Κβαντική Μηχανική

201
Κβαντική Μηχανική Χάρης Αναστόπουλος¹ Τμήμα Φυσικής, Πανεπιστήμιο Πατρών ¹[email protected]

description

Lecture Notes on Foundations of Quantum Mechanics (in Greek)

Transcript of Κβαντική Μηχανική

  • ,

    [email protected]

  • 2

  • , - , . - . ( - , ) . , , 1950, - .

    , - , . - , .

    . - , . - -: ( 3 ), ( 4 ) .

    2013-14. . (. 1-3) - ( -) (. 4-9) . 40% .

    , 2014X. A

    i

  • 0.

    ii

  • i

    1 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2.2 Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.3 Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.4 . . . . . . . . . . . . . 131.4.5 . . . . . . . . . . . . . . . . . . . . . . 151.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    1.5 . . . . . . . . . . . . . . . . . . . 18

    2 A 212.1 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.4 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    3 B 373.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.2.4 . . . . . . . . . . . . . . . . . . 46

    3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.3.1 . . . . . . . . . . . . 473.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.3.3 . . . . . . . . . . . . . . . . . . . . . . . 51

    3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    iii

  • 4 574.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    4.1.1 . . . . . . 574.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . 594.1.4 . . . . . . . . . . . . . . . . . . . . . . . . 59

    4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 714.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    5 775.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . 785.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    5.5.1 . . . . . . . . . . . . . . . . . . 875.5.2 . . . . . . . . . . . . . . . . . . . . . . . 895.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . 915.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    5.8.1 qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005.8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    6 1116.1 . . . . . . . . . . . . . . . . . . . . . . 111

    6.1.1 . . . . . . . . . . . . . . . . . . . . . . . 1116.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    6.2 . . . . . . . . . . . . . . . . . . . 112

    iv

  • 6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146.2.3 . . . . . . . . . . . . . . . . . . . . . . 1176.2.4 . . . . . . . . . . . . . . . . . . . . . 121

    6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236.3.1 qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236.3.2 Wigner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    6.4 . . . . . . . . . . . . . . 1296.4.1 Wigner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296.4.2 Kennard-Robertson. . . . . . . . . . . . . . . . . . . . 1306.4.3 . . . . . . . . . . . . . . . . . . . . . . . 132

    7 1377.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    7.5.1 qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1447.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    7.6 . . . . . . . . . . . . . . . . . . . . 1457.6.1 . . . . . . . . . . . . . . . . . . . . . . . . 1457.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    7.7 . . . . . . . . . . . . . . . . . . . . . . . . 1487.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1487.7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    8 1538.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    8.2.1 . . . . . . . . . . . . . . . . . . . . . . 1548.2.2 . . . . . . . . . . . . . . . . . . . . . . . . 1558.2.3 . . . . . . . . . 1568.2.4 . . . . . . . . . . . . . . . . . . . 157

    8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598.3.1 . . . . . . . . . . . . . . . . 1598.3.2 . . . . . . . . . . . . . . . . . . . . . . . 161

    8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638.4.1 qubit . . . . . . . . . . . . . . . . . . . . . . . . . 1638.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 1648.4.3 . . . . . . . . . . . . . . . . . . . . . 165

    v

  • . ,

    9 1699.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1699.2 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    9.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1729.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1729.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1759.3.1 qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1759.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 177

    9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1779.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    9.5.1 - . . . . . . . . . . . . . . . . . . . . . . . . . 1829.5.2 - . . . . . . . . . . . . . . . . . . . . . . . . 1839.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

    189.1 Hermite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    .2.1 H . . . . . . . . . . . . . . . . . . 190.2.2 Laplace . . . . . . . . . . . . . . . . . . . . . 190

    .3 Laguerre . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    vi

  • 1

    , , . . , , . , - .

    . , , . , .

    1.1 ,

    1687, 20 . .

    1. . t 2 R ( )

    x = (x1; x2; x3) 2 R3; .

    2. , ( -). N t N - ri, i = 1; 2; : : : ; N . , , N ri(t).

    3. . , - ri(t) 2o

    mid2ridt2

    = Fi (1.1)

    1

  • . ,

    1.1:

    mi i, ,

    Fi i.

    4. ,

    Fi =Xj 6=i

    Fi(rj); (1.2)

    Fi(rj) j i. o

    Fi(rj) = Fj(ri): (1.3)

    N 3N - . , ri(0) _ri(0) ri(t) t 2 R.

    (). t0 t ( ).

    1.1. Laplace

    . , -, , ,

    2

  • 1.

    . .

    P.S. de Laplace, (1801).

    1.2 1.2.1

    - . (, ) , , .

    , . , - , .

    N . 3 - qa, a = 1; 2; : : : ; 3N . qa Q . qa ,Q = R3N .

    i pi = mi _ri. N 3 , pa. a , pa qa.

    3N 3N , , . ,

    = (q1; p1; : : : ; q3N ; p3N):

    = R6N N ( ).

    H : !R,

    H(qa; pa) =3NXa=1

    p2a2ma

    + V (q1; q2; : : : ; q3N); (1.4)

    V : Q ! R . E . .

    , . .

    3

  • . ,

    _qa =@H

    @pa_pa = @H

    @qa(1.5)

    qa = @V@qa

    ; (1.6)

    (1.1), Fa =@V /@qa. E . (1.5) H ., (1.4), .

    1.2.2 Poisson N

    , F : ! R, F (qa; pa).

    _F =Xa

    @F

    @qa_qa +

    @F

    @pa_pa

    =Xa

    @F

    @qa

    @H

    @qa @F@pa

    @H

    @qa

    = fF;Hg; (1.7)

    Poisson F G ,

    fF;Gg :=Xa

    @F

    @qa

    @G

    @qa @F@pa

    @G

    @qa

    : (1.8)

    Poisson

    fqa; qbg = 0 (1.9)fpa; pbg = 0 (1.10)fqa; pbg = ab; (1.11)

    ab Kronecker

    ab =

    1 a = b0 a 6= b : (1.12)

    Poisson

    1. fG;Fg = fF;Gg ()2. fF;GHg = fF;GgH + fF;HgG ( Leibniz)3. ffF;Gg; Hg+ ffH;Fg; Gg+ ffG;Hg; Fg = 0 ( Jacobi),

    F;G H . Poisson

    .

    4

  • 1.

    1.2.3 Liouville Liouville .

    U , U . , , .

    [U ] U

    [U ] :=

    ZU

    d3Nqd3Np: (1.13)

    . U t qa pa, t + t q0a = qa+ t@H/@pa p0a = pa t@H/@qa.

    @(q0a; p0a)

    @(qa; pa)= 1: (1.14)

    o U t+ t

    [U 0]t+t =ZU

    d3Nq0d3Np0 =ZU

    @(q0a; p0a)

    @(qa; pa)d3Nqd3Np

    =

    ZU

    d3Nqd3Np = [U ]t: (1.15)

    , . Liouville.

    Liouville . , .

    , .

    1.3 -

    . 19 - , . Faraday Maxwell , , .

    - , E B. q F (- Lorentz)

    F = q(E+ v B); (1.16)

    v .

    5

  • . ,

    - Maxwell

    r E = (1.17)r B = 0 (1.18)r E = 1

    c

    @B@t

    (1.19)

    r B = 1c

    @E@t

    + j; (1.20)

    , j c . , = j = 0 Maxwell

    r2E = 1c2@2E@t2

    : (1.21)

    E(x; t) = E0eikxi!t; (1.22)

    E0 , k ! . - . (1.21)

    ! = cjkj: (1.23) (1.22) . (1.17) = 0 k E0 = 0. , . - E .

    1.4 ,

    . - . o , , .

    1.4.1 . , -

    - . ,

    o Lorentz- Heavyside, : 0 = 0 = 1. e = 0; 54 1013m3/2kg1/2/s.

    6

  • 1.

    , - .

    . -, 1, 2, 3, 4, 5 6. A = B = - 5 6. f1g, f2g, f3g, f4g, f5g,f6g, A f1; 3; 5g B f5; 6g. f1; 2; 3; 4; 5; 6g.

    . - . -. (

    ). . .

    A A = A, A A [ A = A \ A = ;.

    A B , A \ B = ;. . .

    1.1 . - 36 1 6.

    = f(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6);(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6);

    (5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)g:

    ,

    1. A = = f(6; 6)g (1 ).

    2. B = = f(1; 2); (2; 1)g (2 )

    3. C = = f(1; 5); (5; 1); (2; 4); (4; 2); (3; 3)g (5 )

    4. D = = f(1; 6); (6; 1); (2; 5); (5; 2); (3; 4); (4; 3)g (6 )

    5. ( ) - ( )

    - (ne-grained) (coarse-grained). .

