)x] = 2 cos kx sinx pi , n 1,

    (1.1.6)sin(n+ 1)x

    sinx= 2n cosn x+

    n1j=0

    aj,n cosj x

    aj,n R ( pi ). 2 1.1.4.

    (1.1.7) B = {1, cosx, cos2 x, . . . , cosn x, sinx, sinx cosx, . . . , sinx cosn1 x}.pi 1.1.3

    (1.1.8) Tn span(B),pi span(B) pi pi pi B. , dim(Tn) Tn pi 2n+1, pi pi

    (1.1.9) Tn = span(A),pi

    (1.1.10) A = {1, cosx, cos 2x, . . . , cosnx, sinx, . . . , sinnx}. card(A) = card(B) = 2n + 1 ( card(X) pi pipi X). A . pi A Tn dim(Tn) = 2n + 1.pipi, span(B) Tn dim(span(B)) 2n+ 1, pi , ,

    Tn = span(B) = span(A)., pi cosx, pi n, Tn.

  • 6

    1.1.5 ( ). f, g : [pi, pi] R Riemann .

    (1.1.11) f, g = 1pi

    pipi

    f(x)g(x) dx

    (1.1.12) f2 = f, f1/2 =(

    1

    pi

    pipi

    f2(x) dx

    )1/2.

    pi CauchySchwarz

    (1.1.13) |f, g| f2g2. pi g, f = f, g f + g, h = f, h + g, h f, g, h Riemann , R. 1.1.6 ( ). pi:

    (i) m,n = 0, 1, 2, . . . m 6= n 1

    pi

    pipi

    cosmx cosnx dx = 0.

    (ii) m,n = 1, 2, . . . m 6= n 1

    pi

    pipi

    sinmx sinnx dx = 0.

    (iii) m = 0, 1, 2, . . . n = 1, 2, . . .

    1

    pi

    pipi

    cosmx sinnx dx = 0.

    (iv) m,n = 1, 2, . . .

    1

    pi

    pipi

    cos2mx dx =1

    pi

    pipi

    sin2 nx dx = 1.

    pi. . pi

    2 cos cos = cos( ) + cos( + ),2 sin cos = sin( + ) + sin( ),2 sin sin = cos( ) cos( + ),

    2 cos2 = 1 + cos 2, 2 sin2 = 1 cos 2. 2

  • 1.1 pi 7

    1.1.7. A = {1, cosx, cos 2x, . . . , cosnx, sinx, . . . , sinnx} .

    pi.

    (1.1.14) T (x) = 0 +

    nk=1

    (k cos kx+ k sin kx) 0,

    (1.1.15) 0 = 1 = = n = 1 = = n = 0.

    pipi pi 1.1.6. pi, m = 1, . . . , n

    0 = T, sinmx = 01, sinmx+nk=1

    (kcos kx, sinmx+ ksin kx, sinmx)

    = msinmx, sinmx = m,

    cos kx, sinmx = 0 0 k n sin kx, sinmx = 0 1 k n,k 6= m. m = 0 m = 0, 1, . . . , n. 2 1.1.8. f : [pi, pi] R

    (1.1.16) f = sup{|f(x)| : x [pi, pi]}.

    pi pi Weierstrass ( pi ).

    1.1.9. f : [a, b] R . > 0 pipi p

    (1.1.17) f p = max{|f(x) p(x)| : x [a, b]} < .

    , pi {pm} pi f pm 0.pi 1.1.9 T

    pi pi 2pi-pi :

    1.1.10. f : R R 2pi-pi . > 0pi pi T

    (1.1.18) f T = max{|f(x) T (x)| : x R} < .

    , pi {Tm} pi f Tm 0.

  • 8

    pi. pi , pipi pi- f : , f(x) = f(x) x R. g : [1, 1] R

    (1.1.19) g(y) = f(arccos y).

    g , arccos y [0, pi] y [1, 1], , . pi 1.1.9, pi pi p g p < . ,(1.1.20) |f(arccos y) p(y)| < y [1, 1]. T (x) = p(cosx). T pi cosx, T T . , x [0, pi] pi y [1, 1] y = cosx, ,(1.1.21) |f(x) T (x)| = |f(x) p(cosx)| = |f(arccos y) p(y)| < . f T , pi

    (1.1.22) f T = max{|f(x) T (x)| : pi x pi} < , pi .

    pipi, 2pi-pi f : RR

    (1.1.23) f1(x) = f(x) + f(x) f2(x) = [f(x) f(x)] sinx. f1 f2 , 2pi-pi. , pi pi T1 T2

    (1.1.24) f1 T1 < 2

    f2 T2 < 2.

    (1.1.25) T3(x) =1

    2(T1(x) sin

    2 x+ T2(x) sinx),

    T3 T , x [pi, pi],|2f(x) sin2 x 2T3(x)| = |f1(x) sin2 x+ f2(x) sinx T1(x) sin2 x T2(x) sinx|

    |(f1(x) T1(x)) sin2 x|+ |(f2(x) T2(x)) sinx| |f1(x) T1(x)|+ |f2(x) T2(x)| <

    2+

    2= .

    , f3(x) = f(x) sin2 x

    (1.1.26) f3 T3 < 2.

  • 1.1 pi 9

    g(x) := f(x pi2

    ). g 2pi-pi.

    pi, pi pi T4 , f4(x) = g(x) sin

    2 x f4 T4 < 2 . T5(x) =T4(x + pi/2), T5 pi ( ) x R, y = x+ pi/2 (1.1.27)

    |f(x) cos2 x T5(x)| = |f(x) cos2 x T4(x+ pi/2)| = |f(y pi/2) sin2 y T4(y)| < 2.

    pi,

    (1.1.28) f5 T5 < 2,

    pi f5(x) = f(x) cos2 x. f = f3 + f5, f(x) = f(x) sin

    2 x + f(x) cos2 x. T =T3 + T5. , T T

    (1.1.29) f T = (f3+f5) (T3+T5) f3T3+f5T5 < 2

    +

    2= .

    pi . 2

    1.1.11. f : R R 2pi-pi (1.1.30) ak(f) = bk(f) = 0

    k. , f 0.pi. pi pi pi

    (1.1.31)

    pipi

    f(x)T (x) dx = 0

    pi T . pi 1.1.10 pi {Tm} pi f Tm 0. , m

    (1.1.32)

    pipi

    f2(x) dx =

    pipi

    f2(x) dx pipi

    f(x)Tm(x) dx =

    pipi

    f(x)(f(x)Tm(x)) dx.

    ,

    (1.1.33)

    pipi

    f2(x) dx pipiff Tmdx = 2piff Tm 0.

    pi

    (1.1.34)

    pipi

    f2(x) dx = 0,

  • 10

    , f , pi f 0. 2 pi pi Fourier

    pi

    T (x) = 0 +

    nk=1

    (k cos kx+ k sin kx).

    pi 1.1.6 : k = 1, . . . , n

    (1.1.35) ak(T ) = T, cos kx = kcos kx, cos kx = k,, k > n

    (1.1.36) ak(T ) = T, cos kx = 0., k = 1, . . . , n

    (1.1.37) bk(T ) = T, sin kx = ksin kx, sin kx = k,, k > n

    (1.1.38) bk(T ) = T, sin kx = 0.,

    (1.1.39) a0(T ) = 20.

    pi , m n,

    sm(T )(x) =a0(T )

    2+

    mk=1

    (ak(T ) cos kx+ bk(T ) sin kx)

    = 0 +

    nk=1

    (k cos kx+ k sin kx)

    = T (x).

    , Fourier T T :

    1.1.12. T pi pin. m n (1.1.40) sm(T ) T.pi,

    (1.1.41) S[T ] T.

  • 1.2 L2-: 11

    1.1.12 pi Fourier S[f ] f pi pipi pi f pi: n pi pi f sn(f) f .pi pi, 1.1.10 pi -pi . pi pi S[f ] f pi pi pi pi.

    1.2 L2-sgklish: mia eisagwg

    f : [pi, pi] R Riemann . sn(f)f pi 2. ,

    limn f sn(f)

    22 = lim

    n1

    pi

    pipi

    (f(x) sn(f)(x))2dx = 0.

    pi pi , pi pi n- sn(f) Fourier f pi pi f pi Tn 2-pi. 1.2.1. f : [pi, pi] R, Riemann . n 0,

    (1.2.1) f sn(f)2 = min{f T2 : T Tn}.

    pi. T Tn. ,

    (1.2.2) T (x) =02

    +

    nk=1

    (k cos kx+ k sin kx)

    pi k, k R.

    (1.2.3) f T22 = f T, f T = f22 2f, T + T22.

    pi f, T T22.

    f, T = 1pi

    pipi

    f(x)T (x) dx

    =02pi

    pipi

    f(x) dx+

    nk=1

    (k

    1

    pi

    pipi

    f(x) cos kx dx+ k1

    pi

    pipi

    f(x) sin kx dx

    )

    =0a0(f)

    2+

    nk=1

    kak(f) +

    nk=1

    kbk(f).

  • 12

    f T , pi ak(T ) = k bk(T ) = k pi

    (1.2.4) T22 = T, T =202

    +

    nk=1

    2k +

    nk=1

    2k.

    T sn(f), pi f, T = 0a0(f)2 +nk=1 kak(f) +n

    k=1 kbk(f) (1.2.4),

    (1.2.5) f, sn(f) = sn(f)22 =a202

    +

    nk=1

    a2k +

    nk=1

    b2k.

    pipi,

    f T22 = f22 +20 20a0(f)

    2+

    nk=1

    (2k 2kak(f)) +nk=1

    (2k 2kbk(f))

    = f22 +(0 a0)2

    2+

    nk=1

    (k ak)2 +nk=1

    (k bk)2

    (a202

    +

    nk=1

    (a2k + b2k)

    )

    f22 (a202

    +

    nk=1

    (a2k + b2k)

    )= f22 sn(f)22.

    k = ak k = 0, 1, . . . , n k = bk k = 1, . . . , n. , T sn(f). , (1.2.6) f sn(f)22 = f22 sn(f)22 f T22 T Tn. 2. pi pi pi

    sn(f)22 =a202

    +

    nk=1

    (a2k + b2k),

    (sn(f)2) . pi,f22 sn(f)22 = f sn(f)22 0.

    pi Bessel:

  • 1.2 L2-: 13

    1.2.2 ( Bessel). f : [pi, pi] R . n 0

    (1.2.7) sn(f)22 =a202

    +

    nk=1

    (a2k + b2k) f22,

    pi ak = ak(f) bk = bk(f) Fourier f . pi,

    (1.2.8)a202

    +

    k=1

    (a2k + b2k) f22.

    Bessel {ak(f)} {bk(f)} . 1.2.3 ( RiemannLebesgue). f : [pi, pi] R . ,

    (1.2.9) limk

    ak(f) = limk

    bk(f) = 0.

    pi. pi Bessel pi

    k=1

    a2k k=1

    b2k

    . {ak} {bk} 0. 2pi , (1.2.8) pi

    ( Parseval). pi pi .

    1.2.4. f : R R , 2pi-pi . ,

    (1.2.10) f22 =a202

    +

    k=1

    (a2k + b2k).

    pi. pi f sn(f)22 = f22 sn(f)22,

    (1.2.11) limn f sn(f)2 = 0,

    pi

    (1.2.12) f22 = limn sn(f)

    22 =

    a202

    +

    k=1

    (a2k + b2k).

  • 14

    1.1.10. > 0 pi T

    (1.2.13) f T < 2.

    ,

    f T2 =(

    1

    pi

    pipi|f(x) T (x)|2dx

    )1/2(

    1

    pi

    pipif T2dx

    )1/2=

    2f T < . n0 T . pi 1.2.1 pi

    (1.2.14) f sn0(f)2 f T2 < . , n n0

    (1.2.15) sn(f)22 =a202

    +

    nk=1

    (a2k + b2k)

    a202

    +

    n0k=1

    (a2k + b2k) = sn0(f)22,

    (1.2.16) f sn(f)22 = f22 sn(f)22 f22 sn0(f)22 = f sn0(f)22,, n n0 (1.2.17) f sn(f)2 f sn0(f)2 < . pi f sn(f)2 0. 2

    pi Riemann , -pi pi .

    1.2.5. f : [pi, pi] R Riemann > 0. , pi g : [pi, pi] R g f g(pi) = g(pi) f g2 < .pi. > 0. pi P = {pi = x0 < x1 < 0, g(x) = f(x) pi x pi pi x0, . . . , xN . -pi xj j = 1, . . . , N 1, g pi pi g(xj ) = f(xj ). x0 = pi, pi g g(pi) = 0 g(pi + ) = f(pi + ). , xN = pi,pi g g(pi) = 0 g(pi ) = f(pi ).

    g(pi) = g(pi), pi pi g pi R. pi pi pi pi f.pipi, g pi f N + 1 2 pi x0, . . . , xN . pi,

    (1.2.21)

    pipi|f(x) g(x)| dx 2BN 2.

    pi , pi

    (1.2.22)

    pipi|f(x) g(x)| dx < .

    (1.2.23)

    pipi|f(x) g(x)| dx < 2.

    (1.2.24)

    pipi|f(x) g(x)|2 dx 2f

    pipi|f(x) g(x)| dx,

    pi pi pi

    (1.2.25) f g2 < pi > 0 12pi (2)(2f) < 2 - . 2

    1.2.6 ( Parseval). f : R R 2pi-pi , [pi, pi]. ,

    (1.2.26) f22 :=1

    pi

    pipi|f(x)|2dx = a

    20

    2+

    k=1

    (a2k + b2k).

  • 16

    pi. > 0. pi 1.2.5 pi 2pi-pi g f g2 < /3. ,(1.2.27) f sn(f)2 f g2 + g sn(g)2 + sn(g) sn(f)2.

