Ηλεκτρονιακή δομή...
date post
17-Mar-2016Category
Documents
view
407download
8
Embed Size (px)
description
Transcript of Ηλεκτρονιακή δομή...
1
2 . .
3
1.1 BOHR.....................5
1.2 ................................................22
1.3 .............................................28
1.4 ........45
1.5 ........79
1.6 ....108
1.7 LEWIS...................................................140
........................................................173
1......................................................174
2......................................................177
3......................................................179
...............................182
4 . .
5
1.1 - BOHR
1900 :
Isaak Newton (1687) James Clark Maxwell (1864)
.
James Clark Maxwell,
c=2,997 108 m s-1.
:
( 1).
.
1.
.
Hertz.
c : c=.
6 . .
. ( 2)
.
.
2.
James Clark Maxwell (,
, ) ,
(-
)
: Max Planck 1900
: ( )
() .
.
:
, h : Planck, 6,63 10-34 J s
: .
() (
h) .
: (
).
: ( "" ),
(
= h
7
).
.
, Albert Einstein ,
.
BOHR
: 1913
: .
:
1 ( ):
( ) .
2 ( ):
.
: ( 1
.. He+, Li2+ .)
(
BOHR)
:
, n = , (1,2,3...)
- .
: n. n,
.
: .
, n .
2
-18 J 10 2,18 -
n n E
8 . .
: 1=-2,1810-18J n=1
( ).
2,1810-18J .
, ,
, n>1.
: = 0 , .
, .
: i
f.
: ( ).
: :
i f ( f > i )
!
.
: i
f.
: ( ).
: :
i f ( f < i )
= f i = = h
= f i = = h
9
!
.
: ( ),
,
:
. (10-10 -10-8 s).
.
,
:
= f i = h
-2,18 10-18
J
-2,18 10-18
/4 J
0
n=1
n=2
n=3 -2,18 10-18
/9 J
a
10 . .
n = 1 ,
(UV Lyman).
n = 2
( Balmer).
n = 3 n = 4
(IR) ( Paschen 3).
Bohr
( )
BOHR
1. :
(
)
.
11
2. .
3. ,
.
1. , n = 1
n = 4. ;
. n = 4
.
.
.
.
.
. n = 4 n = 1
n = 4
n = 2.
. n = 4 n = 1
n = 4 n = 2.
2. :
. ,
;
. , :
i) 2 ;
ii) ;
3.
. n = 3, 4, 5 6
n = 2.
a. ;
.
.
12 . .
.
n = 2 n = 1 ;
4. :
i) n = 4 n = 2 ii) n = 3 n = 1
iii) n = 3 n = 2 iv) n = 2 n = 1
v) n = 4 n = 1 vi) n = 4 n = 3
:
. .
. .
5. ,
Bohr.
. 1=
-2,1810-18 J =0.
. .
. .
. L
.
. L
L K.
6. .
. .
. .
.
.
13
. Bohr, n
,
.
. .
7. .
. 400 nm
600 nm.
. n=1 n=3 :
1
3
EE
3.
. -4,3610-19 J.
.
.
.
.
8. .
(n=3).
;
.
9.
:
. . . .
10.
. n=3 Paschen
n=2 Balmer () n=1 Lyman.
. .
. ,
;
14 . .
1.1..
1. 5,0 10-19 J.
) nm; ( h= 6,63 10-34 J s c=3 108
m/s );
) 1 mol ; ( NA=6 1023)
) : = h (1)
() () :
c = = c/ (2)
(1) (2):
= h = h (c/) E =h c = h c / E
= 6,63 10-34 J s 3 108 m s-1 / 5,0 10-19 J = 4,0 10-7 m = 400 nm
) 1 mol 6 1023 : =6 1023 5,0 10-
19 J=30 104 J.
(), (), ( )
: = h c =
1. .
c = , c = 3108m/sec, ,
. ;
410-7m 710-7m.
(nm) (m) (sec-1)
450 4,510-7 6,661014
600
110-7
31014
15
2. 500 nm.
1 mol ; h = 6,6310-34 Js, c = 3108 m/s.
3. 310-19 J. h = 6,6310-34 Js, c = 3108 m/s.
) ; ;
) 510-10 J.
4. C C 348 kJ/mol.
420 nm ; h = 6,6310-34
Js, c = 3108 m/s, NA = 6,021023.
5. .
: O3(g) O2(g) + O(g) = 105,2 kJ/mol.
; h = 6,6310-34 Js, c = 3108 m/s, NA = 6,021023.
(A. = 1,13710-6 m)
6. 2
. 12,5 cm,
100 g H2O 20 C 100 C.
h = 6,6310-34 Js, c = 3108 m/s, 4,18 J/gK.
(. 2,11028)
16 . .
1.1..
1. , ,
97,2 nm. ; h=
6,63 10-34 J s c=3 108 m/s
:
n=1 1 =-2,18 10-18 J.
:
= h (1) c = = c/ (2)
(1) (2):
= h = h (c/) = 2,045 10-18J.
n
:
n = 1 + -2,1810-18/n2 =-2,1810-18 J +2,04510-18J n= 4.
4 .
2. .
(n=4).
( ),
( ) ;
n=3 n=2
n=2 n=1 n=3
n=1 ;
2
-18 J 10 2,18 -
n n E
17
n=4
V4 V4
n=3
V2
V6
n=2
V1 V3 V5 V3
n=1
, .
,
.
n=3 n=2 : 3,2= E3-E2= h v6 (1)
n=2 n=1 : 2,1= E2-E1= h v3 (2)
n=3 n=1 : 3,1= E3-E1= h v5 (3)
(1) (2) : E3-E2 + E2-E1 = h v6 + h v3
E3-E1 = h (v6 +v3 )
O (3):h v5 = h (v6 +v3 ) v5 = v6 +v3
18 . .
1.
n = 4 n = 2 . Planck, h = 6,6310-34 J s.
2. . ,
, , .
AgC
: AgC(s) Ag(s) +C. Ag(s) .
.
310 kJ mol-1.
, . Planck, h =
6,6310-34 J s NA = 6,021023 mol-1.
3. .
(), ( ),
()
(ni)
:
n n =
.
= h |Ef Ei |= h h = | 2,18 10-18 (1/nf
2 1/ni2)|