    . , , 32 . , , =f1; 2; Xg.

    7

  • . ,

    1.2: .

    1.4.2 , ( )

    . Prob A Prob(A) [0; 1]. Prob(A) A.

    .

    Kolmogorov

    1. A;B , A \B = ;, Prob(A [B) = Prob(A) + Prob(B):

    2. Prob(;) = 0.3. Prob() = 1.

    Prob( A) = 1 Prob(A); (1.24) A .

    B A. B AB B[ (AB) = A. Kolmogorov

    Prob(AB) = Prob(A) Prob(B) (1.25) B A.

    ,

    Prob(A [B) = Prob(A) + Prob(B) Prob(A \B): (1.26)

    8

  • 1.

    . A0 = A (A (A \B),B0 = A (A (A \B), C = A \B A0 [ B0 [ C = A [ B. 1 Kolmogorov, Prob(A [ B) =Prob(A (A \B)) + Prob(B (A \B)) + Prob(A \B), (1.26) (1.25).

    = fx1; x2; : : : ; xng, n . - n pi = Prob(fxig), i = 1; : : : n, fxig.

    nXi=1

    pi = 1: (1.27)

    n pi !w = (p1; p2; : : : ; pn): (1.28)

    Kolmogorov - . ,

    Prob(fx1; x3g) = Prob(fx1g) + Prob(fx3g) = p1 + p3: f : ! R

    = fx1; x2; : : : ; xng: pi, ,

    f : hfi :=Pni=1 pif(xi). n- f : hfni :=Pni=1 pif(xi)n. f f : (f)2 := hf 2i hfi2. 1 2, 1 = fx1; x2; : : : ; xng

    2 = fy1; y2; : : : ; ymg. ( 1.1, - , 1 = 2 = f1; 2; 3; 4; 5; 6g.) (xi; ya), i = 1; : : : ; n a = 1; : : :m. O pia := Prob[f(xi; ya)g].

    p1i p2a

    p1i =mXa=1

    pia = Prob(fxig 2) (1.29)

    p2a =nXi=1

    pia = Prob(1 fyag): (1.30)

    p1i 1 p2a 2.

    1 2 ,

    1 2 .

    1.2. - 1.1. p = 1/36 36

    . A;B;C D 1.1

    Prob(A) = 136; Prob(B) = 2

    36=

    1

    18; Prob(C) = 5

    36; Prob(D) = 6

    36=

    1

    6:

    9

  • . ,

    . . .

    A;B , A B, Prob(AjB),

    Prob(AjB) = Prob(A \B)Prob(B) : (1.31)

    1.3. 1.1 1.2. D = E = Prob(DjE). ,

    E = f(3; 3); (3; 4); (3; 5); (3; 6); (4; 3); (4; 4); (4; 5); (4; 6);(5; 3); (5; 4); (5; 5); (5; 6); (6; 3); (6; 4); (6; 5); (6; 6)g:

    E 16 . (3,4) (4,3). Prob(DjE) = 2/16 = 1/8. ,

    D \ E = f(3; 4); (4; 3)g;

    Prob(D\E) = 2/36 = 1/18. Prob(E) = 16/36 = 4/9. Prob(D\E)/Prob(E) =(1/18)/(4/9) = 1/8, .

    P(AjB) = P(A), - : B A. P(A \B) = Prob(A)Prob(B).

    1.4. ( ) 7. , ;. Ai 7 i , i = 1; 2; 3. 1.2, 7 16 , p(Ai) = 1 16 = 56 . L 7, L = A1\A2\A3. , Prob(L) = Prob(A1 \ A2 \ A3) = Prob(A1)Prob(A2)Prob(A3) = (5/6)3 = 125216 . W L, Prob(W ) = 1 Prob(L) =1 125216 = 91216 ' 0; 42.

    1.5. , 1 p 0 q = 1 p. . N . Prob(n) 1 n ( 0 N n )

    Prob(n) = pnqNn N !(N n)!n! : (1.32)

    10

  • 1.

    1.6. 1.4, 1 : p

  • . ,

    p(x; y) =R2, x y.

    p1(x) =

    Zdyp(x; y) p2(y) =

    Zdxp(x; y) (1.38)

    x y .

    1.2.

    . - Kolmogorov, . .

    An , n = 1; : : : ;1, An \Am = ; n 6= m,

    Prob([1n=1An) =1Xn=1

    Prob(An):

    , . R, U

    [a; b]

    . . - f : R ! R, .

    , - , . . - , . 5 .

    - , Kolmogorov, .

    1.7. R .

    pGauss(x) =1p22

    e(xx0)2

    22 ; (1.39)

    , x0 . - Z 1

    1dxx2neax

    2=

    r

    a

    1 3 : : : (2n 1)(2a)n

    (1.40)Z 11

    dxx2n+1eax2

    = 0; (1.41)

    n a > 0.

    12

  • 1.

    1.3: () = . - .

    (1.40, 1.41)

    hxi = x0; x = : (1.42)

    pLorentz(x) =1

    2 + (x x0)2 ; (1.43)

    x0 . hxi = x0. x (x =1 hx2i =1).

    1.4.4

    1.4.2. - . , , , , - .

    , , .

    1. . . 3 1, 1/(3 + 1) = 1/4. :

    13

  • . ,

    . .

    2. , - . ( ) - . : , - . , . .

    3. . , . . .

    , : - . - .

    1. . , - N . , - nA . A nA/N . , N -, nA/N Prob(A). ( .) . , .

    2. - , . Prob(AjB), . A B Prob(AjB) = 1. B ! A. B,

    14

  • 1.

    ( ) A. B ! A , Prob(AjB) = 1 , 0 <

  • . ,

    , , . - , . , , . ( ): , , 5m/s 10m/s.

    =

    =

    =

    : ! R+,

    (q1; p1; q2; p2 : : : ; q3N ; p3N)d3Nqd3Np (1.44)

    d3Nqd3Np. , ,Z

    d3Nqd3Np (q1; p1; q2; p2 : : : ; q3N ; p3N) = 1: (1.45)

    = (q1; p1; : : : ; q3N ; p3N) , (1.45)

    Rd() = 1, d = d3Nqd3Np.

    - ( ), - Liouville

    @

    @t= fH; g; (1.46)

    H .. (1.45) t, d/dt = 0,

    @

    @t+Xa

    @

    @qa_qa +

    @

    @pa_pa

    = 0: (1.47)

    _qa; _pa (1.5) . (1.8) - . (1.46).

    Gibbs , , T ,

    can() = Z1e

    H()kBT ; (1.48)

    16

  • 1.

    kB Boltzmann, Z . - (1.45),

    Z =

    Zde

    H()kBT : (1.49)

    hEi =RdH()eH()RdeH()

    = @ logZ@

    ; (1.50)

    = 1/(kBT ).

    1.4.6 ,

    () . . . . - , 6 . 2 f1; 2; 3; 4; 5; 6g.

    ., . C .

    1. C \ C0 = ;; 6= 0 ( )

    2. [C = ( ).

    . . - ( ) - . F : ! R,

    F () =X

    C(); x 2 ; (1.51)

    C C 2 ., F : ! R, -

    C,

    C = f 2 jF () = g: (1.52)

    : F .

    17

  • . ,

    1.4: C .

    1.5 -

    , - .

    1. . . 2 , - (- ).

    2. . F . (1.52), F .

    3. . - . - U , Prob(U) =

    Rd()U().

    4. . , - (1.5) Liouville (1.46).

    5. . , . (1.31).

    6. . 1 1, 2 - 2, 1 2 1 2. .

    ( R6, - R6 R6 = R12.), , , , .

    18

  • 1.

    1.

    . . . . -

    . .

    2. , 14 , . . ;

    3. , , - . - , . . ( .) ( ) ;

    4. ( ) ( ). 5% - 5 95%. 5 0,05. - ; ( .)

    5. -X .

    () 95% X 300 400GeV .() X 30% 70% -

    .() 2016 .

    .

    1.

    ( ). - (1,2) (2,1) . , .

    19

  • . ,

    2. : ( ). (1,2) (2,1) , (2,2) . , .

    3. ; 1 2.

    4. 6 50%, . (i) , (ii) , (iii) ;

    5. . p > ; p(t), [t; t+ t].

    6. ( Brown). . -. t t(x),

    @t@t

    =1

    2D@2t@x2

    ; (1.53)

    D .