    (1.2.28) sn(g) sn(f)2 = sn(g f)2 g f2 < 3.

    pi,

    (1.2.29) f sn(f)2 < 23

    + g sn(g)2.

    pi 1.2.4 g sn(g)2 0, pi n0 N , n n0, g sn(g)2 < /3. , n n0 f sn(f)2 < . f sn(f)2 0, sn(f)22 f22 pi . 2

    Parseval pi 1.1.11:

    1.2.7. f : R R 2pi-pi ak(f) = bk(f) = 0 k. , f 0.pi. pi pi pi Parseval pi

    (1.2.30)

    pipi|f(x)|2dx = 0.

    f , pi f 0. 2 pi pi

    S[f ] f .

    1.2.8. f : [pi, pi] R f(pi) = f(pi) = 0.pi

    (1.2.31)

    k=1

    (|ak(f)|+ |bk(f)|) < +.

    , Fourier f f . ,

    (1.2.32) sn(f) f.

    pi. pi pi k=1(|ak(f)| + |bk(f)|) < + pi

    Weierstrass pi

    sn(f)(x) = a0(f) +

    nk=1

    (ak(f) cos kx+ bk(f) sin kx)

  • 1.3 17

    g : [pi, pi] R

    (1.2.33) g(x) = a0(f) +

    k=1

    (ak(f) cos kx+ bk(f) sin kx), x [pi, pi].

    : k 0 n k

    (1.2.34)1

    pi

    pipi

    sn(f)(x) cos kxdx = ak(f),

    , k 1 n k

    (1.2.35)1

    pi

    pipi

    sn(f)(x) sin kxdx = bk(f).

    pi sn(f) g pi , k 0,

    (1.2.36) ak(g) =1

    pi

    pipi

    g(x) cos kx dx = limn

    1

    pi

    pipi

    sn(f)(x) cos kx dx = ak(f).

    , , k 1,(1.2.37) bk(g) = bk(f).

    f g Fourier,

    1.2.7 g f . pi, sn(f) f . 2

    1.3 Askseic

    1. T (x) = 0 +nk=1(k cos kx + k sin kx) pi.

    :

    () T pi , k = 0 k = 0, 1, . . . , n.

    () T , k = 0 k = 1, . . . , n.

    2. : k N pi pi p(t) 2k sin2k x = p(cosx) x R.3. pi pi 1.1.6: 1, cosx, . . . , cosnx, sinx, . . . , sinnx .

    4. f(x) = pi x 0 < x < 2pi, f(0) = f(2pi) = 0, pi f 2pi-pi R. Fourier f

    S[f ](x) = 2

    k=1

    sin kx

    k.

  • 18

    5. f : [pi, pi] R Riemann > 0. pi g : [pi, pi] R |g(x)| f x [pi, pi] pi

    pi|f(x) g(x)| dx < .

    6. f : [pi, pi] R Riemann > 0.() pi g : [pi, pi] R f g2 < .() pi 2pi-pi h : R R f h2 < .() pi pi T f T2 < .7. f : R R 2pi-pi , [pi, pi].

    limt0

    pipi|f(x+ t) f(x)|2dx = 0.

    8. f(x) = (pi x)2 [0, 2pi] pi 2pi-pi R.

    S[f ](x) =pi2

    3+ 4

    k=1

    cos kx

    k2.

    pi pipi,

    k=1

    1

    k2=pi2

    6.

    9. f : R R pi 2pi-pi pipi

    f(x) dx = 0.

    pi Parseval f f pipi|f(x)|2dx

    pipi|f (x)|2dx,

    f(x) = a cosx+ b sinx pi a, b R.

  • 1.3 19

    10. () k N

    Ak(x) =

    kj=1

    sin jx.

    : k > m

    |Ak(x)Am(x)| 1| sin(x/2)| 0 < x < pi.

    () 1 2 n 0, k

    j=m+1

    j sin jx

    m+1| sin(x/2)| n k > m 1 0 < x < pi.11. n N M > 0. 1 2 n 0 kk M k = 1, . . . , n,

    nk=1

    k sin kx

    (pi + 1)M x R. [pi: pi pi 0 < x < pi. , ,

    nk=1

    k sin kx =

    mk=1

    k sin kx+

    nk=m+1

    k sin kx,

    pi m = min{N, bpi/xc}.]12. 0 < 1 f : R R 2pi-pi . pi pi M > 0

    |f(x) f(y)| M |x y|

    x, y R. : pi C > 0 , k Z \ {0},

    |ak(f)| Ck

    |bk(f)| Ck.

  • Keflaio 2

    Seirc Fourier

    2.1 Migadik morf kai paradegmata

    2.1.1 ( ). T

    (2.1.1) T = {z C : |z| = 1} = {ei : R}.

    F : T C , f : R C

    (2.1.2) f() = F (ei).

    f 2pi-pi. , f : R C 2pi-pi, F : T C F (ei) = f() (pi, ei1 = ei2 pi 1, 2 R 2 = 1 + 2kpi pi k, f(1) = f(2) pi 2pi-pi f). pi 1 1 F : T C 2pi-pi f : R C.

    , F f - pi ( ) 2pi, F f , F pi f pi, F pi f pi .

    pi f : [a, b] C pipi , f f = u + iv, pi u(x) = Re(f(x)) v(x) = Im(f(x)), x [a, b]. f Riemann u, v Riemann ,

    (2.1.3)

    ba

    f(x) dx =

    ba

    u(x) dx+ i

    ba

    v(x) dx.

  • 22 Fourier

    pi : f : [a, b] C ,

    (2.1.4)

    ba

    f(x) dx

    ba

    |f(x)| dx.

    pi , ba

    f(x) dx = Rei0 , pi R =

    ba

    f(x) dx

    0 R, pi

    ba

    f(x) dx

    = ei0 ba

    f(x) dx =

    ba

    ei0f(x) dx

    =

    ba

    Re(ei0f(x)) dx ba

    |ei0f(x)| dx

    =

    ba

    |f(x)| dx.

    2.1.2 ( Fourier). f : [pi, pi] C . k Z k- Fourier f

    (2.1.5) f(k) =1

    2pi

    pipi

    f(x)eikxdx.

    pi (2.1.4)

    (2.1.6) |f(k)| = 12pi

    pipi

    f(x)eikxdx 12pi

    pipi|f(x)| dx f,

    pi |eikx| = 1. pi, {f(k)}kZ .

    Fourier f

    (2.1.7) S[f ](x) =

    k=

    f(k)eikx.

    n- Fourier f pi

    (2.1.8) sn(f)(x) =

    nk=n

    f(k)eikx.

  • 2.1 pi 23

    , pi

    (2.1.9) T (x) =

    nk=n

    ckeikx,

    pi n 0 ck C, |k| n. F : T C , f() = F (ei)

    Fourier f pi f [pi, pi],pi (2.1.5).

    2.1.3 ( pi). f : [pi, pi] C - . 1.1, k 0 -

    (2.1.10) ak(f) =1

    pi

    pipi

    f(x) cos kx dx

    k 1

    (2.1.11) bk(f) =1

    pi

    pipi

    f(x) sin kx dx.

    : k Z \ {0},

    (2.1.12) f(k) =1

    2pi

    pipi

    f(x) cos kx dx i 12pi

    pipi

    f(x) sin kx dx =ak(f) ibk(f)

    2,

    (2.1.13) f(k) = 12pi

    pipi

    f(x) cos kx dx+ i1

    2pi

    pipi

    f(x) sin kx dx =ak(f) + ibk(f)

    2.

    pi,

    (2.1.14) f(0) =1

    2pi

    pipi

    f(x) dx =a0(f)

    2.

    .

    2.1.4. f : [pi, pi] C . k Z\{0}

    (2.1.15) ak(f) = f(k) + f(k) bk(f) = i(f(k) f(k)).

  • 24 Fourier

    pi, a0(f) = 2f(0)

    (2.1.16) sn(f)(x) =

    nk=n

    f(k)eikx =a0(f)

    2+

    nk=1

    (ak(f) cos kx+ bk(f) sin kx).

    , n- Fourier f 1.1.

    pi. a0(f) = 2f(0), ak(f) = f(k) + f(k) bk(f) = i(f(k) f(k))pipi pi (2.1.12), (2.1.13) (2.1.14). (2.1.16)

    sn(f)(x) =

    nk=n

    f(k)eikx

    =a0(f)

    2+

    nk=1

    f(k)eikx +

    1k=n

    f(k)eikx

    =a0(f)

    2+

    nk=1

    f(k)eikx +

    nk=1

    f(k)eikx

    =a0(f)

    2+

    nk=1

    f(k)(cos kx+ i sin kx) +

    nk=1

    f(k)(cos kx i sin kx)

    =a0(f)

    2+

    nk=1

    (f(k) + f(k)) cos kx+nk=1

    i(f(k) f(k)) sin kx

    =a0(f)

    2+

    nk=1

    (ak(f) cos kx+ bk(f) sin kx),

    pi (2.1.15). 2

    pi pi pi pi : F : T C , , f : R C 2pi-pi , 2pi, sn(f)(x) =nk=n f(k)e

    ikx f .

    () f() = [pi, pi) pi 2pi-pi R. f pi [pi, pi]. pi Fourier f . f pi,

    (2.1.17) f(0) =1

    2pi

    pipi

    d = 0.

  • 2.1 pi 25

    k 6= 0

    f(k) =1

    2pi

    pipi

    eikd =1

    2pi

    pipi

    [eik

    ik

    ]d

    =1

    2pi

    eikik

    |pipi +1

    2pi

    pipi

    eik

    ikd

    =1

    2pi

    pieikpi pieikpiik

    = 12k

    eikpi + eikpi

    i

    =(1)k+1

    ik.

    pi pipi

    eikik d = 0. pi

    (2.1.18)

    S[f ]() =k 6=0

    (1)k+1ik

    eik =

    k=1

    (1)k+1eik (1)k+1eikik

    = 2

    k=1

    (1)k+1 sin kk

    .

    pi , , pi pi ak(f) = 0 k Z, f pi.

    (2.1.19) S[f ]() =k 6=0

    bk(f) sin k.

    pi , pi pipi, pi pi bk(f) pi (2.1.18).

    () pi Dirichlet. n 0. n- pi Dirichlet pi

    (2.1.20) Dn(x) =

    nk=n

    eikx, x [pi, pi].

    Dn(0) = 2n+ 1. : 0 < |x| pi,

    (2.1.21) Dn(x) =sin((n+ 12

    )x)

    sin(x/2).

    pi , = eix

    (2.1.22) Dn(x) =

    nk=0

    k +

    1k=n

    k =

    nk=0

    k +

    nk=1

    (1/)k.

    (2.1.23)

    nk=0

    k =1 n+1

    1 ,

  • 26 Fourier

    (2.1.24)

    nk=1

    (1

    )k=

    1

    1 n1 1

    =n 1

    1 .

    pi,

    (2.1.25) Dn(x) =n n+1

    1 =einx ei(n+1)x

    1 eix =eix/2

    eix/2ei(n+ 12

    )x ei

    (n+ 12

    )x

    eix/2 eix/2 ,

    pi pi pipi (2.1.21). pi Dirichlet pi pi. pi Fourier f pi :

    sn(f)(x) =

    nk=n

    f(k)eikx =

    nk=n

    (1

    2pi

    pipi

    f(y)eikydy)eikx

    =1

    2pi

    pipi

    f(y)

    (n

    k=neik(xy)

    )dy =

    1

    2pi

    pipi

    f(y)Dn(x y) dy.

    2.3 pi -.

    2.2 Monadikthta seirn Fourier

    pi 1.1 1.2 2pi-pi f : RR ak(f) bk(f) , f 0. pi .

    2.2.1. f : T C f(k) = 0 k Z. f 0 T f(0) = 0.pi. pi pi f pi pi . pi pi f [pi, pi] 0 = 0. [ pi : f 0, g(x) = f(x+0) 0 pi Fourier g.]

    pi f(0) > 0 pi ( pi- pipi f(0) < 0). {pm} pi pi pi 0 pi pi

    limk

    pipi

    pm()f() d = +.

  • 2.2 Fourier 27

    pi pi, pi f(k) = 0 k Z pipi 0 ( ).

    , f , : piM > 0 |f()| M [pi, pi]. f 0, 0 < < pi/2 f() > f(0)/2 (, ).

    cos cos < 1 || pi. pi, pi > 0

    (2.2.1) |+ cos | < 1 /2

    || pi. pi 0 < < 2(1cos )3 . , + cos 0 | + cos | = + cos + cos < 1 /2 pi pi , + cos < 0 |+ cos | = cos 1 < 1 /2.

    (2.2.2) p() = + cos , [pi, pi].

    , p(0) = 1 + , pi pi 0 < <

    (2.2.3) p() 1 + /2, (, ).

    , m = 1, 2, . . .,

    (2.2.4) pm() = [p()]m = (+ cos )m.

    pm pi ( ). f(k) =0 k Z, pi

    (2.2.5)

    pipi

    pm()f() d = 0, k = 1, 2, . . . .

    (2.2.6) pipi

    pm()f() d =

    ||pi

    pm()f() d+

    ||

  • 28 Fourier

    (ii)

    (2.2.8)

    || 0 0 < < pi/2.

    (iii)

    (2.2.9)

    ||

  • 2.2 Fourier 29

    2.2.2 ( Fourier). f : T C f(k) = 0 k Z, f 0. 2

    pi pi ( ) sn(f) f Fourier f pi.

    2.2.3. f : T C . pi

    (2.2.15)

    k=

    |f(k)| < +.

