φ and ω resonance decay modes Georgy Sharkov ITEP

34
φ and ω resonance decay modes Georgy Sharkov ITEP

description

φ and ω resonance decay modes Georgy Sharkov ITEP. , ω resonances. If resonance decays before kinetic freeze-out  Possible rescattering of hadronic daughters  Reconstruction probability decrease for hadronic mode. A.V. Stavinsky, Acta Phys. Polon B40; 1179-1184, 2009. - PowerPoint PPT Presentation

Transcript of φ and ω resonance decay modes Georgy Sharkov ITEP

Page 1: φ and  ω  resonance decay modes Georgy Sharkov ITEP

φ and ω resonance decay modes

Georgy Sharkov

ITEP

Page 2: φ and  ω  resonance decay modes Georgy Sharkov ITEP

,ω resonancesIf resonance decays before kinetic freeze-out Possible rescattering of hadronic daughters Reconstruction probability decrease for hadronic mode

ω(782) π+ π- π0 B.R. 0.89 (c = 23 fm)

ω(782) π+ π- B.R. 0.017

ω(782) π0 B.R. 0.089

ω(782) e+e- B.R. 0.000072

φ(1020) K+ K- B.R. 0.49 (c = 44 fm)

φ(1020) η B.R. 0.013

φ(1020) e+e- B.R. 0.000297

χc0 (c = 37 fm)

A.V. Stavinsky, Acta Phys. Polon B40; 1179-1184, 2009

Page 3: φ and  ω  resonance decay modes Georgy Sharkov ITEP

hadrons

quarks&gluons

with &without QGP

t

Page 4: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 4

Model

l

l0li

φη η

hadronization Kinetic freeze-out

l0~cτβ/√(1-β2) ~~(β=1/3 for this estimate)~~15fm(for φ) & 8fm(for ω)

li~2fm for any hadron & 1fmfor any pair of hadrons

Page 5: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 5

• Upper line – lepton mode

φ

ω

Splitting – two hadron and hadron-photon modes

l,fm

l -decay products trajectory length within matter

β= 1/3

Model

Page 6: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 6

Is it really possible measurement?

• Existing data from PHENIX& STAR– B– B– B– B

φ e+e-

φ K+K-

+-,

φ η

Page 7: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 7

Φ(1020) K+ K- B.R. 0.49 c = 44 fm

Φ(1020) e+e- B.R. 0.000296 c = 44 fm

STAR Preliminary

d+Au

Au+Au

√sNN = 200 GeV

√sNN = 200 GeV

PHENIX

PHENIX

Φ K+ K-

Φ e+e-

Page 8: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 8

ω(782) π+ π- π0 B.R. 0.89 c = 23 fm

ω(782) π0 B.R. 0.089 c = 23 fm

η(547) π+ π- π0 B.R. 0.23 c = 167225 fm

Au+Au

p+p

p+p

√sNN = 200 GeV

PHENIX

PHENIX

PHENIXω π0

ω π0

η,ω π+ π- π0

Page 9: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 9

  

Branching ratio between e+e- and K+K- may be sensitive to mass modification, since Mphi is approximately 2 MK.Compare yields of e+e- and K+K-

Y. NakamiyaHiroshima University, Japanfor the PHENIX collaboration

QM 2008, India

Page 10: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 10

Φ Production K+K- and e+e-

• The leptonic channel yield is a little higher than hadronic channel• More accurate measurement is required to confirm whether there is

branch ratio modification

e+e-

K+K-

Page 11: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 11

To Do

• To make calculations for the effect of interest within realistic model

• To create algorithm for photonic modes identification in AA interactions

• To check this algorithm for CBM conditions with realistic simulations

Page 12: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 12

Model requirements

• realistic representation of particles (γ!)

• evolution in time– distinguish particles produced in dense and rare

phases

EPOS• Energy conserving quantum mechanical multiple scattering

approach,based on

• Partons (parton ladders)

• Off-shell remnants, and

• Splitting of parton ladders.

Page 13: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 13

(elastic scattering)

+

Statistical Hadronization ModelsP. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett B465 (1999) 15; F. Becattini, J. Manninen , M. Gazdzicki, Phys.Rev. C73 (2006) 044905, hep-ph/0511092; J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys.Rev. C73 (2006) 034905, hep-ph/0511094; J. Rafelski, M. Danos, Phys. Lett. 97B (1980) 279; J. Rafelski, J. Letessier, J. Phys. G: Nucl. Part. Phys. 28 (2002) 1819

and blast-wave fitsE. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C48 (1993) 2462[8] F. Retiere, J.Phys. G30 (2004) S827-S834, nucl-ex/0405024; J. Adams, STAR Collaboration, Phys. Rev. Lett. 92 (2004) 112301; I. Kraus, NA49 Collaboration, J.Phys. G31 (2005) S147-S154

Page 14: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 14

EPOS

K. Werner Nucl. Phys. B175 (2008) 81

√s=200GeVdAu

Au+Au @ 200GeV (RHIC) Pb+Pb @ 17.3 GeV (SPS)Klaus WERNER, Phys. Rev. Lett. 98,

152301 (2007), arXiv:0704.1270.

Page 15: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 15

EPOS & UrQMD π+

Page 16: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 16

• Generate EPOS statistics

• Check all decay modes

• Tune EPOS output for CBMROOT

• Produce CBMROOT events with full ECAL

Page 17: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 17

Page 18: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 18

Page 19: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 19

UrQMDEPOS

Page 20: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 20

Page 21: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 21

Page 22: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 22

Extra slides

Page 23: φ and  ω  resonance decay modes Georgy Sharkov ITEP

2006 UrQMD generator & cumulativeprocesses CBM simulation meeting

Direct photons analysisDirect photons analysis

100 105 110 115 1201

10

210

310

UrQMD AuAu c$ntral 25 AG$v

UrQMD code

f1(1285)

a1(1260)

K*

η'ω

"hm, yes photons are mesons in urqmd.however, photons should not be calculated within the urqmd, butexplicitely outside with a different code.everybody should ignore all processes with photons involved.we will move them out of the model in the next version.

cheers,Marcus Bleicher"

Re: [URQMD] ftn15 (fwd)

•Only from decay

•2 γγ elastic scatterings(?!)