    () . (1.53)

    t(x) =1p2Dt

    Zdx0 exp

    (x x0)

    2

    2Dt

    0(x0); (1.54)

    0 t = 0.() t = 0 x0 = 0,

    hx(t)i x(t).

    , . H. Goldstein,

    (, 1980).

    , . C.Anastopoulos, Parcle or Wave: The Evoluon of the Concept of Maer in Modern Physics (PrincetonUniversity Press, 2008), . 1.-3. , . R. Dugas,A History of Mechanics (Dover, 2011).

    , . M. R. Spiegel, (,).

    , I. Hacking, An Introduconto Probability and Inducve Logic (Cambridge University Press, 2001).

    , . C. J. Isham,Lectures on Quantum Theory (Allied Publishers, 2001), . 4.

    20

  • 2

    A

    , - . , , . - , .

    2.1 K

    , , , . .C. N. Yang, Parcle Physics (Princeton University Press, 1961).

    - : .

    , -. , . . . . . -. , , , . .

    , . - . . , . , . - : .

    21

  • . ,

    . .

    ! . !, hEi . V [!; !+!] g(V; !)!, g(V; !) . 1

    g(V; !) =8V !2

    2c3: (2.1)

    (!)! V - [!; ! + !]

    (!) = g(V; !)hEi: (2.2)

    hEi m !

    H =p2

    2m+

    1

    2m!2q2: (2.3)

    Z = 2!

    , . (1.50)

    hEi = 1 (2.4)

    (!) =8V !2kBT

    2c3: (2.5)

    (2.5) Z 10

    d!(!) Z 1

    d!!2

    . , . - (!) - . 2.1.

    . - - . -.

    (Max Planck) 1900. - (!), -. . .

    : , . - !, , ,

    22

  • 2. A

    2.1: - ( ) . , .

    h! nh!, n = 0; 1; 2; : : :. h , h = 1:0545 1034m2kg/s.

    , . , pn ! nh! (n )

    pn =enh!

    Z; (2.6)

    Z =1Xn=0

    enh! =1

    1 eh!: (2.7)

    (2.6) .

    hEi =P1

    n=0(nh!)enh!

    Z= @

    @logZ = h!

    eh! 1: (2.8)

    (!)

    (!) =8V h!3

    2c3(eh! 1); (2.9)

    . . (2.9) . 2.2 . h!

  • . ,

    2.2: . (2.9) . a b c.

    2.2

    (Albert Einstein), (1905) .

    ...[ ] . , , , , , -.

    - . - , ; ( 103104 .) - , .

    , - ! ,

    E = h!: (2.10)

    . k ,

    p = hk: (2.11)

    , . ( 1925) .

    . ,

    A. Einstein, Ann. Physik 17, 132 (1905).

    24

  • 2. A

    . , 19 . , , 20 . - Maxwell.

    Compton, (1923). , . - . (2.10) .(2.11), ( , . 3)

    0 = 2hmec

    (1 cos ); (2.12)

    , 0 , ( ) me . . (2.12) , , - .

    Compton, ., . 2.1.

    2.1.

    2.3.

    M (down converter). - . (1012 1010) , . ( ) .

    (beam splier). : 50% 50% - 90o.

    D0; D1; D2 , - .

    , D0 , D1 D2. , D1 D2, D1 D2 . - D0D1 D0D2, D1D2. D1D2

    25

  • . ,

    2.3: (. 2.1 ).

    .

    2.3

    . 1895 Rntgen - , 1896 J. J. Thomson H. Bequerel -, 1900 . Rutherford F. Soddy (). , , , .

    (Rutherford) . H. Geiger .Marsden, . 2.4. -, 90o. . , ( ) . .

    , , Coulomb, -.

    K - . Coulomb, . , . (. 4) 1011s - . .

    (Niels Bohr), .

    26

  • 2. A

    2.4: . . , , .

    , .

    . . ( ). , . , , . .

    , , . , h,

    L = nh; n = 1; 2; : : : (2.13)

    n (2.13) . (2.13)

    . 2 Coulomb mev2/r =e2/(4r2), r

    v2 = e2/(4mer): (2.14)

    mevr = nh, (2.14) - r

    rn =4h2

    mee2n2: (2.15)

    E = 12mv2e2/(4r) (2.14) E =

    e2/(8r). r . (2.15)

    27

  • . ,

    En = E1n2; (2.16)

    E1 = e4me/(322h2) ' 13; 6eV - (n = 1). , (2.15) r1 = 0,

    0 =4h2

    mee2' 0; 5 1010m (2.17)

    . (3.40) .

    , - .

    - Em En, n m n < m.

    h!m;m = Em En = E1

    1

    n2 1m2

    ; (2.18)

    Rydberg 1888.

    , , - .

    . , , ... . . - , . .

    . . , . . - , . , - .

    , - . - , :

    (20.3.1913). N. Bohr, Essays 1958-1962 on Atomic Physics and HumanKnowledge (Vintage Books, New York, 1963).

    28

  • 2. A

    n .

    ( , ) - n . En = En+1 En .

    EnEn

    ! 0; n!1; (2.19)

    . - (2.19) (En/En n1) (En/En n1).

    2.4 ; , ,

    . 1924 , (Louis de Broglie).

    . . -

    E = h!, !. , - . .

    [ ] , -. , .

    : ( ) . . , , [..] , .

    , .

    k - ! (. 2.2)

    vg =@!

    @k : (2.20)

    , m

    v = pm

    =@E

    @p ; (2.21)

    L. de Broglie, Nobel Lecture (12.12.1929)

    29

  • . ,

    E = p22m

    . - , vg = v. E = h!, (2.20) (2.21)

    p = hk: (2.22) (2.22) = 2/jkj

    = 2h

    jpj : (2.23)

    .

    2.2. .

    vg . A(x; t)

    A(x; t) =

    ZdkA(k)eikxi!(k)t; (2.24)

    ! k. - , A(k) - k k0. Taylor,

    !k = !0 + vg(k k0); (2.25)

    !0 = !(k0) vg = (@!/@k)k=k0 . (2.24)

    A(x; t) = ei(vgk0!0)tZdkA(k)eikxivgt; (2.26)

    jA(x; t)j = jA(x vgt; 0)j: (2.27)

    jA(x; t)j2, (2.27) vg.

    - d - (). , , () (. 2.3).

    2.3. .

    , d . C. Davisson L. Germer 1927 ( !) (). -

    30

  • 2. A

    d - (d ' 1010m.)

    , 1929 I. Estermann O. Stern NaCl, (). 1940, E. O. Wollan C. Shull .

    , ( o ) . 60 , Young . - ().

    (), (), () ().

    -

    C48H26F24N8O8

    114 1.298 (). ( ' 5pm) ( 1nm)!

    . - , . mP =

    phc/G ' 2 108kg -

    (G ). , !

    C. J. Davisson, Bell System Tech. J. 7 , 90 (1928)I. Estermann and O. Stern, Z. Phys. 61, 95 (1930); I. Estermann, R. Frisch, and O. Stern, Z.

    Phys. 73, 348 (1931).C. Jnsson, Z. Phys. 161, 454474 (1961).A. Zeilinger, R. Ghler, C. G. Shull, W. Treimer, and W. Mampe, Rev. Mod. Phys. 60, 1067

    (1988).D. W. Keith, M. L. Schaenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Le. 61, 1580

    (1988); O. Carnal and J. Mlynek, Phys. Rev. Le. 66, 2689(1991).M. Arndt, et al., Nature 401, 680 (1999)T. Jumann et al, Nature Nanotechnology 7, 297 (2012)

    (. . 2.5), 19 (. 6). .

    , - . , ( ). - , . . , . , - . , . .

    31

  • . ,

    2.5: . . . . - .).

    . , . . 10.000 , 50.000 (. . 2.6). , . . , .

    ; ( ). , . - , : , , . , .

    . , . - . . .

    [A Tonomura et al, American Journal of Physics57, 117 (1989)] 1 103s 1; 5 108m/s. 150km 1; 5m. - , .

    32

  • 2. A

    2.6: Tonomura. : ) 8 , ) 270 , ) 2000 , ) 60000 .

    ( ), , - . , . .

    1. -

    , 19 . ;

    2. - . . , . ;

    3. - . ;

    1. L

    ( ) (/L)3 .

    g(V; !) =8V !2

    2c3; (2.28)

    33

  • . ,

    V = L3.

    2. (2.9) !/T = b b.

    3. . (2.12) - . - - E = c

    pp2 +m2ec2.