    , Fourier f f . ,

    (2.2.16) sn(f) f.

    pi. pi pi

    k=|f(k)| < + pi -

    (2.2.17) sn(f)(x) =

    nk=n

    f(k)eikx

    : pi, m > n

    (2.2.18) sm(f) sn(f) = maxxT|sm(f)(x) sn(f)(x)|

    n

  • 30 Fourier

    f g Fourier, pi

    2.2.2 pi g f . pi, sn(f) f . 2

    pi pipi pi 2.2.3

    k=|f(k)| : , pi ,

    S[f ] f . f (pi.. pi) Fourier :

    2.2.4. f : T C pi f C2(T). , pi C = C(f) > 0

    (2.2.22) |f(k)| C(f)k2

    , k Z \ {0}.

    pi sn(f) f .

    pi. k 6= 0 :

    2pif(k) =

    pipi

    f()eikd

    =

    [f()

    eikik

    ]pipi

    +1

    ik

    pipi

    f ()eikd

    =1

    ik

    pipi

    f ()eikd

    =1

    ik

    [f ()

    eikik

    ]pipi

    +1

    (ik)2

    pipi

    f ()eikd

    = 1k2

    pipi

    f ()eikd,

    pi pi , f f 2pi-pi,

    (2.2.23)

    [f()

    eikik

    ]pipi

    =

    [f ()

    eikik

    ]pipi

    = 0.

    pi,

    (2.2.24) |f(k)| 1k2

    12pi pipi

    f () d C(f)k2 ,

    pi

    (2.2.25) C(f) =1

    2pi

    pipi|f ()| d.

  • 2.2 Fourier 31

    pi pi 2.2.3 pi

    k=1

    1k2 < +. 2

    2.2.5. pi pi 2.2.4 :

    () f : T C pi,

    (2.2.26) f(k) =1

    ik

    1

    2pi

    pipi

    f ()eikd =1

    ikf (k)

    k 6= 0. pi pi f

    (2.2.27) 2pif (0) = pipi

    f () = f(pi) f(pi) = 0.

    pi,

    (2.2.28) f (k) = ikf(k), k Z.

    () f : T C pi,

    (2.2.29) f(k) = 1k2

    1

    2pi

    pipi

    f ()eikd = 1k2f (k)

    k 6= 0. pi pi f

    (2.2.30) 2pif (0) = pipi

    f () = f (pi) f (pi) = 0.

    pi,

    (2.2.31) f (k) = k2f(k), k Z. 2.2.6. f : R C 2pi-pi , [pi, pi]. f C2(T)

    k=

    |f(k)| < +. pi ,

    k=|f(k)| pi

    f . pi f pi.

    k=|f(k)| f pi Holder

    > 1/2: , pi M > 0

    (2.2.32) |f(x) f(y)| M |x y|

    x, y R.

  • 32 Fourier

    2.3 Sunelxeic kai kalo purnec

    f g 2pi-pi R, f g f g [pi, pi]

    (2.3.1) (f g)(x) = 12pi

    pipi

    f(y)g(x y) dy.

    x [pi, pi], .

    pi . pi, g 1 f g ,

    (2.3.2) (f 1)(x) = 12pi

    pipi

    f(y) dy.

    , f [pi, pi]. pi pi , (f g)(x) , pi , f(x)g(x) f g.

    pi pi Fourier f pi :

    sn(f)(x) =

    nk=n

    f(k)eikx =

    nk=n

    (1

    2pi

    pipi

    f(y)eikydy)eikx

    =1

    2pi

    pipi

    f(y)

    (n

    k=neik(xy)

    )dy = (f Dn)(x),

    pi Dn n- pi Dirichlet, pi pi

    (2.3.3) Dn(x) =

    nk=n

    eikx.

    pi sn(f) f Dn.

    pi pi pi .

    2.3.1. f, g h : R C 2pi-pi .:

    (i) f (g + h) = (f g) + (f h).(ii) (cf) g = c(f g) = f (cg) c C.(iii) f g = g f .

  • 2.3 pi 33

    (iv) (f g) h = f (g h).(v) f g .(vi) f g(k) = f(k)g(k) k Z.

    pi pi pi :, pi. pipi pi f g pi pi f g. f g f g pi Riemann. , pi pipi Fourier. , Fourier fg Fourier f g. f g f g, .pi. (i) (ii) pipi pi -.

    pipi pi pi f g . pipi, pi . pi (iii), pi x R , pi u = x y,

    (f g)(x) = 12pi

    pipi

    f(y)g(x y) dy = 12pi

    x+pixpi

    f(x u)g(u) du.

    f, g 2pi-pi, F (u) = f(x u)g(u) pi 2pi-pi. pi,

    (2.3.4)

    x+pixpi

    f(x u)g(u) du = pipi

    f(x u)g(u) du.

    ,

    (2.3.5) (f g)(x) = 12pi

    pipi

    g(u)f(x u) du = (g f)(x).

    (iv) pi .

    [(f g) h](x) = 12pi

    pipi

    (f g)(y)h(x y) dy

    =1

    4pi2

    pipi

    pipi

    f(t)g(y t)h(x y) dt dy

    =1

    4pi2

    pipi

    pipi

    f(t)g(y t)h(x y) dy dt

    =1

    4pi2

    pipi

    f(t)

    pipi

    g(y t)h((x t) (y t)) dy dt.

  • 34 Fourier

    G(u) = g(u)h(x t u) 2pi-pi. u = y t 1

    2pi

    pipi

    g(y t)h((x t) (y t)) dy = 12pi

    pitpit

    g(u)h(x t u) du

    =1

    2pi

    pipi

    g(u)h(x t u) du = (g h)(x t).

    pi pi pi

    [(f g) h](x) = 12pi

    pipi

    f(t)(g h)(x t) dt = [f (g h)](x).

    pi (vi)

    f g(k) = 12pi

    pipi

    (f g)(x)eikxdx

    =1

    2pi

    pipi

    1

    2pi

    ( pipi

    f(y)g(x y) dy)eikxdx

    =1

    2pi

    pipi

    f(y)eiky(

    1

    2pi

    pipi

    g(x y)eik(xy)dx)dy

    =1

    2pi

    pipi

    f(y)eiky(

    1

    2pi

    pipi

    g(x)eikxdx)dy

    = f(k)g(k).

    , f g , f g . ,

    (2.3.6) (f g)(x1) (f g)(x2) = 12pi

    pipi

    f(y)[g(x1 y) g(x2 y)] dy.

    g , ., g pi, pi R. pi > 0, pi > 0 : |s t| < |g(s) g(t)| < . pi |x1 x2| < , |(x1 y) (x2 y)| < y, pi

    |(f g)(x1) (f g)(x2)| 12pi

    pipi f(y)[g(x1 y) g(x2 y)] dy

    12pi

    pipi|f(y)| |g(x1 y) g(x2 y)| dy

    2pi

    pipi|f(y)| dy

    2pi

    2pif.

  • 2.3 pi 35

    pi f g () . pi , pi pi f g .

    pipi, pi f g pi pi , pi pi pi pi pi ( f g), pi pi.

    2.3.2. f : T C . pi {fm}m=1 T

    (2.3.7) fm f, m = 1, 2, . . . ,

    (2.3.8)

    pipi|f(x) fm(x)| dx 0, m.

    pi. pi f pi pi ( pipi, - pi pi f).pi 1.2.5, m N fm : T C fm f

    (2.3.9)

    pipi|f(x) fm(x)| dx < 1

    m.

    , {fm} . 2pi , pi pi . -

    pi {fm} {gm} fm f gm g, pi pi f g . ,

    (2.3.10) f g fm gm = (f fm) g + fm (g gm).

    pi {fm},

    |(f fm) g(x)| 12pi

    pipi|f(x y) fm(x y)| |g(y)| dy

    12pig

    pipi|f(y) fm(y)| dy

    0 m.

    pi (f fm) g 0 pi x. ,

    |(fm (g gm))(x)| 12pi

    pipi|fm(y)| |g(x y) gm(x y)| dy

  • 36 Fourier

    12pifm

    pipi|g(y) gm(y)| dy

    f2pi

    pipi|g(y) gm(y)| dy

    0 m, fm (g gm) 0 , pi fm gm f g . fm gm , pi f g pi . pi (v).

    pi (vi). pi pi k,

    |f(k) fm(k)| = 12pi

    pipi(f(x) fm(x))eikxdx

    12pi

    pipi|f(x) fm(x)| dx,

    pi pi pipi fm(k) f(k) m. gm(k) g(k). {fm gm} f g,

    (2.3.11)1

    2pi

    pipi|(fm gm)(x) (f g)(x)| dx (fm gm) (f g) 0.

    , pi pipi, pi

    (2.3.12) fm gm(k) f g(k)

    m. pi fm(k)gm(k) = fm gm(k), fm gm . (vi) pipi m pi pi. (iii) (iv) pi pi pi. 2

    2.3.3 ( pi). {Kn}n=1 Kn : T C pi ( pi ) pi :

    (i) n N,

    (2.3.13)1

    2pi

    pipi

    Kn(x) dx = 1.

    (ii) pi M > 0 , n N,

    (2.3.14)

    pipi|Kn(x)| dx M.

  • 2.3 pi 37

    (iii) > 0,

    (2.3.15) limn

    |x|pi

    |Kn(x)| dx = 0.

    , pi: Kn(x) 0 n x. pipi, () pipi pi () pi . () Kn () , n , .

    pi pi Fourier pi pi .

    2.3.4. {Kn}n=1 pi f : T C . , x T pi f ,

    (2.3.16) limn(f Kn)(x) = f(x).

    , f pi T,

    (2.3.17) f Kn f.

    pi. , 2pi-pi f : R C. pi f x > 0. pi f x,pi > 0 : |y| < |f(xy)f(x)| < piM . pi () {Kn},

    (f Kn)(x) f(x) = 12pi

    pipi

    Kn(y)f(x y) dy f(x)

    =1

    2pi

    pipi

    Kn(y)f(x y) dy f(x) 12pi

    pipi

    Kn(y) dy

    =1

    2pi

    pipi

    Kn(y)[f(x y) f(x)] dy.

    pi,

    |(f Kn)(x) f(x)| = 12pi

    pipi

    Kn(y)[f(x y) f(x)] dy

    12pi

    |y|

  • 38 Fourier

    pi pi : |y| < |f(x y) f(x)| < piM .pi () {Kn}, pi

    1

    2pi

    |y| 0 , n N,

    (2.3.21)

    pipi|Dn(x)| dx c log n,

  • 2.4 Fourier 39

    pi (). pi (2.3.21) : pi pi pi - |Dn|. pi Dirichlet pi: pi .

    {Dn} pi, pi 2.3.4

    (2.3.22) sn(f) = f Dn f

    2pi-pi f : R C. pi pi, pi {sn(f)} f pipi, pipi ( pi ).

    pi {sn(f)} f , pi pi.

    2.4 Ajroisimthta seirn Fourier

    2.4 Cesa`ro Fejer

    (2.4.1)

    k=0

    ck = c0 + c1 + c2 + + cn + .

    n-

    (2.4.2) sn =

    nk=0

    ck = c0 + c1 + + cn.

    s C lim sn = s. pi

    (2.4.3)

    k=0

    (1)k = 1 1 + 1 1 + ,

    pi {sn} pi 1, 0, 1, 0, . . . . pi 0 1, pi pi , , 1/2, 1/2 pi pi . pi pi {n} pi n . (2.4.1),

    (2.4.4) n =s0 + s1 + + sn1

    n

  • 40 Fourier

    n = 1, 2, . . .. pi n n- Cesa`ro {sk} ( n- Cesa`ro

    k=0 ck).

    pi limnn = C,

    k=0 ck Cesa`ro -

    . , Cesa`ro pi .

    pi (2.4.3) pi n 1/2., pi Cesa`ro 1/2. pi

    k=0 ck s =

    k=0 ck = s,

    n s, Cesa`ro s ( ). 2.4.1 (pi Fejer). n- pi Fejer - pi

    (2.4.5) Fn(x) =D0(x) +D1(x) + +Dn1(x)

    n, n 1.

    pi Dn pi Dirichlet. pi Fejer

    Fn(x) =1

    n

    n1s=0

    Ds(x) =1

    n

    n1s=0

    sk=s

    eikx

    =

    n1k=(n1)

    1n

    |k|sn1

    1

    eikx = n1k=(n1)

    n |k|n

    eikx

    =

    n1k=(n1)

    (1 |k|

    n

    )eikx.

    2.4.2. pi pi , f 2pi-pi ,

    (2.4.6) n(f)(x) :=s0(f)(x) + s1(f)(x) + + sn1(f)(x)

    n

    n(f)(x) =(f D0)(x) + (f D1)(x) + + (f Dn1)(x)

    n

    =

    (f D0 +D1 + +Dn1

    n

    )(x)

    = (f Fn)(x).,

    (2.4.7) n(f) f Fn.

  • 2.4 Fourier 41

    n(f) pi pi n 1, sk(f), 0 k n 1, pi .

    pi pi {Fn} pi.

    2.4.3. n 1, n- pi Fejer pi

    (2.4.8) Fn(x) =1

    n

    sin2(nx/2)

    sin2(x/2), x 6= 2kpi

    (2.4.9) Fn(x) = n, x = 2kpi.

    {Fn}n=1 pi.pi. x 6= 2kpi. , s = 0, 1, . . . , n 1,

    (2.4.10) Ds(x) =sin(s+ 12

    )x

    sin(x/2).

    ,

    n1s=0

    sin(s+ 12

    )x

    sin(x/2)=

    1

    2 sin2(x/2)

    n1s=0

    2 sin(x/2) sin(s+

    1

    2

    )x

    =1

    2 sin2(x/2)

    n1s=0

    [cos sx cos(s+ 1)x]

    =1

    2 sin2(x/2)(1 cosnx)

    =sin2(nx/2)

    sin2(x/2)

    n pi

    (2.4.11) Fn(x) =1

    n

    n1s=0

    Ds(x) =1

    n

    sin2(nx/2)

    sin2(x/2).

    x = 2kpi, Ds(x) = 2s+ 1, s = 0, 1, . . . , n 1. pi,

    (2.4.12) Fn(2kpi) =1 + 3 + + (2n 1)

    n=n2

    n= n.