Page 24: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 24

Formulas

})0}(/exp{*

)({

)/1

}/exp{

/1

}/exp{(*

]))(}exp{1)[(}exp{

}/(exp{*

0

00

0

/

0

/)(

000

0

0

ii

ii

i

i

ii

ll lxl

ii

ii

lllB

lB

ll

ll

ll

llB

l

yd

l

y

l

xd

l

x

llBWi

Stavinskiy,ITEP,10.06.08

Page 25: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 25

Electron, hadron and photon in PHENIX•PHENIX acceptance -0.35 < η < 0.35 2 x 90°in azimuthal angle for two arms• Event selection BBC

•Electron ID RICH EMCal

Momentum Electron ID

e+

e-

Momentum Hadron ID

K+

K-

•photon ID EMCal

•Hadron ID TOF EMCal-TOF

e+e-

K+K- +-,

Energy

Momentum Hadron ID

Page 26: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 26

Extended K+K- analysis

candidates

Double ID analysis

no ID analysis

Single ID analysis

candidates

candidates

K+

K+ or K-

K-

h+ h-

h+ or h-

• K+K- measurements have been extended to both higher and lower pT using new methods, i.e. no kaon ID and single kaon ID methods.•The three independent kaon analyses are consistent with each other.

d+Au0-20%

p+p

   No ID   Single ID   Double ID  

M.B.

Consistency between K+K- and e+e-

In p+p, spectra of e+e- and K+K- show reasonable agreement!

d+Au0-20%

p+p

   No ID   Single ID   Double ID   e+e-

M.B.

Page 27: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 27

e+e- AuAu MB e+e- 20-40% x 10-3 e+e- 40-92% x 10-1 K+K- AuAu MB (no PID)K+K- AuAu MB (double PID) K+K- AuAu MB (PRC72 014903) K+K- 20-40% x 10-3 (double PID)K+K- 40-92% x 10-1 (double PID) K+K- 40-92% x 10-1 (PRC72 014903)

Errors are too large to make any clear statement about the comparison of spectra for e+e- and

40-92%20-40%

Au+Au

Spectra comparison between e+e- and K+K-

M.B.

Page 28: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 28

Yield comparison between e+e- and K+K- Question 1’: Have we observed changes of yield between e+e- and K+K- ?

Have we observed changes of spectra between e+e- and K+K- ?

Comparison of integrated yield is not enough, becausemass modification effects depend on the pT region.Low pT mesons tend to decay inside the hot/dense matter

Now, we should ask

In addition,To determine the integrated yield, an extrapolation to lower pT is needed. There is a large uncertainty in the calculation.

Thus, pT-dependent information is essential for comparison.

Low pT

High pT

Page 29: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 29

What is the difference?• Modes absorbtion vs Mass modification

– Standard mesons vs modified mesons – φ→KK & φ→η

• Modes absorbtion vs K/K* ratio– Lepton modes vs thermal model – Hadron stage vs equilibrium stage

• Modes absorbtion vs both other approaches– Internal cross-check - 3 modes

Stavinskiy,ITEP,10.06.08

Page 30: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 30

• ω photoproducton on nuclear targets (ELSA) M.Kotulla et al., ArXiv: nucl-ex/08020980

σωN ≈ 70 mb (in nuclear medium, 0.5 < P <1.6 GeV/c)

σωN ≈ 25 mb (in free space - the model calculations)

photoproducton on nuclear targets T.Ishikawa et al., Phys.Lett.B608,215,(2005)

σφN= 35 ± 14 mb (in nuclear medium)

σφN ≈ 10 mb (in free space)

“φ-puzzle”

Real σMN in matter can differ from that in free space

photoproducton on nuclear targets

Page 31: φ and  ω  resonance decay modes Georgy Sharkov ITEP

21.04.23 G. Sharkov ITEP FRRC 31

Measurements of in wide pT range

Spectra show good agreement among several decay channels.

pT spectra of are measured for several decay modes in d+Au and p+p.

p+pd+Au

0 dAu MB (PRC75 151902)0+- dAu MB(PRC75 151902)e+e- pp MB (PHENIX preliminary)0 pp MB (PRC75 151902)0+- pp MB(PRC75 151902)0 pp ERT (PHENIX preliminary)0+- pp ERT (PHENIX preliminary)

Page 32: φ and  ω  resonance decay modes Georgy Sharkov ITEP

Branching ratiosBranching ratios as anas an instrument for density integral instrument for density integral measurements measurements

mesons mesons mesonsmesons)) new source of informationnew source of information

Interplay between different ALICE subdetectors(?)Interplay between different ALICE subdetectors(?)

Stavinskiy,ITEP,9.04.08

Page 33: φ and  ω  resonance decay modes Georgy Sharkov ITEP
Page 34: φ and  ω  resonance decay modes Georgy Sharkov ITEP

Why ?(common part)

Themeson was proposed in the middle of 80’(Koch,Muller,Rafelski PR142,ShorPRL54) as one of the most promising QGP messengers because of the following reasons:– an enhancement of –meson, as well as other strange

hadrons in QGP phase– interaction cross section is small and will keep

information about the early hot and dense phase– meson spectrum is not distorted by feeddown from

resonance decays– strangeness local conservation for

Stavinskiy,ITEP,9.04.08