    4. q a E Larmor

    dE

    dt= 2q

    2a2

    3c3: (2.29)

    r. E = e2/(8r). . (2.29)

    dr

    dt= e

    4

    3c3m2er2: (2.30)

    r(0) = r0 (r = 0)

    =m2ec

    3r30e4

    : (2.31)

    r0 ' 1010m, .

    5. (2.21)

    E = cpp2 +m2c2 p = mv/

    p1 v2/c2):

    6. Young (. 2.7). A1(t; x) A2(t; x). d L -.

    () kd sin , k .

    () A, - I(y) = jA1 +A2j2

    I(y) = 4jAj2 cos2kd sin

    2

    ; (2.32)

    y.()

    sin ' y/L.

    34

  • 2. A

    2.7: .

    , . H. Kragh, (,

    2004). . , (, ), .1 .

    MaxJammer, The Conceptual Development of Quantum Mechanics, (2nd ed: New York: American Instuteof Physics, 1989).

    B. L. van derWaerden, Sources of Quantum Mechanics (Dover, 2007).

    , www.nobelprize.org/nobel_prizes/physics/laureates/1922/Bohr-lecture.html

    , www.nobelprize.org/nobel_prizes/physics/laureates/1929/broglie-lecture.html

    - ,

    P. Rodger, Physics World, September 2002 (. 15). M. Arndt and A. Zeilinger, Physics World, March 2005.

    Hitachi :www.youtube.com/watch?v=PanqoHa_B6c

    .www.youtube.com/watch?v=vCiOMQIRU7I.

    35

  • . ,

    36

  • 3

    B

    , , . - , , . - .

    , - : . , .

    3.1

    -. - , . . , . , .W. Bragg, 1922.

    -. Bragg , . (Werner Heisenberg).

    -

    !nm = [E(n) E(m)]/h (3.1)

    n m E(n) ( ). n. x(n; t).

    The Robert Boyle Lecture 1921, Scienc Monthly 14, 158 (1922).W. Heisenberg, Zeit. Phys. 33, 879, 1925.

    37

  • . ,

    , x(n; t) Fourier

    x(n; t) =1X

    m=1xm(n; t)eim!(n)t; (3.2)

    !(n) n T (n) n: !(n) = 2/T (n). x(n; t) , !n;m = m!(n) m n, . (3.2). Maxwell, . , (3.1). x(n; t) .

    - . , - (3.1). .

    1. , Anm m n.

    Anm ! Anmei!nmt; (3.3) !nm (3.1).

    2. Anm , . 1 . - a Anm, a2

    Bnm =Xl

    AnlAlm; (3.4)

    (3.3). (3.4) - . . ( - ). , Anm . - .

    3. Xnm x , Pnm p, X

    l

    (XnlPlm PnlXlm) = ihnm; (3.5)

    X P

    XP PX = ih1: (3.6)

    38

  • 3. B

    - .

    -, . , - .

    . - , ( ) , . - .

    , . , . , (Max Born) Pascuale Jordan (Paul Dirac) .

    3.2 3.2.1

    , - , . (Erwin Schrdinger), .

    , - (t; x) = eikxi!t. E = h! p = hk E p ! k ,

    ih @@t (t; x) (t; x)

    E.

    ih @@x

    (t; x) p.

    E = p22m

    (-) m, (t; x)

    ih@ (x; t)

    @t= h

    2

    2m

    @2 (x; t)

    @x2: (3.7)

    (3.7) . ; O . -

    H =p2

    2m+ V (x)

    39

  • . ,

    V (x) , h

    2

    2m@2

    @x2 (3.7) ( p2

    2m)

    h2

    2m@2

    @x2+ V (x) .

    ( )

    ih@ (x; t)

    @t=

    h

    2

    2m

    @2

    @x2+ V (x)

    (x; t): (3.8)

    . ,

    ih@ (r; t)@t

    =

    h

    2

    2mr2 + V (r)

    (r; t): (3.9)

    ! E = h!.

    (r; t) = E(r)eiEt/h (3.10)

    . (3.9) h

    2

    2mr2 + V (r)

    E(r) = EE(r): (3.11)

    , (x; t) = E(x)eiEt/h . (3.8), -

    h2

    2m

    @2

    @x2+ V (x)

    E(x) = EE(x): (3.12)

    3.2.2 -

    m ! , . (3.12) V (x) = 1

    2m!2x2,

    h2

    2m

    @2

    @x2+

    1

    2m!2x2

    E(x) = EE(x): (3.13)

    , , . , . (3.13) -

    limx!1

    (x) = 0: (3.14)

    (3.13) m;! h, : x0 =

    qhm!

    . x = x/x0, .(3.13)

    00E + (2 2)E = 0; (3.15)

    40

  • 3. B

    0 ,

    =E

    h!: (3.16)

    >> p, . (3.15)

    00E 2E = 0: (3.17)

    s = 122, . (3.17) d2E/ds2 + E = 0,

    es es. . (3.17) e2/2, e2/2 (3.14).

    E . (3.15) () = e2/2uE(). . (3.15)

    u00E 2u0E + (2 1)uE = 0: (3.18)

    . (3.18) Hermite. o 3.1, Hermite (3.14),

    = n+1

    2; n = 0; 1; 2; : : : : (3.19)

    . (3.18) n - Hermite Hn(). Hermite,. .

    n = 0; 1; 2; : : :

    n(x) = Cn exphm!

    2hx2iHn

    rm!

    hx

    ; (3.20)

    Cn . Cn n(x) :

    Rdxj

    phin(x)j2 = 1. Hermite () jCnj22nn!

    px0,

    Cn =1p2nn!

    m!h

    1/4: (3.21)

    n(x) 3.1. ( )

    En = (n+1

    2)h!: (3.22)

    . 1

    2h!

    .

    41

  • . ,

    3.1: (3.20) n =0; 1; 2; : : : ; 7.

    R11 dxjn(x)j2 = 1.

    3.1. Hermite.

    uE() = 0

    uE() =1Xk=0

    akk; (3.23)

    ak. uE

    u0E() =1Xk=0

    ak+1(k + 1)k; u00E() =

    1Xk=0

    ak+2(k + 1)(k + 2)k: (3.24)

    (3.18) - ak

    ak+2 =2(k + 12 )(k + 1)(k + 2)

    ak: (3.25)

    , - . - (3.25) 2, a0 a1 - ak. a0 P1

    l=0 a2l2l a1

    P1l=0 a2l+1

    2l+1 . 12 = n, n = 0; 1; 2; : : :, an+2 = 0 (3.23)

    n . a0 = 1 a1 = 2 Hermite Hn(). E() = e

    2/2uE() (3.14).

    , (3.23) . k , ak+2/ak 2/k. , e2

    P1l=0 a2l

    2l a2l = 1/l!. a2l+2/a2l 1l , ak+2/ak 2/k,

    42

  • 3. B

    (3.23). uE() e2 E()

    e2/2. (3.14) . (3.14) 12 = n -

    (3.22).

    3.2.3 (3.11)

    , V (r), r = jrj.

    (r; ; ), r 2 [0;1), 2 [0; ] 2 [0; 2]. Laplace

    r2f = 1r2

    @

    @r

    r2@f

    @r

    +

    1

    r2 sin @

    @

    sin @f

    @

    +

    1

    r2 sin2 @2f

    @2; (3.26)

    f(r; ; ).

    E(r; ; ) = R(r)Ylm(; ); (3.27)

    Y lm(; ) . R(r) . l m l = 0; 1; 2; : : : m =l;l + 1; : : : ; l 1; l.

    r2r2Y lm(; ) =1

    sin @

    @

    sin @Y

    lm(; )

    @

    +

    1

    sin2 @2Y lm(; )

    @2

    = l(l + 1)Y lm(; ): (3.28) . (3.27) . (3.11) R(r)

    h2

    2mr2d

    dr

    r2dR(r)

    dr

    +

    h2l(l + 1)

    2mr2+ V (r)

    R(r) = ER(r) (3.29)

    . (3.29) u(r) = rR(r) R(r).

    h22m

    d2u(r)

    dr2+

    h2l(l + 1)

    2mr2+ V (r)

    u(r) = Eu(r) (3.30)

    . (3.29) V (r). , . (3.12),

    V (r) = V (r) +h2l(l + 1)

    2mr2: (3.31)

    (3.30) u(r) l , m.

    ( ) E(r) ! 0 ! 1. , E - r = 0. , . (3.30)

    u(0) = 0 limr!1

    u(r) = 0 (3.32)

    43

  • . ,

    Coulomb ,Z . , .