  • 42 Fourier

    (2.4.13) Fn(x) 0, x R. {Fn} - pi, pi pi () (). pi pi:

    (2.4.14)1

    2pi

    pipi

    Ds(x) dx = 1

    s 0,

    (2.4.15)1

    2pi

    pipi

    Fn(x) dx =1

    n

    n1s=0

    1

    2pi

    pipi

    Ds(x) dx = 1

    n 1. () pi , pi (2.4.8), (0, pi) < |x| pi,

    (2.4.16) |Fn(x)| = Fn(x) = 1n

    sin2(nx/2)

    sin2(x/2) 1n sin2(x/2)

    1n sin2(/2)

    .

    (2.4.17)

    |x|pi

    |Fn(x)| dx 2pin sin2(/2)

    0

    pi pi. 2

    pi 2.3.4 2.4.3 .

    2.4.4. f : T C . , FourierS[f ] f Cesaro f f : f x T, (2.4.18) n(f)(x) f(x).pipi, f x T, Fourier S[f ] f Cesaro f : ,

    (2.4.19) n(f) f.

    pi 2.4.4 2.2.1.

    2.4.5. f : T C f(k) = 0 k Z. f 0 T f(0) = 0.

  • 2.4 Fourier 43

    pi. pi pi

    (2.4.20) sn(f)(0) =

    nk=n

    f(k)eik0 = 0

    n. ,

    (2.4.21) n(f)(0) =s0(f)(0) + s1(f)(0) + + sn1(f)(0)

    n= 0

    n. f 0, 2.4.4

    (2.4.22) n(f)(0) f(0).

    pi f(0) = 0. 2

    Cesa`ro n(f) - pi, pi 2.4.4 pi- pi f : T C ( 1.1 pi pi pi, pi pipi).

    2.4.6. f : T C . pi {Tn} pi f Tn 0.pi. pi 2.4.4

    n(f) f.

    Tn := n(f) . 2

    2.4 Abel pi Poisson

    k=0 ck Abel s C

    0 r < 1

    (2.4.23) A(r) =

    k=0

    ckrk

    ,

    (2.4.24) limr1

    A(r) = s.

    pi A(r) Abel k=0 ck. pi

    k=0 ck s Abel s. pi pi

  • 44 Fourier

    k=0 ck Cesa`ro s Abel

    s. pi

    (2.4.25)

    k=0

    (1)k(k + 1) = 1 2 + 3 4 + 5

    pi Abel Cesa`ro . pi

    (2.4.26) A(r) =

    k=0

    (1)k(k + 1)rk = 1(1 + r)2

    0 r < 1, pi

    (2.4.27) limr1

    A(r) =1

    4.

    , Cesa`ro : pipi limn(sn/n) = 0.

    pi pipi pipipi .

    2.4.7 (pi Poisson). 0 r < 1 Pr : [pi, pi] C pi

    (2.4.28) Pr() =

    k=

    r|k|eik.

    pi Weierstrass pi - pi [pi, pi]. Pr r-pi Poisson. pi (2.4.28) pi ( )

    (2.4.29) Pr(k) = r|k|, k Z.

    pi pi Pr pi pi : pi

    (2.4.30) Pr() =1 r2

    1 2r cos + r2 .

    pi = rei. ,

    Pr() =

    k=0

    rk(ei)k +

    1k=

    rk(ei)k =k=0

    (rei)k +

    s=1

    (rei)s

  • 2.4 Fourier 45

    =

    k=0

    k +

    s=1

    s =1

    1 +

    1

    =1 + (1 )(1 )(1 ) =

    1 ||2|1 |2 .

    || = r 1 = 1 rei = (1 r cos ) ir sin ,

    (2.4.31) Pr() =1 r2

    (1 r cos )2 + r2 sin2 =1 r2

    1 2r cos + r2 .

    pi {Pr}0r1 pi. - [0, 1), pi pipi- (). : {rn} [0, 1) rn 1, {Prn}n=1 pi. () pi () Pr pi pi. pi pi .

    2.4.8. 0 r < 1

    (2.4.32)1

    2pi

    pipi

    Pr() d = 1,

    0 < < pi

    (2.4.33) limr1

    |x|pi

    Pr() d = 0.

    pi. 0 r < 1. Pr() =k= r

    |k|eik

    [pi, pi],

    (2.4.34)1

    2pi

    pipi

    Pr() d =

    k=

    r|k|

    2pi

    pipi

    eikd =r0

    2pi

    pipi

    e0d = 1,

    pi pipi e

    ikd = 0 k 6= 0. 0 < < pi 1/2 r < 1. (2.4.35)1 2r cos + r2 = (1 r)2 + 2r(1 cos ) (1 r)2 + 2r(1 cos ) c = 1 cos > 0 || pi ( cos cos ). pi,

    (2.4.36) 0 ||pi

    Pr() d ||pi

    1 r2c

    d 2pic

    (1 r2) 0

    r 1. pi (2.4.33). 2

  • 46 Fourier

    2.4.9 (Abel f). f : T C . 0 r < 1 r-Abel f

    (2.4.37) Ar(f)() =

    k=

    r|k|f(k)eik.

    {|f(k)|} , Weierstrass T. Ar(f)() r-Abel Fourier S[f ] f .

    (2.4.37), pi

    Ar(f)() =

    k=

    r|k|f(k)eik

    =

    k=

    r|k|(

    1

    2pi

    pipi

    f()eikd)eik

    =1

    2pi

    pipi

    f()

    ( k=

    r|k|eik())d

    =1

    2pi

    pipi

    f()Pr( ) d= (f Pr)().

    {Pr} pi, pi . 2.4.10. f : T C . , FourierS[f ] f Abel f f : f x T,

    (2.4.38) Ar(f)(x) f(x).

    pipi, f x T, Fourier S[f ] f Abel f : ,

    (2.4.39) Ar(f) f.

    2.5 Askseic

    1. () {eikx : k Z} C- .

  • 2.5 47

    () pi 0 < 1 < 2 < < n. ei1x, ei2x, . . . , einx

    C- . pi j ;

    2. f : R C 2pi-pi . : a < b R, b

    a

    f(x) dx =

    b+2pia+2pi

    f(x) dx =

    b2pia2pi

    f(x) dx,

    pipi

    f(x+ a) dx =

    pipi

    f(x) dx =

    pi+api+a

    f(x) dx.

    3. f : R C 2pi-pi , Riemann [pi, pi]. :

    () f , f(k) = f(k) k Z S[f ] -.

    () f pi, f(k) = f(k) k Z S[f ] .

    () f(x+ pi) = f(x) x R f(k) = 0 pi k.() f pi pi f(k) = f(k) k Z. , pipi,pi f , .

    4. f : R R 2pi-pi , Riemann [pi, pi]. a R

    a(x) = f(x a). a f . a pi; Fourier a Fourier f .

    5. f : R R 2pi-pi , Riemann [pi, pi]. m N

    gm(x) = f(mx).

    gm f . gm pi; Fourier gm Fourier f .

    6. pi 2pi-pi f : R R pi [0, pi] pi

    f(x) = x(pi x).

  • 48 Fourier

    pi f , pi Fourier f

    f(x) =8

    pi

    k=0

    sin[(2k + 1)x]

    (2k + 1)3.

    7. 0 < < pi. f : [pi, pi] R

    f(x) =

    {1 |x| |x| 0 |x| pi

    pi f

    f(x) =

    2pi+ 2

    k=1

    1 cos kk2pi

    cos kx.

    8. 2pi-pi f : R R pi [pi, pi] pi

    f(x) = |x|.

    pi f , pi Fourier f f(0) = pi/2

    f(k) =1 + (1)k

    pik2, k 6= 0.

    Fourier S[f ] f . x = 0

    k=0

    1

    (2k + 1)2=pi2

    8

    k=1

    1

    k2=pi2

    6.

    9. [a, b] pi pi [pi, pi]. f(x) = [a,b](x) pi [pi, pi] pi f(x) = 1 x [a, b] f(x) = 0, pi 2pi-pi R. Fourier f

    S[f ](x) =b a2pi

    +k 6=0

    eika eikb2piik

    eikx.

    S[f ] pi x R. x R pi S[f ](x) .

  • 2.5 49

    10. f : R C 2pi-pi, pi Cm (m- pi f (m) ). pi C(f) > 0

    |f(k)| C(f)|k|m k Z \ {0}.

    11. f, fn (n N) 2pi-pi, [pi, pi], pipi

    limn

    pipi|f(x) fn(x)| dx = 0.

    fn(k) f(k) n,

    pi k. , > 0 pi n0 N n n0 k Z,

    |fn(k) f(k)| < .

    12. f : R C 2pi-pi -. pi , pi x R pi pi

    f(x) := limtx

    f(t) f(x+) := limtx+

    f(t).

    Fourier S[f ] f Cesa`ro x: pi -,

    limnn(f)(x) = limn(f Fn)(x) =

    f(x) + f(x+)2

    .

    pi pipi pi 2.3.4.

    13. f : R C 2pi-pi -. pi , pi x R pi pi

    f(x) := limtx

    f(t) f(x+) := limtx+

    f(t).

    Fourier S[f ] f Abel x: pi ,

    limr1

    Ar(f)(x) = limr1

    (f Pr)(x) = f(x) + f(x+)

    2.

    pi pipi pi 2.3.4 pi

    1

    2pi

    0pi

    Pr(x) dx =1

    2pi

    pi0

    Pr(x) dx.

  • 50 Fourier

    14. () {qk : k N} (0, 1). F : [0, 1] R

    F (x) =

    k=1

    1

    k2[0,+)(x qk)

    Riemann qk (, pipi [0, 1]).

    () {qk : k N} (0, 1). g(x) = sin 1x x 6= 0 g(0) = 0. G : [0, 1] R

    G(x) =k=1

    1

    3kg(x qk)

    Riemann , qk pi [0, 1].

    15. M > 0 f, g : R C pi pi [M,M ]. f g : R C

    (f g)(x) =

    f(y)g(x y) dy.

    () f g x R (f g)(x) = 0 |x| > 2M .() f g1 f1g1, pi

    u1 := |u(x)| dx.

    16. n N pi Dirichlet

    Dn(x) =

    nk=n

    eikx =sin(n+ 12

    )x

    sin x2.

    : pi c > 0

    Ln :=1

    2pi

    pipi|Dn(x)| dx c log n

    n N.

  • 2.5 51

    [pi: pi |Dn(x)| c sin((n+12 )x)

    |x| , -, pi Ln c npi

    pi

    | sin t||t| dt

    C pi C > 0 pi n.]

    17. Ln 4pi2 log n C1

    pi C1 > 0 pi n.

    18. f : R C 2pi-pi -.

    sn(f) C log(1 + n)f,pi C > 0 pi f pi n.

    19. n N > 0. pi f : T C f = 1

    1

    pi

    pipi|f(x) signDn(x)| dx <

    n,

    pi signu pi u ( sign 0 = 0). pi

    sn(f) Ln .

    20. n N

    Qn(t) = n

    (1 + cos t

    2

    )n,

    pi n pi

    1

    2pi

    pipi

    Qn(t) dt = 1.

    : f : R C 2pi-pi ,

    f Qn f.

    pi pi Weierstrass.

  • 52 Fourier

    21. n N

    Gn(x) = Fn(x) sinnx,

    pi Fn n- pi Fejer. : T Tn pi pi n,

    T (x) = 2n(T Gn)(x)

    x R. pi

    |T (x)| 2nT x R. Bernstein, pi T nT T Tn.

  • Keflaio 3

    Sgklish seirn Fourier

    3.1 Qroi me eswterik ginmeno

    V ( ) pi pi R pi + : V V V ( pi) : R V V( pipi) pi pi :

    1. pi: x, y, z V x+y = y+x x+(y+z) =(x+ y) + z. pi, pi 0 V , x V , 0 +x = x. , x V pi () x V x+ (x) = 0.2. pipi: x, y V , R, (x) =()x, 1x = x, (x+ y) = x+ y (+ )x = x+ x.

    pi , pi,

    0x = 0, 0 = 0, x = (1)x. pi ( , , ). V ( ). , pipi : C V V . pi , V pi pi C.

    pi pi pi R Rd d- pi (x1, x2, . . . , xd). pi ,

    (3.1.1) (x1, x2, . . . , xd) + (y1, y2, . . . , yd) = (x1 + y1, x2 + y2, . . . , xd + yd).

    pi pi pipi R:(3.1.2) (x1, x2, . . . , xd) = (x1, x2, . . . , xd).

  • 54 Fourier

    , Cd d- (z1, z2, . . . , zd) pi pi C pi ,

    (3.1.3) (z1, z2, . . . , zd) + (w1, w2, . . . , wd) = (z1 + w1, z2 + w2, . . . , zd + wd)

    pipi C

    (3.1.4) (z1, z2, . . . , zd) = (z1, z2, . . . , zd).

    3.1.1 ( pi pi R). V pipi R. V , : V V R(pi (x, y) V V pi pi x, y) :

    (i) y, x = x, y x, y V .(ii) ax+ by, z = ax, z+ by, z x, y, z V a, b R.(iii) x, x 0 x V . , V , pi V :

    (3.1.5) x = x, x1/2, x V.

    x 0. , pipi, pi x = 0 pi , , x = 0, , .

    ( ) Rd

    (3.1.6) x, y =di=1

    xiyi = x1y1 + + xdyd,

    pi x = (x1, . . . , xd) y = (y1, . . . , yd). pi

    (3.1.7) x = x, x =x21 + + x2d,

    pi pi pi x y Rd. 3.1.2 ( pi pi C). V pipi C. V , : V V C(pi (x, y) V V pi x, y) :

    (i) y, x = x, y x, y V .