    V (r) = Ze2

    4r; (3.33)

    Z . m me. ( , , . 2.)

    . (3.30 (3.33) h;me e, , . . (2.17),

    0 =4h2

    mee2(3.34)

    = Zr/0 r, . (3.30)

    u00 ++

    2

    l(l + 1)

    2

    u = 0: (3.35)

    0

    =2meE

    20

    h2Z2: (3.36)

    (3.32). ! 0, .(3.35) 2u00 = l(l+1), u = l+1 u = l. (3.32), . ! 1, . (3.35) u00 + u = 0, u = e

    pjj

    , < 0. u()

    u() = l+1epjjf(); (3.37)

    . (3.35)

    f 00 + 2(l + 1pjj)f 0 + 2(1 (l + 1)

    pjj)f = 0 (3.38)

    . (3.38) (3.32) - n > l jj = n2. 3.2. . (3.38) (n l 1)- fnl(). - Laguerre. .

    , - () n; lm, n = 1; 2; 3; : : :, 0 l < n l m l,

    nlm(r; ; ) = Cn;l

    Zr

    0

    le Zn0

    rfn;l

    Zr

    0

    Y ml (; ); (3.39)

    Cn;l . n

    En = Z2e4me

    322h2n2; (3.40)

    44

  • 3. B

    3.2: Rn;l(r) (3.39) , n l.

    3.2. (3.38)

    f() = 0

    f() =1Xk=0

    akk; (3.41)

    ak.

    f 00() =1Xk=0

    ak+1(k + 1)kk; f 0() =

    1Xk=0

    akkk; f 0() =

    1Xk=0

    ak+1(k + 1)k:

    (3.38) - ak

    ak+1 =2[pjj(l + 1 + k) 1](k + 1)(k + 2l + 2)

    ak: (3.42)

    k = k 1 pjj(l+1+k) = 1, ak+1 = 0 (3.41) k . n = l+k+1 >l,

    jj = n2; (3.43)

    n l 1. (3.43), (3.42)

    k ak+1/ak = 2pjj/k.

    f() exp[2pjj]. u()

    l+1epjj (3.32)

    . (3.32) (3.43) (3.40).

    45

  • . ,

    Laguerre Ln , - fnl() = L2l+1nl1(/n)

    a0 = L2l+1nl1(0) =

    n+ l

    n l 1: (3.44)

    fn;l():

    f1;0() = f2;0() = 2(1 /2) f2;1() = f3;0() = 3(1 2

    3 +

    2

    272) f3;1() = 6(1 1

    9) f3;2() = : (3.45)

    , nlm -

    Rr2 sin drddjnlmj2 = 1.

    nlm(r; ; ) =

    s2

    n0

    3(n l 1)!2n(n+ l)!

    eZrn0

    2r

    n0

    lL2l+1nl1

    2Zr

    n0

    Y ml (; ): (3.46)

    3.2.4 .

    , , .

    , N

    i@

    @t(r1; : : : ; rN) =

    "

    NXi=1

    h2

    2mir2i + V (r1; : : : ; rN)

    # (r1; : : : ; rN); (3.47)

    mi V (r1; : : : ; rN) . . .

    . -. , .

    . : . 3. .

    - . .

    1. i. (x; t), . .

    46

  • 3. B

    2. N , - N . Q = R3N N . , - R3.

    3. . (r; t) (3.9), (r;t) . , .

    3.3.

    io 1926 - . , - . , , - . .

    . - ... . : , -. : , . - , , -, , .

    W.Heisenberg,Quantum theory and its interpretaons, Quantumtheory and Measurement, eds. J. A. Wheeler and W. H. Zurek (Princeton UniversityPress 1983).

    3.3 3.3.1

    , -, . : -

    N t = 0, t N(t) = N0et - , . - .

    47

  • . ,

    , . .

    . n(x) i En. X^ P^ - (x)

    X^ (x) = x (x); P^ (x) = i @@x

    (x): (3.48)

    , , (3.6) . E

    Xmn =

    Zdx m(x; t)x n(x; t) (3.49)

    Pmn =

    Zdx m(x; t)(i@/@x) n(x; t): (3.50)

    (3.10), n(x; t) = n(x)eiEnt/h. Xmn Pmn

    Xmn(t) = Xmn(0)ei(EmEn)t/h; Pmn(t) = Pmn(0)ei(EmEn)t/h; (3.51)

    (3.3). , , ,

    . .

    3.3.2 .

    . - . - , . , . , -

    x w; (3.52) w .

    . - . , p = 2h/. ,

    p 2h: (3.53)

    w 0; 47/NA NA . 2 1,45. w = 0; 3 . (3.54) xp > 2h.

    48

  • 3. B

    3.3: . . , - . -. .

    (3.52) (3.53)

    xp (2w)h h: (3.54) (3.54) . -

    . x p .

    (3.54) , . . . t. , t. E = @E

    @pp = vp, v .

    t x = vt, . (3.54)

    Et > h (3.55)

    . ,

    , (3.54) : x p , x - p . x p .

    49

  • . ,

    , , . , - .

    , - , . , .

    , . . - , . , , , 3.4.

    3.4.

    - (3.55). . T . , . , m1 m2 (1) (2) E = (m1 m2)c2. , E -. t . Et .

    . L. Rosenfeld :

    ... . , - , . . . , , , .... .

    , , , . - , . E m : E = mc2. F = mg , m = F/g. - pz ( -) F = p/T , T . E = pzc2/(Tg).

    ,

    W. Heisenberg, Physics and Philosophy (Prometheus Books, New York, 1999).

    50

  • 3. B

    . , z z+z, T T +t , t/T = gz/c2T . z , t .

    Et pzc2

    Tg

    gzT

    c2= pzz > h; (3.56)

    - . - ().

    Albert Einstein: Philosopher-Scienst, P.A.Schilp editor (Evanston 1949). Quantum theory and Measurement,edited by J. A. Wheeler and W. H. Zurek. , . A. C. de laTorre et al, Eur. J. Phys. 21, 253 (2000).

    3.3.3

    . , - . , .

    : (x; t) (x; t) = j (x; t)j2 x t. , U R3 , Prob(U; t) U t

    Prob(U; t) =ZU

    d3xj (x; t)j2: (3.57)

    j (r; t)j2 .Z

    d3xj (x; t)j2 = 1: (3.58)

    (5.2) (3.9). ,

    @

    @t=

    @

    @t+

    @

    @t= i

    h h

    2

    2mr2 + V

    +

    i

    h

    h

    2

    2mr2 + V

    =

    ih

    2m( r2 r2 ); (3.59)

    . (3.9). (3.59)

    @

    @t+r JS = 0; (3.60)

    JS

    JS =ih

    2m( r r ) : (3.61)

    51

  • . ,

    U

    @

    @tProb(U; t) =

    I@U

    d2 JS; (3.62)

    @U U . U = R3 @U , ( ).

    @

    @t

    Zd3xj (x; t)j2 = 0; (3.63)

    (5.2) .

    , ( ) .

    j (x; t)j2 , t. . Prob(U; t) . - . , t , - j (x; t)j2. .

    3.4

    . ( ) 5 Solvay , 1927, .

    , : . - . . , , , - 1927. M , . , .

    Solvay . - . . . .

    , - . , . .

    52

  • 3. B

    3.4: . W. Heisenberg, The Physical Principles of the Quantum Theory (Dover, New York, 1949).

    : . . , . - .

    . - -. . - - .

    , -, . . (J. vonNeumann), . , , (Hilbert) - .

    - . , - , , . , .

    P. Dirac, The Principles of Quantum Mechanics (Oxford University Press, 1930). J. von Neumann, MathemascheGrundlagen der Quantenmechanik (Berlin: Julius Springer, 1932).

    53

  • . ,

    6 . - . 1.5. 3.1. 6 . , . , -. , . .

    3.1:

    H H

    1.

    .

    2. .

    3. x p - .

    4. - , - .

    5. JS ;

    1.

    m V (r) = 12m!2r2.

    2. . (3.47) m M r1 r2 . V (r1 r2) . rc m +M

    54

  • 3. B

    x = r1 r2 V (x),

    =Mm

    m+M: (3.64)

    .

    3. m ! . -

    (x; t) = C(t) exphm!

    2h[x q(t)]2 + ip(t)x/h

    i: (3.65)

    (3.65) q(t) p(t) .

    4. ( ) ear2 a > 0; , ( ) 1/ cosh(bx), b > 0;

    . . 2.

    ,. . , , . 5-6.

    , . . , (, 1978).

    J.A. Wheeler and W. H. Zurek, Quantum Theory and Measurement (Princeton University Press, 1984).

    , http://www.nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberg-lecture.html

    , http://www.nobelprize.org/nobel_prizes/physics/laureates/1933/schrodinger-lecture.html

    , http://www.nobelprize.org/nobel_prizes/physics/laureates/1954/born-lecture.html

    55

  • . ,

    56

  • 4

    - . . . , - . .

    h = c = 1.

    4.1 4.1.1

    .

    1. . -: 1(r; t) 2(r; t) c1 1(r; t) + c2 2(r; t) , c1 c2. - . i -.

    2. - , - .

    3. (3.50)

    Rdx (x)(x) (x)

    (x). j (x)j2 . .

    , . .

    57

  • . ,

    4.1.2 ,

    . 1. V C V -

    : ; 2 V + 2 V , : 2 C 2 V 2 V ,

    .1. ; ; 2 V (+ ) + = + (+ ).2. ; 2 V + = + .3. 0 2 V + 0 = , 2 V .4. 2 V , 2 V , + () = 0.5. 1; 2 2 C, 1(2) = (12).6. 2 V , 1 = .7. 2 C ; 2 V (+ ) = + .8. 1; 2 2 C (1 + 2) = 1+ 2.

    2. V V .

    , . 3. V . 4. V ; 2 H (; ) .

    2 C ; ; 2 H, ( + ; ) = (; ) + (; ). ( ).

    ; 2 H, ( ; ) = (; ). () 2 H, (; ) 0. (; ) = 0 = 0. () , .

    1. : (; + ) = (; ) + (; ). 5. kk 2 V : jjjj =p(; ) 6. D(; ) ; 2 V :D(; ) = k k.

    (0) V .

    58

  • 4.

    4.1.3 V -

    . V , . V Cn n.

    2 Cn

    =

    0BB@12: : :n

    1CCA (4.1) , ; 2 Cn

    (; ) =nXi=0

    ii : (4.2)

    , . 2, , (x). .

    7. V -, .

    , . 4.1. , - V n V , V . . - .

    4.1.4 1. l2 = fi; i = 1; 2; : : :g

    P1i=1 jij2 0 N n;m > N kn mk < .

    Cauchy V . , V - R. n(x) = tanh(nx)/(1+x2) - , sgn(x)/(1 + x2) x = 0, V .

    .

    60

  • 4.

    10. V , fn 2 V jn = 1; 2; : : :g Cauchy, 2 V .

    , , .

    11. fnjn = 1; 2; : : :g V V . 2 V > 0, N n > N j(n; ) (; )j < .

    . . , n(x) = sin(nx) L2([0; 2])

    [0; 2]

    (; ) =

    Z 20

    dx(x)(x): (4.6)

    n n ! 1. - (x) limn!1(n; ) = 0. fng 0

    w-limn!1n = 0: (4.7)

    4.2 . -

    .

    1. , .

    . , . .

    . 6 1 , .

    4.2.1 1, .

    , ; . ,

    . , , , .

    . , - , . .

    61

  • . ,

    , (J.W. Gibbs). , () , . . , -.

    - . : - . -. . 1 2. , 1 - , 2 ( ). - .

    : - .

    - . - . , - , .

    - . , . - - . .

    4.2.2

    . H. ; 2 H - , + ( 2 C) . - - , , .

    - , + . - ,

    62

  • 4.

    4.1: Mach-Zehnder ( ). ! - ! + ! " ".

    , , , . : .

    + . E1 E2, + E1 E2. + E1 E2 .

    Mach-Zehnder

    - . , , . Mach-Zehnder, 4.1.

    Mach-Zehnder (beam splier). ( 50%) . - , - . . - ( ) . - .

    ! () " (). ( 45o) 90o ( Snell). i .

    63

  • . ,

    ! ! i "; " ! i !: (4.8)

    , (4.8).

    ! ! 1p2(i " + !); " ! 1p

    2( " + i !); (4.9)

    ( !; !) = ( "; ") = 1 ( !; ") = 0. 1/p2

    . U ! -

    ! . ( U .) , 4.1 !, - , 1p

    2( !+!) ip2( !!).

    U : ! ! ! Mach-Zehnder .

    - . , - . , - .

    .

    . , - . , - . 5e = 5 7e = 7 .

    . 5e+ 7e, 5e 7e. , . . , . : . . 7 .

    .

    E. Schrdinger, Proceedings of the American Philosophical Society, 124, 323 (1935). QuantumTheory and Measurement, J.A. Wheeler and W.H. Zurek, eds. (Princeton University Press, New Jersey 1983).

    64

  • 4.

    ( ): , 12 , . , , . , . ( ) .

    , ....

    . (.. ) - , . . . -.

    - , - , - .

    -, Schrdinger . (. . 4.2), - , . , - . . . , , - . , .

    - . . 8, , - , - . () , .

    . - , N . - , (1015Kg) 1012amu .

    65

  • . ,

    4.2: - , . () , - . . () . , , . () . , , ....(;)

    . . - - : . - 4.2.

    4.2. .

    -.

    1. 1996, S. Haroche cole Normale Suprieure (), - = c1+c2, - . 5-10.

    2. 1996, D. J. Wineland Naonal Instute of Standards andTechnology () Be+ (x) = [ (x x1) + (x x2)]/

    p2,

    x = 0. jx1 x2j ' 80nm, -

    - , 4.2.

    66

  • 4.

    ' 7nm, ( 0; 1nm). .

    3. 2000 2002 , Del () StonyBrooke (), - -. A . - 1010 , 103 ().

    M. Brune et al, Phys. Rev. Le. 77, 4887 (1996).C. Monroe et al, Science 272, 1131 (1996).C. H. van der Wal et al, Science 290, 773 (2000)J. R. Friedman et al, Nature 406, 43 (2002).J. I. Korsbakken et al, EPL 89, 30003 (2010).

    , . : - ( ) , , . 6, -.

    4.3

    , : , - , .

    4.3.1 ; H.

    2. ( ) (; ) = 0, k+ k2 = kk2 + k k2: (4.10)

    . k+ k2 = (+ ; + ) = (; ) + ( ; ) + (; ) + (; ) = kk2 + k k2. 3. ( Schwarz) j(; ) kkk k, = , 2 C.. = 0, . 6= 0 = (; ) ; . (; ) = (; ) (; )( ; )/( ; ) = 0,

    kk2 = (; )( ; )

    2 + kk2 = j(; )j2k k2 + kk2 j(; )j2k k2 : kk2k k2 j(; )j2 Schwarz. h = 0, = = (; )/( ; ) 2 C.

    Schwarz 1 (; )kkk k 1, .

    67

  • . ,

    12. (; ) ;

    cos (; ) = j(; )jkkk k : (4.11)

    4. ( ) jkk k kj k+ k kk+ k k.. (kk + k k)2 k + k2 = kk2 + k k2 + 2kk k k kk2 k k2 (; ) ( ; ) =2kk k k

    1 Re(; )kkk k

    2kk k k

    1 j(; )jkkk k

    0,

    Schwarz. k+ k kk+ k k. .

    5. ( )

    (; ) =1

    4

    k+ k2 k k2 + ik+ i k2 ik i k2 : (4.12). .

    .

    4.3.2 13. feig - (ei; ej) = ij .

    14. feig H - .

    (Cn), o - . - .

    15. .

    - . . - , .

    -. , i feig . (i 2 f1; 2; : : : ; ng) (i 2 f1; 2; : : :g). , .

    Pi

    Pni=1

    P1i=1.

    .

    68

  • 4.

    6. ( ) feig H, and =

    Pi ciei, ci 2 C. ci = (; ei).

    . =Pi ciei ej . , (; ej) =

    Pi ci(ei; ej) =

    Pi ciij = cj .

    7. ( Parseval) feig H 2 H, kk2 =Pi j(ei; )j2.. =Pi ciei,

    kk2 = (; ) =Xi

    Xj

    ci cj(ei; ej) =Xi

    Xj

    ci cjij

    =Xi

    jcij2 =Xi

    j(ei; )j2;

    6.

    6

    =Xi

    (; ei)ei: (4.13)

    2 H feig . . (4.13) .

    feig fdag H.

    Uia = (ei; da): (4.14)

    - .

    1. ei =P

    a Uiada, da =P

    i Uiaei.

    2.P

    a UiaUja = ij ,

    Pi UiaU

    ib = ab. ( Uia .)

    4.3.3 H1 H2.

    16. F : H1 ! H2

    1. -- .

    2. : F (+ ) = F () + F ( ).