  • 3.1 55

    (ii) ax + by, z = ax, z + by, z x, y, z V a, b C. pi pi , , pi . ,

    x, ay + bz = ax, y+ bx, z

    x, y, z V a, b C.(iii) x, x 0 x V , pi pi pipi. pi V , pi,

    (3.1.8) x = x, x1/2, x V.

    , pipi, pi x = 0 pi , , x = 0, , .

    Cd

    (3.1.9) z, w =di=1

    ziwi = z1w1 + + zdwd,

    pi z = (z1, . . . , zd) w = (w1, . . . , wd) Cd. pi

    (3.1.10) z = z, z =|z1|2 + + |zd|2.

    3.1.3 (). V , , pi pi R C. x y V

    (3.1.11) x, y = 0.

    , x y. , pi pi pi

    :

    1. . x y

    (3.1.12) x+ y2 = x2 + y2.

    pi. pi ,

    x+ y2 = x+ y, x+ y = x, x+ x, y+ y, x+ y, y= x, x+ y, y = x2 + y2,

  • 56 Fourier

    x, y = y, x = 0, x y. 2.2. CauchySchwarz. x, y V ,(3.1.13) |x, y| x y.

    pi. pipi ( pi pi). pi- pi y = 0. x, y = 0 x V , CauchySchwarz ( pipi x V ). t R

    0 x+ ty2 = x2 + ty, x+ tx, y+ ty2 = x2 + 2tRe(x, y), ty = |t| y = 0 y, x+ x, y = 2Re(x, y). Re(x, y) > 0, pi pi t , Re(x, y) < 0, pi pit +. pi, Re(x, y) = 0. , t R

    0 x+ ity2 = x2 + ity, x itx, y+ ity2 = x2 + 2tIm(x, y), ty = |t| y = 0 y, x x, y = 2iIm(x, y). Im(x, y) > 0, - pi pi t , Im(x, y) < 0, pipi t +. pi, Im(x, y) = 0. pipi, pi x, y = 0.

    pi y2 = y, y > 0. t = x, y/y, y pi y (x ty). ,

    x ty, y = x, y ty, y = x, y x, y = 0,pi t. pi ty (x ty). x = (x ty) + ty , pi

    (3.1.14) x2 = x ty2 + ty2 ty2 = |t|2y2.pi, |t| y x pi (3.1.15) |x, y| = |t| y2 x y.

    3. . pi pi pi , pi (3.1.16) x+ y x+ y x, y V .pi. x, y V .

    x+ y2 = x2 + 2Re(x, y) + y2 x2 + 2|x, y|+ y2 x2 + 2x y+ y2 = (x+ y)2,

  • 3.1 57

    pi pi pipi . 2

    pi pi , pi Fourier, `2(Z) R Riemann f : T C. 3.1.4 ( `2(Z)). `2(Z) pi pi C (pi) pi

    (3.1.17) a = (. . . , ak, . . . , a2, a1, a0, a1, a2, . . . , ak, . . .)

    pi

    (3.1.18)

    k=

    |ak|2

  • 58 Fourier

    pi pi pi

    (3.1.20) a, b =

    k=akbk.

    (a, b) 7 a, b (, k= akbk (pi) a, b `2(Z)) pi , . pi `2(Z) . a = 0

    k=

    |ak|2 = 0,

    ak = 0 k Z. pi, a = 0.pi, `2(Z) pi. {a(m)} `2(Z) pi

    , > 0 pi m0 = m0() N a(m) a(s) < m, s m0, {a(m)} -, pi a `2(Z) limm a a(m) = 0. pi . Rd Cd pi pi pi pi pi pi . pi Hilbert.

    3.1.5 ( R). R Riemann - f : T C, , Riemann f : [0, 2pi] C. R , pi (3.1.21) (f + g)() = f() + g()

    pipi

    (3.1.22) (f)() = f().

    R : f, g R,

    (3.1.23) f, g = 12pi

    2pi0

    f()g() d.

    . pi

    (3.1.24) f2 =(

    1

    2pi

    2pi0

    |f()|2d)1/2

    .

    R : f [0, 2pi] pipi pi , f 6= 0, f f2 = 0.

  • 3.2 L2- Fourier 59

    pi, pi pi, R pi. f : [0, 2pi] C

    f() =

    {ln(1/) 0 < 2pi0 = 0

    f , R. {fn}, pi

    fn() =

    {ln(1/) 1n < 2pi0 0 1n

    fn Riemann , pi {fn} R. , pi g R limn g fn = 0. pi .

    3.2 L2-sgklish seirn Fourier

    pi pi pi - 1.2.

    3.2.1. f : T C . ,

    (3.2.1) limn

    1

    2pi

    2pi0

    |f() sn(f)()|2d = 0.

    pi. R f : T C, -

    (3.2.2) f, g = 12pi

    2pi0

    f()g() d

    pi 2 pi pi

    (3.2.3) f22 = f, f =1

    2pi

    2pi0

    |f()|2d.

    ,

    (3.2.4) limn f sn(f)2 = 0.

    k Z ek() = eik pi {ek}kZ . ,

    ek, em ={

    1 k = m0 k 6= m

  • 60 Fourier

    f : T C , ak = f(k) k Z. Fourier f f {ek}kZ:

    (3.2.5) f, ek = 12pi

    2pi0

    f()eikd = ak.

    ,

    (3.2.6) sn(f) =

    nk=n

    akek.

    pi {ek} pi ak =f, ek pi f sn(f) = f

    nk=n akek ek

    |k| n. pi,

    (3.2.7) f sn(f) n

    k=nbkek

    pi bk. pi pi pipi pi.

    , pi bk = ak -pi

    (3.2.8) f = (f sn(f)) + sn(f) =(f

    nk=n

    akek

    )+

    nk=n

    akek,

    pi

    (3.2.9) f22 = f sn(f)22 +

    nk=n

    akek

    2

    2

    .

    , {ek}kZ ,

    (3.2.10)

    n

    k=nakek

    2

    2

    =

    nk=n

    |ak|2,

    pi pi pi

    (3.2.11) f22 = f sn(f)22 +n

    k=n|ak|2.

    pi pi pipi pi (3.2.7) .

  • 3.2 L2- Fourier 61

    3.2.2 ( pi). f : T C Fourier ak. pi ck, |k| n,

    (3.2.12) f sn(f)2 f

    nk=n

    ckek

    2

    .

    pipi, ck = ak |k| n.pi.

    (3.2.13) f n

    k=nckek = (f sn(f)) +

    nk=n

    bkek,

    pi bk = ak ck, .

    (3.2.14)

    f n

    k=nckek

    2

    2

    = f sn(f)22 +n

    k=n|ak ck|2 f sn(f)22,

    nk=n |ak ck|2 = 0, ck = ak |k| n. 2

    3.2.3. : pi Tn pi pi pi n, f R, pi Tn pi f sn(f). pi f pi Tn.

    pi 3.2.1. pi pi pi pi f : T C.

    pi , pipi, f . > 0 n0 N pi p n0 (3.2.15) f p = max

    T|f() p()| < .

    ,

    (3.2.16) f p2 =(

    1

    2pi

    pipi|f() p()|2d

    )1/2(

    1

    2pi

    pipif p2d

    )1/2< .

    pi 3.2.2,

    (3.2.17) f sn0(f)2 f p2 < ., n n0 sn0(f) Tn ( ). pi, pi pi 3.2.2 ( Tn ),(3.2.18) f sn(f)2 f sn0(f)2 < .

  • 62 Fourier

    pi f sn(f)2 0 pipi pi f . pipi, pi f pi , pi

    g g f

    (3.2.19)

    2pi0

    |f() g()| d < pi2

    4(f + 1) .

    ,

    f g22 =1

    2pi

    2pi0

    |f() g()|2d

    12pi

    2pi0

    |f() g()| (|f()|+ |g()|) d

    12pi

    2pi0

    |f() g()| (f + g) d

    2f2pi

    2pi0

    |f() g()| d

    0

    (3.4.7) |sn(f)(x)| M

    n N x T. pi 3.4.3 pi

    Cesa`ro S[f ], pi pi .

    3.4.4. f : T C .

    (3.4.8) supnn(f) f < +.

    ,

    (3.4.9) |n(f)(x)| f n N x T.pi. n N x T

    |n(f)(x)| = |(f Fn)(x)| = 12pi

    pipi

    f(x t)Fn(t) dt

    12pi

    pipi|f(x t)Fn(t)| dt

    =1

    2pi

    pipi|f(x t)|Fn(t) dt

    f 12pi

    pipi

    Fn(t) dt = f.

  • 3.4 Fourier pi pi 69

    pi pi pi Fn pi pi . 2

    pi 3.4.3. pi pi, pi M > 0

    (3.4.10) |kf(k)| M k Z. n N x T.

    sn(f)(x) n+1(f)(x) =n

    k=nf(k)eikx

    nk=n

    (1 |k|

    n+ 1

    )f(k)eikx

    =

    nk=n

    |k|n+ 1

    f(k)eikx.

    pi

    (3.4.11) |sn(f)(x) n+1(f)(x)| n

    k=n

    |kf(k)|n+ 1

    (2n+ 1)Mn+ 1

    2M.

    , pi 3.4.4 pi

    |sn(f)(x)| |sn(f)(x) n+1(f)(x)|+ |n+1(f)(x)| 2M + f. 2

    3.4.3 Fourier f 3.4.2.

    (3.4.12)k 6=0

    eikx

    k

    Fourier |kf(k)| 1 k Z. pi, pi M > 0 , x T n N,

    (3.4.13)

    1|k|n

    eikx

    k

    = |sn(f)(x)| M. :

    3.4.5. n N pi

    (3.4.14) fn(x) =

    1|k|n

    eikx

    k.

    pi M > 0 |fn(x)| M n x. 2

  • 70 Fourier

    (3.4.15)

    1k=

    eikx

    k.

    3.4.3 pi pi pi g : T C

    (3.4.16) S[g](x) =

    1k=

    eikx

    k.

    , pi g, pi |kg(k)| 1 pi, pi pipi 3.4.5,

    (3.4.17) supnsn(g) < +.

    , {sn(g)(0)} pipi . ,

    (3.4.18) |sn(g)(0)| =1

    k=n

    1

    k

    = 1 + 12 + + 1n c log n pi c > 0 pi n. , |sn(g)(0)| + - pi.

    pi pi. , :

    3.4.6. n N pi

    (3.4.19) gn(x) =

    1k=n

    eikx

    k.

    pi c > 0 |gn(0)| c log n n N. 2pi 3.4.1. pi - pi {fn} {gn} .() n N

    (3.4.20) pn(x) = ei2nxfn(x) =

    1|k|n

    ei(k+2n)x

    k.

    pn ( m N pi pn(m) 6= 0)pi [n, 3n]. pi, x,

    (3.4.21) |pn(x)| = |ei2nxfn(x)| = |fn(x)| M,

  • 3.4 Fourier pi pi 71

    pi 3.4.5., n N

    (3.4.22) qn(x) = ei2nxgn(x) =

    1k=n

    ei(k+2n)x

    k.

    qn pi [n, 2n]. pi,

    (3.4.23) |qn(0)| = |gn(0)| c log n,pi 3.4.6. , pi

    (3.4.24) s2n(pn) = qn.

    () {ak}k=1 pi k=1 ak

    . pi, pi {Nk} , pi pi :

    (i) Nk+1 > 3Nk k 1.(ii) ak logNk + k .

    pi, pi pi ak = 1k2 Nk = 32k , k = 1, 2, . . ..

    () , f : T C :

    (3.4.25) f(x) =

    k=1

    akpNk(x).

    pi Weierstrass, -: rk(x) = akpNk(x),

    (3.4.26) rk = akpNk Mak,

    (3.4.27)

    k=1

    rk = Mk=1

    ak < +.

    rk ( pi), f .

    () , m N,

    (3.4.28) s3Nm(f)(x) =

    mk=1

    akpNk(x),

    , pi (3.4.24),

    (3.4.29) s2N1(f)(x) = a1qN1(x)

  • 72 Fourier

    , m 2,

    (3.4.30) s2Nm(f)(x) =

    m1k=1

    akpNk(x) + amqNm(x).

    , x = 0,

    |s2Nm(f)(0)| =m1k=1

    akpNk(0) + amqNm(0)

    am|qNm(0)|

    m1k=1

    ak|pNk(0)|

    cam logNm Mm1k=1

    ak

    cam logNm Mk=1

    ak.

    pi am Nm, am logNm + m . k=1 ak < +, pi

    (3.4.31) |s2Nm(f)(0)| +.

    , lim sup |sn(f)(0)| = +. , S[f ](0) pi. 2

    3.5 Askseic

    1. `2(Z) pi.

    2. R f : T C

    f2 =(

    1

    2pi

    2pi0

    |f(x)|2dx)1/2

    .

    () , f R f2 = 0, f(x) = 0 x pi f .

    () , f pi 0 pi , f2 = 0.

  • 3.5 73

    3. f : [0, 2pi] C

    f() =

    {ln(1/) 0 < 2pi0 = 0

    f R. {fn},pi

    fn() =

    {ln(1/) 1n < 2pi0 0 1n

    fn Riemann {fn} R, pi g R limn g fn2 = 0.

    4. {ak}k=

    ak =

    {1k k 10 k 0

    {ak}k= `2(Z) pi f R f(k) = ak k Z.

    5. pi f : [pi, pi] R f(x) = |x| Parseval,

    k=0

    1

    (2k + 1)4=pi4

    96

    k=1

    1

    k4=pi4

    90.

    pi 2pi-pi pi g : [pi, pi] R g(x) = x(pix) [0, pi] Parseval,

    k=0

    1

    (2k + 1)6=

    pi6

    960

    k=1

    1

    k6=

    pi6

    945.