    3. : kF ()k = kk 2 H1.

    , , :

    (F (); F ( ))H2 = (; )H1 : (4.15)

    69

  • . ,

    17. . .

    H n fe1; : : : ; eng . - 2 H = Pni=1 ciei H Cn, F () = (c1; : : : ; cn). Parseval . n Cn.

    H, fe1; e2; : : :g

    F : H ! l2 ,

    F () = fc1; c2; c3; : : :g (4.16) = P1i=1 ciei. Parseval . l2, .

    . . (-) . , - .

    ( ) - . - , , , .

    4.3.4 .

    H1 H2,

    =

    0BB@c1c2: : :cn

    1CCA 2 H1 =0BB@

    d1d2: : :dm

    1CCA 2 H2: (4.17) H1 H2

    =

    0BBBBBB@c1: : :cnd1: : :dm

    1CCCCCCA (4.18)

    -. K .

    70

  • 4.

    8. Cn Cm = Cn+m. 9. 0+ 0 = 2 H1 2 H2. H1 H2 . 10. ( .) feig H1 fojg H2, fei 0; 0 ojg H1 H2.

    , . 18. H1 H2 H1 H2, 2 H1 H2, (1 1) + (2 2) =(1 + 2) ( 1 + 2) (1 1; 2 2) = (1; 2) + ( 1; 2).

    4.3.5 19. V H H . ; 2 V 2 C, + 2 V .

    . - V , n 2 V , - V . V .

    V . . - -. , -. 20. Span(S) S H H Pa caa ( ), ca 2 C a 2 S. 21. V ? V H 2 H (; ) = 0 2 V .

    21 V ?? = V . , 2 V 2 V ? = 0. 11. ( ) V H. 2 H = V + V ? , V 2 V V ? 2 V?. V V .. feig V . H fwkg V ?. = Pi(; ei)ei +Pk(;wk)wk. V = =P

    i(; ei)ei V ? =P

    k(;wk)wk, = V + V ? . 0V 0V ? = 0V + 0V ? .

    V 0V = V ? 0V ? . V V ?, V 0V =V ? 0V ? = 0.

    10 11 H = V V ?.

    71

  • . ,

    4.3.6 -

    . H

    =

    0BB@12: : :n

    1CCA 2 H; (4.19) (4.2).

    O H H = (1; 2; : : : ; n) : (4.20)

    (; )H =Xi

    ii : (4.21)

    .1. 2 H : H ! C,

    2 H, (f) =Pi ii 2 H. H H.

    2. 2 H . (4.19) = (1; 2; : : : ; n) 2 H. !

    (; )H = ( ; )H; (4.22) ; 2 H. H H ! . , ,H = H. Riesz.

    . - . 4.3, .

    4.3.

    22. H H - H, : H ! C,

    (+ ) = () + ( ); (4.23)

    ; 2 H 2 C. H (1+2)() =1()+2() 1; 2 2 H, 2 H 2 C.

    kk = sup2H

    j()jp(; )

    : (4.24)

    72

  • 4.

    , H ( 5).

    12. ( Riesz) 2 H, 2 H () = (; ) 2 H.. feig H. i = (ei) i, =

    Pi

    i ei. 2 H, (; ) =

    Pi i(; ei) =

    Pi (ei)(; ei) =

    (P

    i(; ei)ei) = !(). . 0 () = (; 0) 2 H, (; 0) = 0, 2 H. = 0, k 0k = 0, , = 0.

    4.4 Riesz ,

    . , 2 H ket j i. ket

    , .. , , . ,

    j 4 i ket. ket

    1p2j,i+ 1p

    2j/i

    4.2.

    H bra hj. Riesz, bra ket. h j H ket j i.

    Riesz H braket: hj i.

    ketbra . (jihj) j i = hj iji. .

    ket = = n 1. bra = = 1 n. braket = ( 1 n) ( n 1) = 1 1 = . ketbra = ( n 1) ( 1 n) = n n = .

    feng jni, n = 1; 2; : : : , -

    ket. , (3.39) Schrdinger jn; l;mi.

    73

  • . ,

    j i jni j i =Pn jnihnjfi.

    1 =Xn

    jnihnj: (4.25)

    , o - bra ket. -, j iH Hhj.

    !! To (; ) - h ji , .

    , 5.6 . - , - . 5.6 .

    1. ;

    2. 1 . - 100 . . , 1 1023 -. ;

    3. . ;

    4. : , , . -;

    5. R; (i) ex2/x, (ii) 1/px2 + 1,

    (iii) eax, (iv)sin(x)/x, (v) 1/pjxj.

    1. 0

    2. ( ! ei) ;

    2. qp(x) = C exp(x q)2/(22) + ipx L2(R), C -

    .

    () C, qp .

    74

  • 4.

    () ( qp; q0p0).

    3. p(x) = 1p2eipx 1

    2x2 . p -

    > 0, = 0. ( p; p0). ! 0;

    Hilbert , . C. J. Isham, Lectures on Quantum Theory

    (Allied Publishers, 2001), . 2.

    , . L. E. Ballenne, Quantum Mechanics: aModern Development (World Scienc, 1998), . 8.

    , . V. Scarani, Quantum Physics: A FirstEncounter: Interference, Entanglement, and Reality (Oxford University Press 2006).

    , . . , (, , 2008), . 1.

    N. Young, An Introducon toHilbert Space (Cambridge University Press, 1988) . 1-6 D. W. Cohen An Introducon to HilbertSpace and Quantum Logic (Springer, 1989) . 1-4.

    , . A. J. Legge,Phys. Scr. 2002, 69 (2002) M. Arndt and K. Horberger, Nature Physics 10, 271 (2014).

    D. J. Wineland, http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/wineland-lecture.html

    S. Haroche, http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/haroche-lecture.html

    75

  • . ,

    76

  • 5

    , . : ,, . , - . .

    5.1 5.1.1

    .

    23. A^ H A^ : H ! H, 2 H A^ 2 H, A^(+ ) = A^+ A^ , ; 2 H 2 C.

    . .

    H 1. . (A^+ B^) := A^+ B^, 2 H.2. . (A^) = A^, 2 C 2 H.3. . (A^B^) := A^(B^), 2 H. .

    1. H , 1.

    2. A^; B^ C^, (A^B^)C^ = A^(B^C^). ()

    3. A^; B^ C^ 2 C, A^(B^ + C^) = A^B^ + A^C^ (B^ + C^)A^ = B^A^+ C^A^. ().

    4. 1^ 1^ = 2 H, 1^A^ = A^1^ = A^ A^. ().

    77

  • . ,

    5. 0^ 0^ = 0 2 H, 0^A^ = A^0^ = 0^ A^+ 0^ = A^, A^

    .

    A^. B^, A^B^ = B^A^ = 1^, B^ A^ A^1.

    13. ( .) A^ B^ , (A^B^)1 =B^1A^1. .

    24. A^y A^, (A^; ) = (; A^y ), ; 2 H.

    (cA^ + B^)y = cA^y + B^y, A^ B^ c 2 C. 14. ( ). (A^B^)y = B^yA^y.. (A^B^; ) = (B^; A^y ) = (; B^yA^y ). (A^B^; ) = (; (A^B^)y ), (; (A^B^)y ) = (; B^yA^y ) ; 2 H.

    feng H A^ - Amn = (A^en; em). =

    Pn cnen.

    A^ =Xn

    cnA^en =Xn;m

    cn(A^en; em)em =Xm

    (Xn

    Amncn)em; (5.1)

    . ! A^ cm ! c0m

    PnAmncn -

    feng. cn , Amn .

    Amn = hmjA^jni. ket, bra ket. , (A^; B^C^ ) (C^yB^yA^; ) braket h jC^yB^yA^ji.

    5.1.2 A^ H.

    25. ( ). 2 H A^ = a , a 2 C, A^ A^.

    A^ , c1 + c2 , c1; c2 2 H A^ . a Va . a.

    A^ a , - . , Va . Va a.

    78

  • 5.

    26. (kernel) A^ a = 0. ker(A^).

    A^ . ( A^f = 0, A^1A^f = 0, f = 0). ker(A^) = f0g. 15. ( ). A^ A^ =a , A^n A^n = an , n = 1; 2; 3; : : :.. n = 2, A^2 = A^(a ) = aA^ = a2 . n.

    5.1.3 27. kA^k A^

    kA^k = sup 2H

    kA^ kk k : (5.2)

    (supremum) . (5.2) ., (k k)

    . . . -

    .