    6. : / Z, Fourier

    f(x) =pi

    sinpiei(pix)

    [0, 2pi],

    k=

    eikx

    k + .

  • 74 Fourier

    Parseval, pi

    k=

    1

    (k + )2=

    pi2

    sin2(pi).

    7. pi {fn} fn : [0, 2pi] R

    limn

    1

    2pi

    2pi0

    |fn(x)|2dx = 0,

    x [0, 2pi] {fn(x)} .

    8.

    k=2

    sin kx

    ln k

    x R Fourier pi Riemann .

    9. f : T C pi . Fourier f pi.

    10. () f : T C k 6= 0.

    f(k) = 12pi

    pipi

    f(x+ pi/k)eikxdx,

    pi

    f(k) =1

    4pi

    pipi

    [f(x) f(x+ pi/k)]eikxdx.

    () pi f pi Holder |f(x + h) f(x)| C|h| pi 0 < 1, pi C > 0 x, h. pi () pi M > 0

    |k||f(k)| M k Z.() , 0 < < 1,

    f(x) =

    k=0

    2kei2kx

  • 3.5 75

    pi Holder (),

    f(k) =1

    k k = 2s, s N.

    11. () f, g : T C pi . pi 2pi0g(t) dt = 0. 2pi

    0

    f(t)g(t) dt

    2 2pi0

    |f(t)|2dt 2pi0

    |g(t)|2dt.

    () f : [a, b] C pi f(a) = f(b) = 0. b

    a

    |f(t)|2dt (b a)2

    pi2

    ba

    |f (t)|2dt.

    12. 0

    sin t

    tdt =

    pi

    2.

    13. f : R C 2pi-pi, pi pi Lipshitz

    |f(x) f(y)| K|x y|

    x, y R, pi K > 0 .() t > 0 gt(x) = f(x+ t) f(x t).

    1

    2pi

    2pi0

    |gt(x)|2dx =

    k=4| sin kt|2|f(k)|2

    pi

    k=| sin kt|2|f(k)|2 K2t2.

    () p N. pi t = pi/2p+1,

    2p1

  • 76 Fourier

    () 2p1 0

    |f(k)| Mk

    k Z \ {0}.15. {k} k 0. pi f : T C : pi k Z,

    |f(k)| k.

    16. pi Dirichlet pi

    Dn(x) =|k|n

    sign(x)eikx,

    pi sign(x) pi x.

    ()

    Dn(x) =cos(x/2) cos((n+ 1/2)x)

    sin(x/2) pi

    pi|Dn(x)| dx c log n.

    () : f : T C , (f Dn)(0) C log n.

    () , 0 < < 1, k=1

    sin(kx)

    k

    x, Fourier pi .

    17. > 1/2 f : R C 2pi-pi, pi pi Holder

    |f(x) f(y)| K|x y| x, y R, pi K > 0 . Fourier f pi, .

  • Mroc II

    Oloklrwma Lebesgue

  • Keflaio 4

    Mtro Lebesgue

    4.1 Eisagwg

    Riemann pi : fn, f : [a, b] R. pi fn Riemann fn f , pi pi pi

    (4.1.1)

    ba

    fn(x)dx ba

    f(x)dx

    ( pi pi (fn) f ). , pi pi

    pi f Riemann : , pi fn f . 4.1.1. Dirichlet f = Q : [0, 1] R.,

    f(x) =

    1, x Q [0, 1]0, x / Q [0, 1].

    f Riemann . {q1, q2, . . . , qn, . . .} Q [0, 1], fn : [0, 1] R

    fn(x) =

    1, x {q1, . . . , qn}0, x / {q1, . . . , qn},

    fn f [0, 1] fn Riemann , pipi pi .

  • 80 Lebesgue

    Riemann - pi Riemann pi: pi - pi .pipi, pi pi (-) pi Riemann (pi, Dirichlet Q).

    pi , f : [a, b] R Rie-mann pi. , pi pi -pi Riemann: f , pi P = {a = x0 < x1 < < xn = b} [a, b] pi

    (4.1.2) U(f, P ) L(f, P ) =n1k=0

    (Mk mk)(xk+1 xk)

    pipi . f pi pi .

    Lebesgue pi pi pi pi . A R f : A R. pi, pi, f f(x) 0 x A, m = inf(f), M = sup(f). (4.1.3) {m = y0 < y1 < < yn = M} pi [m,M ], f pi pi

    (4.1.4)

    n1k=0

    yk `(Bk)

    pi `(Bk)

    (4.1.5) Bk = {x A | yk f(x) < yk+1}. pi pi, pipi pipi pi ( Bk pi pipi pi pi ).

    Lebesgue pi -, pi 1902. Lebesgue pi :

    (i) pi Riemann .

    (ii) pi .

    (iii) pipi pi pi pi , pi pi.

  • 4.2 Lebesgue 81

    4.2 Exwterik mtro Lebesgue

    pi A R, A R (A) ( +). :

    (i) ([a, b]) = b a.(ii) (A+ x) = (A) x R.(iii) (An) pi R,

    (4.2.1)

    ( n=1

    An

    )=

    n=1

    (An)

    ( pi).

    pi , pi. pi pipi pi ,pi ( pi) pi pi pi

    (4.2.2) (A B) = (A) + (B) A,B R A B = . pi : pi pi , pi pi R pi pi pi (i), (ii) (iii). . .

    1. Lebesgue A R (A) 0 +, A.

    I = (a, b) . I

    (4.2.3) `(I) := b a. A R (In) pipi pi A n In, (In) A. (In) A,

    n `(In) pi pi

    A.

    (4.2.4) (A) n

    `(In)

    A. , .

  • 82 Lebesgue

    4.2.1 ( Lebesgue). A R. A

    (4.2.5) (A) = inf{

    n

    `(In) : (In) A

    }.

    4.2.2. () pi, `() = 0 , pi pi -. (In) A pi pipi pi () , pi pi pi pipi pi . , (In)n=1 ,

    n=1 `(In) ,

    (4.2.6) (A) = inf

    { n=1

    `(In) | A n=1

    In, In }.

    () inf{+} = +. ,

    (4.2.7) A n=1

    In =n=1

    `(In) = +,

    (A) = +.() pipi , A R +. , pi R , In = (n, n), n = 1, 2, . . ..

    2. Lebesgue pi pi Lebesgue.

    4.2.3. A B, (A) (B).

    pi. B n=1 In, A n=1 In. ,(4.2.8)

    {n

    `(In) : (In) A

    }{

    n

    `(In) : (In) B

    },

    pi pi pi (A) (B). 2

    4.2.4. A pipi pi , (A) =0.

  • 4.2 Lebesgue 83

    pi. A = {x1, x2, . . .}. > 0

    (4.2.9) In =(xn

    2n+1, xn +

    2n+1

    ).

    , A n In (4.2.10)

    n

    `(In) =n

    2n .

    > 0 , pi (A) = 0. 2

    4.2.5. (A+ x) = (A) x R.pi. A n=1 In, A+ x n=1 Jn, pi Jn = In + x. `(I + x) = `(I) = b a I = (a, b). pi,

    (4.2.11) (A+ x) n

    `(Jn) =n

    `(In).

    infimum pi (In) A, pi

    (4.2.12) (A+ x) (A).

    pi pi. 2

    4.2.6. ([a, b]) = b a.pi. > 0 [a, b] I := (a , b+ ). ,

    (4.2.13) ([a, b]) `(I) = (b a) + 2.

    pi, ([a, b]) b a. pipi (In) [a, b]

    pi ,

    (4.2.14) b a n=1

    `(In).

    1: [a, b] n=1 In. [a, b] pi, pi Heine-Borel pi pipi pi (In): pi k N

    (4.2.15) [a, b] I1 I2 Ik.

  • 84 Lebesgue

    2: [a, b] (c1, d1) (ck, dk).

    (4.2.16) b a b,

    (4.2.17) b a < dn1 cn1 k

    n=1

    (dn cn).

    dn1 b, dn1 (a, b], pi n2 dn1 (cn2 , dn2). dn2 b, dn2 (a, b], pi n3 dn2 (cn3 , dn3). , pi ns b < dns ( pipi (cn, dn):pi n cn < b < dn).

    pi n1, . . . , ns cn1 < a, b < dns

    (4.2.18) cn2 < dn1 < dn2 , cn3 < dn2 < dn3 , . . . , cns < dns1 < dns .

    ,

    kn=1

    (dn cn) (dns cns) + (dns1 cns1) + + (dn2 cn2) + (dn1 cn1)

    (dns cns) + (cns cns1) + + (cn3 cn2) + (cn2 cn1)= dns cn1> b a.

    pi 1 2 pipi

    (4.2.19) b a 0, pi

    ((a, b)

    )= b a. 2

  • 4.3 85

    4.2.9. ((a,+)) = +.

    pi. N N (a,+) (a, a+N), (4.2.21)

    ((a,+)) a+N a = N.

    , ((a+)) = +. 2

    4.2.10 ( pipi ). pipi pi (An) pi R

    (4.2.22) (

    n

    An

    )n

    (An).

    pi. + pi .pi pi

    n (An) < +. > 0 pi

    (Js) nAn pi ,

    s `(Js) 0,

    (4.4.8)

    n=1

    `(In) + (X [a,+)) + (X (, a)).

  • 4.4 Lebesgue 91

    > 0. n N (4.4.9) I n = In (a,+) , I n = In (, a),

    (4.4.10) I0 =(a

    2, a+

    2

    ).

    pi I n, In , ( )

    (4.4.11) `(In) = `(In) + `(I

    n).

    pi,

    (4.4.12) X [a,+) I0 n=1

    I n

    (4.4.13) X (, a) n=1

    I n .

    ,

    (X [a,+)) + (X (, a)) `(I0) +n=1

    `(I n) +n=1

    `(I n)

    = +

    n=1

    (`(I n) + `(I

    n))

    = +

    n=1

    `(In).

    pi J = [a,+) .() J = (a,+),

    (a,+) =n=1

    [a+ 1/n,+)

    pi 4.3.10 (), pi J M.() (, a) (, a] pi .() pi [a, b], [a, b), (a, b] (a, b) . pi,

    (4.4.14) [a, b] = R \ ((, a) (b,+)) [a, b] pi (, a)(b,+).2

  • 92 Lebesgue

    4.4.5 (Borel -). - pi R pipi - Borel pi R (Borel -) B. ,

    (4.4.15) B ={A P (R) | A A pi }.

    pi Borel -, pi M - pi 4.4.4 pi Borel pi R :

    4.4.6. B M. 2 4.4.7. pi R Borel, .

    pi. pi R - ( pi ). B - pi , B pi , , . 2

    4.4.8. () Borel - pi pi pi pi pi R. ( G-) Borel , ( F-) Borel , .

    () M pi B Borel : pi pi Borel. pi pi pi Borel 0 (, ). pi pi .

    () pi pi, pi pi Borel , :

    4.4.9. A R. :(i) A .

    (ii) > 0 pi G R A G (G \A) < .(iii) pi G- B A B

    (B \A) = 0.

    pi. (i) (ii). pi A , , (A) < +. > 0. pi (A) = (A), pi (In) A

    n In

    (4.4.16)n

    (In) =n

    `(In) < (A) + .

  • 4.4 Lebesgue 93

    G =n In. G , A G

    (4.4.17) (A) (G) = (

    n

    In

    )n

    (In) < (A) + .

    A G , G \A (4.4.18) (G) = (A (G \A)) = (A) + (G \A)pi 4.3.7. pi,

    (4.4.19) (G \A) = (G \A) = (G) (A) < ,pi (4.4.17).

    (A) = +. > 0. n N An = A(n, n). An , (An) < + A =

    nAn. pipi pi

    pipi, n N Gn An Gn (Gn \ An) < /2n. G =

    nGn. , G ,

    G =nGn

    nAn = A

    (4.4.20) G \A =(

    n

    Gn

    )\(

    n

    An

    )n

    (Gn \An).

    pi,

    (4.4.21) (G \A) (

    n

    (Gn \An))n

    (Gn \An) 0. ,

    (4.6.2) AA := {x y | x A, y A}

    A pi (t, t) pi t > 0.pi. pi pi 0 < (A) 0 pi G A (G) < (1 + )(A). pi G G =

    k=1 Ik pipi .

    Ak = A Ik. ,

    (4.6.3) (G) =

    k=1

    `(Ik) (A) =k=1

    (Ak).

    pi (G) < (1 + )(A) pi : pi k N

    (4.6.4) `(Ik) (1 + )(A Ik).

  • 100 Lebesgue

    = 1/3 pi pi I

    (4.6.5) (A I) 3`(I)4

    .

    t = `(I)2 .

    (4.6.6) (A I) (A I) (t, t).

    , pi s (t, t) A I (A I) + s . , pi I (I + s), pi `(I) + |s|.pi

    (4.6.7) 2(A I) = (A I) + ((A I) + s) `(I) + s < 3`(I)2

    ,

    (AI) < 3`(I)4 , pi pi. pi AA (AI)(AI) (t, t).2

    4.6.2. pi E R.pi. R :

    (4.6.8) x y x y Q.

    R

    (4.6.9) Ex = {y R | y = x+ q pi q Q}.

    X = {Xa | a A} -, pi pi E = {ya | a A} R pi pi ya pi Xa. , a 6= b A ya yb / Q.

    {qn : n N} Q

    (4.6.10) En := E + qn, n N.

    En pi :

    (i) n 6= m En Em = . , pi ya, yb E ya + qn =yb + qm, 0 6= ya yb = qm qn Q, pi pi pi pi E.

    (ii) R =n=1En. , x R pi a A x Xa.

    x = ya + q pi q Q. , pi n = n(x) N q = qn,, x = ya + qn En.

  • 4.6 101

    pi E . , En = E + qn n N (En) = (E). pi En pi pi , pi

    (4.6.11) + = (R) =n=1

    (En) =

    n=1

    (E).

    pi, (E) > 0. pi Steinhaus, E E pi (t, t) pi t > 0. pi, E E pi pi pi 0: x 6= y E x y , pi pi E. pi E . 2

    4.6.3. pi pi pi A R (A) > 0 pi. pi En pi (4.6.10)

    (4.6.12) A =

    n=1

    (A En),

    pi A En

    (4.6.13) 0 < (A) =

    n=1

    (A En).

    pi, pi n N (AEn) > 0 pi Steinhaus AEnA En, En En, pi (t, t) pi t > 0. pi.

    4.6.4. pi, pi pi, pi pi E [0, 1], pi Steinhaus. [0, 1] :

    (4.6.14) x y x y Q.

    , , x y [1, 1]. [0, 1] -

    (4.6.15) Ex = {y [0, 1] | y = x+ q pi q [1, 1] Q}.

    X = {Xa | a A} -, pi pi E = {ya | a A} [0, 1] pi pi ya pi Xa. , a 6= b A ya yb / Q.

  • 102 Lebesgue

    {qn : n N} Q [1, 1]

    (4.6.16) En := E + qn, n N. En pi :

    (i) En [1, 2].(ii) n 6= m En Em = .(iii) [0, 1] n=1En. , x [0, 1] pi a A x Xa.

    x = ya+q pi q Q[1, 1]. , pi n = n(x) N q = qn, , x = ya + qn En.

    pi E . , En = E+qn n N (En) = (E). pi En pi pi , pi

    (4.6.17) 1 = ([0, 1]) ( n=1

    En

    )=

    n=1

    (En) =

    n=1

    (E) 3,

    pi pi 0 ( (E) = 0) +( (E) > 0). pi, E .

    4.7 Askseic

    1. () A R t R. (A) = (A+ t)

    ( pi ).

    () pipi A , A+ t .

    2. () A pi R. (A) < +.() A R . (A) > 0.

    3. () A,B R (B) = 0, (A B) = (A).() A,B R (A4B) = 0, (A) = (B) ( A4B (A \B) (B \A) A B).

    4. () A R t R. tA tA = {tx | x A}. (tA) = |t| (A).

  • 4.7 103

    () f : B R R Lipschitz C, |f(x) f(y)| C|x y| x, y B.

    (f(A)) C(A)

    A B.() A R (A) = 0. A = {x2 | x A} pi (A) = 0.

    pi: pi pipi pi A [M,M ] pi M > 0.

    5. E R 0 < (E) < + 0 < < 1. pi I

    (E I) > `(I).pi: pi , > 0, Ik E

    k=1 Ik

    k=1 `(Ik) <

    (E) + .

    6. A > 0 (A I) `(I) . (Ac) = 0.

    7. A,B R

    dist(A,B) = inf{|x y| : x A, y B} > 0.

    (A B) = (A) + (B).

    8. A R 0 < (A) < +.() f : R R f(x) = (A (, x]) .() pi F F A (F ) = (A)/2.

    9. A R. :(i) A .

    (ii) > 0 pi F R F A (A \ F ) < .(iii) pi F- A

    (A \ ) = 0.

    10. (An) pi R.

    lim supAn = {x R | x An pi n}

  • 104 Lebesgue

    lim inf An = {x R | pi n0(x) N x An n n0(x)}.

    lim supAn =

    n=1

    k=n

    Ak lim inf An =n=1

    k=n

    Ak.

    11. (An) pi R. :() lim supAn lim inf An .

    () (lim inf An) lim inf (An) (n=1An) < +

    lim sup(An) (lim supAn).

    () n=1 (An) < +, (lim supAn) = 0.

    12. Borel : Q, R\Q,[0, 1] \Q, C + 1, 2C, pi C Cantor.

    13. A pi X pi X A pi pi : X A \X . X -.

    14. 1/4 Cantor.

    15. pi pi :

    (i) A R (A) = 0, A pipi pi .

    (ii) A R A , (A) > 0.

    (iii) A,B R, (A) < +, B A, B (B) = (A), A .

    (iv) A [a, b]. , (A) = 0 pi A pi (In)

    n=1 `(In) < + x A

    pi pi pi In.

    (v) A R (A) = 0 pi A .

  • 4.7 105

    16. A [a, b] (A) > 0. pi x, y A x y R \Q.

    17. () A (A4B) = 0, B (B) =(A).

    () A,B ,

    (A B) + (A B) = (A) + (B).

    () A,B , A B (A) = (B) < +, (B \A) = 0.() pi A,B A B (A) = (B), (B \A) > 0.18. A = {x [0, 2pi] | sinx < 1/n}. pi (n=1En) limn (En).19. f : R R.

    A = {x R | f x}

    Borel.pi: pi

    A =

    nk=1

    n=1

    {x R | diam[f(x 1/n, x+ 1/n)] < 1

    k

    }.

    20. fn : R R .

    B = {x R | limn fn(x) = +}

    Borel.

    21. f : R R . Borel B R f1(B) Borel.

    pi: A = {A R | f1(A) Borel}.

    22. x [0, 1) (x1, x2, x3, . . .) pi x( x pi pi pi ). pi :

    (i) A1 = {x [0, 1) | x1 6= 5}.(ii) A2 = {x [0, 1) | x1 6= 5 x2 6= 5}.

  • 106 Lebesgue

    (iii) A3 = {x [0, 1) | n = 1, 2, . . . , xn 6= 5}.

    23. (0, 1). pi Cantor n- /3n pi pi pi (n 1)- . C pi Cantor. :

    () C pi .() C pi.() C (C) = 1 > 0.

    24. {qn}n=1 Q [0, 1]. > 0

    A() =

    n=1

    (qn

    2n, qn +

    2n

    ).

    , A = j=1A(1/j).() (A()) 2.() < 12 [0, 1] \A() .() A [0, 1] (A) = 0.() Q [0, 1] A A pi.

    25. {An} Lebesgue pi [0, 1]

    lim supn

    (An) = 1.

    : 0 < < 1 pi pi {Akn} {An}

    (n=1Akn) > .

    26. E Lebesgue pi R (E) < . {An} Lebesgue pi E c > 0 (An) c n N.() (lim supAn) > 0.

    () pi {kn} n=1

    Akn 6= .

  • 4.7 107

    27. E Lebesgue pi R (E) > 1. pix 6= y E x y Z.

    28. E pi R. Lebesgue E

    (E) = sup{(F ) : F E,F }.() (E) (E).() pi (E) < . E Lebesgue (E) = (E).() (E) = () pi .

    29. A M x R

    (A, x) = limt0+

    (A (x t, x+ t))2t

    ,

    pi. (A, x) pi A x.

    () (Q, x) = 0 (R \Q, x) = 1 x R.() 0 < < 1. A R (A, 0) = .

    30. pi {En}n=1 pi R

    (n=1En) 0 (J \ E) > 0.

    33. A pi R (A) > 0. , n N, Api pi n.

  • Keflaio 5

    Metrsimec sunartseic

    5.1 Metrsimec sunartseic

    pi pi Lebesgue pi pi pi A R pi [,+] pi . pi 4.1, f : A R pi

    Af pi

    (5.1.1)

    n1k=0

    yk({x A | yk f(x) < yk+1}),

    pi {y0 < y1 < < yn} pi f . pi pipi

    (5.1.2) Bk = {x A : yk f(x) < yk+1} . pi pi pi f : A [,+] pi (5.1.3) {x A : a f(x) < b} . .

    5.1.1 (Lebesgue ). A Lebesgue pi- R f : A R. f Lebesgue , pi, a R (5.1.4) {x A : f(x) > a} = f1((a,+)) .

  • 110

    pi (a,+) 5.1.1 pi pi pipi .

    5.1.2. A pi R f : A R. :

    (i) f .

    (ii) a R {x A : f(x) a} = f1([a,+)) .(iii) a R {x A : f(x) < a} = f1((, a)) .(iv) a R {x A : f(x) a} = f1((, a]) .pi. (i) (ii)

    (5.1.5) {x A : f(x) a} =n=1

    {x A : f(x) > a 1

    n

    }.

    (ii) (iii) (5.1.6) {x A : f(x) < a} = A \ {x A : f(x) a}.(iii) (iv)

    (5.1.7) {x A : f(x) a} =n=1

    {x A : f(x) < a+ 1

    n

    }.

    (iv) (i) (5.1.8) {x A : f(x) > a} = A \ {x A : f(x) a}. , , (i)-(iv) pipi pi pi-pi . 2

    5.1.3. A pi R f : A R . , f . {x A : f(x) = a}, a R.pi. pi pi 5.1.2. pi, J = [a, b]

    (5.1.9) f1(J) = {x A : a f(x) b} = {x A : f(x) a} {x A : f(x) b} . , a R,

    (5.1.10) {x A : f(x) = a} =n=1

    {x A : a 1

    n< f(x) < a+

    1

    n

    } . 2

  • 5.1 111

    5.1.4 (Borel ). A Borel R f : A R. f Borel , a R,

    (5.1.11) {x A : f(x) > a} = f1((a,+))

    Borel. 5.1.2 5.1.3 Borel (pi pi ).

    5.1.5. () A pi R f : A R . , f . , a R {x A : f(x) > a} A, AU pi pi U R. pi, .() A : R R A . ,

    (5.1.12) {x R : A(x) > a} =

    R, a < 0

    A, 0 a < 1

    , a 1,, pipi. , Dirichlet Q .

    () A pi R. f : A R . a R {x A : f(x) > a} A , .

    pi. pi f . a R. T = {x A :f(x) > a} t := inf T .(i) t = T = A. , x A pi y T y < x. y A f(y) > a, f pi y < x pi f(x) f(y) > a, x T . , pipi T = A .(ii) t R pipi: t T : t A f(t) > a. , T = A [t,+).

    , x A x t f(x) f(t) > a, x T . , x T x A x t t T .

    t / T : T = A (t,+). , x A x > t ( infimum) pi y T t < y < x f(x) f(y) > a, x T . , x T x A x > t t T T .

    pipi T = {x A : f(x) > a} A . 2

  • 112

    5.1.6 (pi ). A pi- R f, g : A R . ,

    (i) f + g .

    (ii) R, f .(iii) fg .

    (iv) f(x) 6= 0 x A, 1/f .(v) max{f, g}, min{f, g} |f | .

    pi. (i) a R. f(x) + g(x) < a, f(x) < a g(x). , pi q

    (5.1.13) f(x) < q < a g(x).pi

    {x A : f(x) + g(x) < a} =qQ{x A : f(x) < q g(x) < a q}

    =qQ

    ({x A : f(x) < q} {x A : g(x) < a q}) ,

    .

    (ii) a R. > 0, (5.1.14) {x A : f(x) > a} = {x A : f(x) > a/}, . < 0,

    (5.1.15) {x A : f(x) > a} = {x A : f(x) < a/}, . pipi, f ( = 0, pi).

    (iii) pi f2 . a < 0,

    (5.1.16) {x A : f2(x) > a} = A, a 0, (5.1.17) {x A : f(x)2 > a} = {x A : f(x) > a} {x A : f(x) < a}. pipi, {x : f2(x) > a} . , fg ,

    (5.1.18) fg =(f + g)2 (f g)2

    4.

  • 5.1 113

    (iv) a = 0, {x A : 1/f(x) > 0} = {x A : f(x) > 0}. a > 0,

    (5.1.19) {x A : 1/f(x) > a} = {x A : 0 < f(x) < 1/a}.

    , a < 0

    (5.1.20) {x A : 1/f(x) > a} = {x A : f(x) > 0} {x A : f(x) < 1/a}.

    pipi, {x A : 1/f(x) > a} .(v) a R

    (5.1.21) {x A : max{f, g}(x) > a} = {x A : f(x) > a} {x A : g(x) > a}

    (5.1.22) {x A : min{f, g}(x) < a} = {x A : f(x) < a} {x A : g(x) < a}.

    , max{f, g} min{f, g} . , |f | = max{f,f} . 2

    R

    pi pi R = [,] = R {}.pi R R < x < + x R pi R Rpi (pi) [, a), [, a], (a,+], [a,+] (pia R) [,+], [,+), (,+].

    pi + [, a) (a,+] -. pi R pi pi R. pipi pi (+) (+), 0 (), ()/0, ()/(). f : A R, piA pi R, pi .

    pi pipi - R.

    5.1.7. A Lebesgue pi R f : A R. f Lebesgue , pi , a R

    (5.1.23) {x A : f(x) > a} = f1((a,+))

    .

    pi pi (pi) ( pi pi pi

  • 114

    pi pi pi pipi). , f :A R ,

    (5.1.24) {x A : f(x) = +} =n=1

    {x A : f(x) > n}

    (5.1.25) {x A : f(x) = } =n=1

    {x A : f(x) < n}

    .

    pi

    A pi R. P (x) pi A Z x A pi P (x) . pi , pipi .

    5.1.8. A pi R f, g : A R - f(x) = g(x) pi A. f , g .

    pi. B = {x A : f(x) = g(x)} Z = {x A : f(x) 6= g(x)}. (Z) = 0, Z , B = A \ Z .

    a R. ,{x A : g(x) > a} = {x B : g(x) > a} {x Z : g(x) > a}

    = {x B : f(x) > a} {x Z : g(x) > a}=

    (B {x A : f(x) > a}) {x Z : g(x) > a}.

    B {x A : f(x) > a} B {x A :f(x) > a} f . {x Z : g(x) > a} pi 0. , {x A : g(x) > a} .

    a R , g . 2

    pi .

    5.1.9. A pi R (fn) - fn : A [,+]. ,

  • 5.1 115

    (i) supnfn inf

    nfn .

    (ii) (fn) , f : A [,+] f(x) :=limn fn(x) .

    pi. (i) a R

    (5.1.26) {x A : supnfn(x) > a} =

    n=1

    {x A : fn(x) > a}

    ,

    (5.1.27) {x A : infnfn(x) < a} =

    n=1

    {x A : fn(x) < a}

    . , supnfn inf

    nfn .

    (ii) , (an) pi

    (5.1.28) lim supn

    an = infmN

    (supkm

    ak

    ) lim inf

    nan = sup

    mN

    (infkm

    ak

    ).

    bm = supkm ak lim supn

    an, m =

    infkm ak lim infn

    an.

    pipi ,

    (5.1.29) gm(x) = supkm

    fk(x) hm(x) = infkm

    fk(x),

    , pi (i), gm, hm ,

    (5.1.30) f(x) = infmgm(x) = sup

    mhm(x).

    , pi pi (i), f . 2

    : pi (ii) : (fn) pipi - fn : A [,+], lim supn fn lim infn fn pi pi

    (5.1.31) lim supn

    fn(x) = infmN

    (supkm

    fk(x)

    ) lim inf

    nfn = sup

    mN

    (infkm

    fk(x)

    ),

    . 2

    pi pi pi 0 .

  • 116

    5.1.10. A pi R f : A [,+]. fn : A [,+] fn(x) f(x) pi A, f .

    pi. B = {x A : fn(x) f(x)}. Z = A \ B, (Z) = 0 B .

    a R. , {x B : f(x) > a} pi 5.1.9 fn f B, {x Z : f(x) > a} pi Z (pi 0). ,

    (5.1.32) {x A : f(x) > a} = {x B : f(x) > a} {x Z : f(x) > a}

    . a R , g . 2

    5.2 H sunrthsh CantorLebesgue

    Cn pi pi C Cantor. n N fn : [0, 1] [0, 1] . Jn1 , . . . , Jn2n1 pi [0, 1] \Cn, fn(0) = 0,fn(1) = 1, fn(x) = k2n x J

    nk , pi pi

    pi Cn pi . pi, C1 = [0, 1/3] [2/3, 1]. f1 1/2

    (1/3, 2/3), [0, 1/3] f(0) = 0 f(1/3) = 1/2, [2/3, 1] f(2/3) = 1/2 f(1) = 1. , [0, 1] \ C2 pi pi : (1/9, 2/9) f2 1/4, (1/3, 2/3) f2 1/2, (7/9, 8/9) f2 3/4, pi C2 pi , pi f2(0) = 0 f2(1) = 1.

    5.2.1 ( Cantor-Lebesgue). {fn}n=1 - f : [0, 1] [0, 1]. f pi [0, 1]. C f (f(C)) = 1.

    pi. pi {fn} :(i) fn , fn(0) = 0 fn(1) = 1.

    (ii) Jnk pi pi pi n- C, fn Jnk ,

    fn fn+1 fn+2

    Jnk .

  • 5.2 CantorLebesgue 117

    (iii)

    fn+1 fn 12n, n = 1, 2, 3, . . . .

    pi {fn} C[0, 1]: m > n

    (5.2.1) fm fn m1k=n

    fk+1 fk m1k=n

    1

    2k 1

    2n1 0

    m,n. C[0, 1] pi pi , pi f : [0, 1] R fn f .

    , fn f [0, 1]. fn fn(0) = 0 fn(1) = 1, pi f , f(0) = 0 f(1) = 1. , f pi [0, 1].

    , f(C) = [0, 1]. , pi {fn} pi f J pi C, pi J pi C. f pi [0, 1], y [0, 1] f(x) pi x C. pi f(C) = [0, 1] (f(C)) = 1. 2

    . ([0, 1] \ C) = 1 f (x) = 0 x / C. , x / C x pi J pi f .pi, f pi x f (x) = 0. , f pi , pi pi f pi [0, 1] pi [0, 1].

    pi CantorLebesgue, pi pi -pi pi Borel. .

    5.2.2. A Borel R f : A R ., Borel B R, f1(B) = {x A : f(x) B} Borel.pi.

    A = {B R : f1(B) Borel}.

    B pi R, f1(B) A, f . A Borel, pi f1(B) Borel( ).

    A - pi . A - pi , pi Borel- B pi A. pi A pi f1(B) Borel B R Borel. 2

  • 118

    5.2.3. pi Lebesgue pi Cantor, pi Borel.

    pi. g : [0, 1] [0, 2] g(x) = f(x) + x, pi f CantorLebesgue. g , pi ( g1).

    g(C) (g(C)) = 1. , g(C) pi C, . pi, g pi J [0, 1] \C {f(J)}+ J , . (g([0, 1] \ C)) = (J) = 1. pi (g(C)) = 1.

    g(C) , pi pi M g(C). , K = g1(M) Lebesgue pi C pi . , K Borel: , pi 5.2.2 M =(g1)1(K) Borel Borel . pi, M Lebesgue . 2

    5.3 Prosggish metrsimwn sunartsewn ap aplc sunart-

    seic

    5.3.1 (pi ). : R R pi pipi ( pi pi , pi pipi pi pi pi)., pi

    (5.3.1) =

    ni=1

    iAi

    pi n N, pi pi 1, . . . , n pi A1, . . . , An.

    pi pi Ai , pi i . pi pi pi pipi pi pi ( pi pi 0). , (5.3.1) pi

    (5.3.2)

    {iI

    i : 6= I {1, . . . , n}} {0}

    ( ). pi {t1, . . . , tm}

    (5.3.3) Ei = { = ti} = {x R : (x) = ti},

  • 5.3 pi pi 119

    Ei , R,

    (5.3.4) =

    mi=1

    tiEi .

    pi (5.3.4) (pi ) - pi .

    pi pi pi -.

    5.3.2. A f : A [0,] . pi (n) pi 0 1 2 f

    (5.3.5) n(x) f(x)

    x A. pi A pi f .

    pi. n = 1, 2, . . . Cn = {x A : f(x) 2n}

    (5.3.6) Bn,k =

    {x A : k

    2n f(x) < k + 1

    2n

    }, k = 0, 1, . . . , 22n 1.

    [0, 2n] 22n 2n f . f , Cn Bn,k ., pi n :

    (5.3.7) n = 2nCn +

    22n1k=0

    k

    2nBn,k .

    n pi :

    (i) 0 n f pi A.(ii) 0 f n 2n A \ Cn = {x A : f(x) < 2n}.(iii) n(x) = 2n f(x) =.pi (ii) (iii) pi n(x) f(x) x A. , f(x) =

    (5.3.8) n(x) = 2n = f(x).

  • 120

    f(x) < , pi n0 N f(x) < 2n0 2n n n0. ,0 f(x) n(x) < 2n n n0, n(x) f(x). n f {x A : f(x) M}, M > 0.

    (n) . pi

    Bn,k = {x A : k/2n f(x) < (k + 1)/2n}=

    {x A : 2k

    2n+1 f(x) < 2k + 1

    2n+1

    }{x A : 2k + 1

    2n+1 f(x) < 2k + 2

    2n+1

    }= Bn+1,2k Bn+1,2k+1.

    x Bn+1,2k, n(x) = k/2n = (2k)/2n+1 = n+1(x), x Bn+1,2k+1, n(x) = k/2n < (2k + 1)/2n+1 = n+1(x). , x Cn n(x) =2n n+1(x) ( : Cn Bn+1,2n+1 , Bn+1,2n+1+1, . . . , Bn+1,22(n+1)1 Cn+1).

    pipi n(x) n+1(x), n n+1. 2 f : A [,+] . 5.3.2

    f+ f , pi .

    5.3.3. f : A [,+] . pi (n) pi n : A R

    (5.3.9) 0 |1| |2| |f |

    n(x) f(x) x A. pi A pi f .

    pi. pi (n) (n) pi n(x) f+(x) n(x) f(x) x A. , n = n n, n(x) f+(x) f(x) = f(x) x A.

    f+ f pi B A pi f .pi, n f+ n f B, pi pi pi n f B.

    pi : C = {f < 0} n 0 C n 0 A \ C n N. pi,

    (5.3.10) |n| = |n n| = max{n, n} max{f+, f} = |f |.

    pi pi (n) (n) , pi pi

    (5.3.11) |n| = max{n, n} max{n+1, n+1} = |n+1|.

    pi (5.3.10) (5.3.11) pi (5.3.9). 2

  • 5.4 Littlewood 121

    pi pi 5.3.2,pi f Cn,Bn,k , pi pi n . n f .

    5.3.2 5.1.9 pi .

    5.3.4. A f : A [,+]. f pi . 2

    5.4 Oi treic {arqc tou Littlewood}

    Littlewood pi pi pi :

    (i) pipi .

    (ii) .

    (iii) pi , -.

    , pipi pi (, pi ). pi pipi pipi . pi .

    5.4.1 ( ). A pi R (A) 0 pi I1, . . . , Ik E = I1 Ik pi (E4A) < .

    pi. > 0. pi () , pi (In)

    A n=1

    In

    (5.4.1)

    n=1

    (In) < (A) +

    2.

    (In) , pi k N

    (5.4.2)

    n=k+1

    (In) 0.pi F pi A G A V E G (G \ F ) < /2. pi f F1 = V (A \G). V,A \G

  • 124

    A f 1 V f 0 A \ G. pi f |F1 ( , pi, ). pi, pi F F1 (F1 \ F ) < /2. ,(A \ F ) < f |F .

    pi pi A pi pi

    (5.4.12) =

    mi=1

    iEi ,

    pi i R Ei pi A ( pi). f : A R . pi 5.3.2 pi

    (n) (5.4.12) n f A. n N pi An A (A \ An) < 2n+3 n|An . pi, pi Egorov pi B A (A \ B) < /4 n f B.

    (5.4.13) U = B ( n=1

    An

    ).

    ,

    (5.4.14) (A \ U) (A \B) +n=1

    (A \An) < 4

    +

    n=1

    2n+3=

    2.

    pi, n|U ( U An n) n|U f |U ( U B). pi f |U .

    U , pi , . pi pi F U (U \ F) < 2 . ,

    (5.4.15) (A \ F) = (A \ U) + (U \ F) < 2

    +

    2= ,

    pi f |U f |F . 2

    5.5 Askseic

    1. A f : E [,+] . , a R, fa : A [,+]

    fa(x) =

    f(x), f(x) aa, f(x) > a

  • 5.5 125

    .

    2. f : (a, b) R pi, f .pi: f .

    3. () A R (A) = 0, f : A [,+] .

    () A,B (B) = 0 f : A B [,+] pi pi f |A A . f .

    () A R f : A R pi A, f .

    4. () pi f f2 .

    () A R f : A R. f2 {x A : f(x) > 0} , f .

    5. A R fn : A [,+], n N, .

    L = {x A | (fn(x))n=1 }

    .

    6. A pi R f : A [,+] : q Q, {x A : f(x) > q} . f .

    7. f : R R . B Borel, f1(B) = {x R : f(x) B} .pi: {E R | f1(E) } - pi .

    8. () g : R R h : R R Borel , h g : R R Borel .() pi CantorLebesgue g :R R Lebesgue h : R R h g : R R Lebesgue .

  • 126

    9. f : [a, b] R .() f pi F- F-.

    () f pi A [a, b] (A) = 0 (f(A)) = 0.10. A pi R (A) < f : A R Lebesgue . f : R R

    f (t) = ({x A : f(x) > t}).() f pi . pi ;

    () fk, f : A R Lebesgue fk f , fk f .11. E pi (0, 1). f : R R f(x) = xE(x). f , R \ {0} {x : f(x) = } .

    pi g : R R R {x : g(x) = } ;12. ; f (a, b ) 0 < < b a, f (a, b).

    13. A pi R, f : A R g : R R . g f : A R .14. (n) pi n : R R f : RR. n f , f .

    15. () fn : R R Lebesgue R. :n=1 ({x : fn(x) > }) n}) 0 ({x : |fn(x)| > n}) < 1/2n.17. f : R R . f t-pi s-pi pi t, s > 0 t/s / Q, f pi .

  • Keflaio 6

    Oloklrwma Lebesgue

    pi Lebesgue. pi pi :

    (i) A , AA = (A), pi A

    A.

    (ii) : f, g ( ) t, s R,

    (tf + sg) = t

    f + s

    g.

    (iii) : f f 0, f 0. pi , : f, g ( ) f g, f g.

    (iv) . Riemann Lebesgue , pipi.

    Lebesgue . , pi :

    (i) 6.1 pi pi , - pipi . pi pi (i) (ii) pipi .

    (ii) 6.2 f f 0. pi

  • 128 Lebesgue

    pi pi f

    pi supremum pi pi

    pi, , f .

    (iii) 6.3 : f = f+ f, . pi pi pi .

    pi, pi Lebesgue. - Lebesgue ( ).

    Lebesgue pi . , Riemann - f : [a, b] R Lebesgue. 6.4 .

    6.1 Oloklrwma Lebesgue gia aplc metrsimec sunart-seic

    6.1.1. : R R pi . Lebesgue

    { 6= 0} = {x R : (x) 6= 0}

    pipi . pi

    (6.1.1) =

    ni=0

    iAi ,

    pi 0 = 0 A0 = { = 0}, i , Ai , (Ai) < + i 6= 0 (, (A0) =). pi

    (6.1.2)

    =

    ni=1

    i(Ai).

    0 = 0, pi

    (6.1.3)

    =

    ni=0

    i(Ai) =R

    ({ = }).

  • 6.1 Lebesgue pi 129

    6.1.2. pi =ni=1 biEi

    pi Ei . ,

    (6.1.4)

    =

    ni=1

    bi(Ei).

    pi. R J = {i n : bi = }. ,

    (6.1.5) { = } =iJ

    Ei

    (6.1.6) ({ = }) =iJ

    bi(Ei).

    ,

    (6.1.7)

    =

    R

    ({ = }) =R

    iJ

    bi(Ei) =

    iJbi(E