    I

    A^ B^ H .1. kA^k = 0, A^ = 0.2. kA^k = jjkA^k, 2 C.3. kA^ k kA^k k k, 2 H.4. kA^+ B^k kA^k+ kB^k.

    . 2 H k(A^+B^) k = kA^ +B^ k kA^ k+kB^ k (kA^k+kB^k)k k. (5.2) .

    5. ( Cauchy-Schwartz.) kA^B^k kA^k kB^k.. kA^B^ k kA^kkB^ k kA^kkB^kk k, 2 H. (5.2) .

    1. (H = Cn), - n n. . Aij , i; j = 1; 2; : : : ; n .

    2. - . , - x^ (x) = x (x) L2(R) -. 0(x) = ex2/2 2 L2(R). L(x) = 0(xL) L.

    kx^ Lk/k Xk =rX2 +

    1

    2

    79

  • . ,

    , L. x^ . - . . , x^ L2(R) 1/

    px2 + 1

    x/px2 + 1, .

    3. DA^ - A^ - H A^ . - A^ . A^ - (A^; ), ; 2 H. , x^ 0(x) = 1/

    px2 + 1, -

    = ex2/px2 + 1, > 0.

    (x^ 0; ) lim!0(x^ ; ).

    4. - .

    5. H B(H).

    5.2

    5.2.1 28. (normal) A^, A^A^y =A^yA^.

    16. ( ). A^ , A^ A^y .. A^ = a . k(A^ya1^) k2 = ((A^ya1^) ; (A^ya1^) ) = ((A^a1^)(A^ya1^) ; ) = ((A^y a1^)(A^ a1^) ; ) = 0, (A^ a1^) = 0. A^y = a .

    17. ( ) A^ , kA^k = supi jaij ai A^.. kA^ k2 = (A^yA^ ; ). A^ A^yA^ ( ). 16, A^yA^ jaij2 ai A^. .

    O . - , .

    5.2.2 29. A^ A^ = A^y.

    80

  • 5.

    18. ( ) -.. A^ = a (A^ ; ) = a( ; ) ( ; A^ ) = a( ; ). ( ; A^ ) =(A^ ; ), a = a. 19. ( ) A^ , A^ = a ; A^ = a0, a 6= a0, (; ) = 0.. (A^ ; ) = a( ; ) (A^; ) = a0(; ). (; A^ ) = a0(; ) a0 , (a a0)(; ) = 0. a 6= a0, .

    19 , feng .

    - .

    , Va. -

    . , . . Cn, A - det(A^ a1) = 0, a. n, n . n . Cn.

    5.2.3 30. (unitary) U^ U^ y = U^1. 20. () U^ jj = 1.. U^ = k k = 1. 1 = U^ y U^ y . o U^ , U^ y . = 1 jj2 = 1.

    17, kU^k = 1 P^ . 21. ( ) feig fe0ig. - U^ e0i = U^ei, i.. U^

    U^ =X

    ( ; ei)e0i:

    U^ , ,(U^ yU^ ; ) = (U^ ; U^) =

    Xi;j

    ( ; ei)(; ej)(e0i; e

    0j) =

    Xi

    ( ; ei)(ej ; ) = ( ; )

    U^ yU^ = 1^. U^ U^ y = 1^

    22. ( ) .. U^1U^2(U^1U^2)y = U^1U^2U^ y2 U^

    y1 = U^1U^

    y1 = 1^.

    H , H U(H). Un = U(Cn) U1 = U(l2).

    81

  • . ,

    5.2.4 31. P^ P^ 2 = P^ . 23. 0 1.. 15 , P^ = , 2 = , = 0 = 1.

    17, kP^k = 1 P^ . H (k k = 1),

    P^ P^ = (; ) 2 H . P^ = j ih j. P^ .

    n S = fe1; : : : ; eng.. P^S P^S =

    Pni=1(; ei)ei 2 H. P^S

    . P^S =Pn

    i=1 jiihij . -

    . . 24. ( ) ( ) V H P^V , o. ,

    V P^V P^V = V , V 2 H V 11. V ? P^V ? = 1^ P^V .

    P^ V1 1 P^ .

    5.1. 5.1.

    , , - ( ) - .

    , / . , (, , ) -. A . . (1.36) . ,

    1. A. A = 1 A.2. A \B. A\B = A B .3. A, B , A \ B = ;.

    A B = 0.4. A A[B. A[B = A+B

    A B .5. A B, A B = A.

    A;B A;B .

    ,

    82

  • 5.

    . A . , (

    ) . (), - (, , ).

    , . .

    . : ( C) = (A ) ( C).

    . - . . .

    ( ) /, .

    1. V , - V ?. - P^V ? = 1^ P^V .

    2. VA VB , A VA VB . P^VA P^VA = P^VB P^VA = P^VA .

    3. A A . VA V ?B . , VA VB 0 .

    4. VA VB : P^VA P^VB = P^VB P^VA .

    P^V1 P^V2 P^V1 + P^V2 P^V1 P^V2 -

    .

    , .

    G. Birkho and J. vonNeumann,Annals of Mathemacs, 37, 823 (1936).

    5.2.5 32. A^ (A^ ; ) 0 2 H. A^ , A^ 0. 25. ( ) -.. A^ a < 0, (A^ ; ) =a( ; ) < 0. .

    83

  • . ,

    26. () > 0 A^ 0; B^ 0, A^+ B^ 0.. .

    33. ( ) A^ B^, A^ B^, A^ B^ 0. 27. A^, A^yA^ 0.. , (A^yA^; ) = (A^; A^) = kA^k2 0.

    5.3 A^,

    A^n = A^A^ : : : A^; n : (5.3)

    hn(x) =Pn

    k=0 ckxk, n , ck,

    hn(A^). -

    . - , . , . , - f(x) = ex hn(x) =

    Pnk=1 x

    k/k!, n ! 1. f(A^) f : R! R.

    . -, fn(x) = (1 + tanh(nx))/2 n ! 0 -

    (x) =

    0 x < 01 x > 0

    : (5.4)

    ,

    gn(x) =1

    2(fn(x a) + fn(b x)) (5.5)

    [a;b](x) [a; b] R. -

    f(A^) f :R! C . . .

    : eA^ =P1n=1 1n!A^n. : U(A^) -

    U R. A^: n

    pA^.

    84

  • 5.

    27, A^, A^yA^ 0. - jA^j :=

    pA^yA^.

    15 hn(x), hn(A^) =hn(a) , A^ = a . .

    28. ( ) A^ - A^ = a , f(A^) f

    f(A^) = f(a) : (5.6)

    A^ -. R f(x) = g(x)h(x),

    f(A^) = g(A^)h(A^): (5.7)

    , .

    eixeix = 1 (eiA^)y = eiA^ A^ , eiA^ .

    2U = U , U(A^) , A^ .

    , f(x) = g(x) , - : f(A^) = g(A^).

    1. (1 x)1 = 1 + x + x2 + x3 + : : : jxj < 1, A^, jjA^jj < 1,

    (1 A^)1 = 1 + A^+ A^2 + A^3 + : : : : (5.8)

    2. eix = lim!0R1+i1+i

    deix A^,

    eiA^ = lim!0

    Z 1+i1+i

    dei( A^)1: (5.9)

    ( A^)1 . (5.9) (resolvent) - A^.

    5.4 34. A^ B^ [A^; B^] := A^B^ B^A^. 29. ( ) A^ B^ , C^ = i[A^; B^] .. C^y = i(A^B^ B^A^)y = i(B^A^ A^B^) = i[B^; A^] = C^.

    85

  • . ,

    30. ( ) .

    1. [A^; 1^] = 0.

    2. [A^; B^] = [B^; A^].3. [A^; B^ + C^] = [A^; B^] + [A^; C^].

    4. [A^; B^C^] = [A^; B^]C^ + B^[A^; C^].

    5. [A^; [B^; C^]] + [C^; [A^; B^]] + [B^; [C^; A^]] = 0. ( Jacobi)

    31. ( BakerCampbellHausdor.)

    eA^eB^ = expA^+ B^ +

    1

    2[A^; B^] +

    1

    12[A^; [A^; B^]] 1

    12[B^; [A^; B^]] + : : :

    :

    . C^ = log[eA^eB^]. eA^eB^ = (1+ A^+ 12A^2+ 13!A^3 : : :)(1+ B^+ 12B^2+ 13!B^3+ : : :) =1 + (A^ + B^) + 12(A^

    2 + B^2 + 2A^B^) + 16(A^3 + 3A^2B^ + 3A^B^2 + B^3) + : : :.

    log(1 + x) = x 12x2 + 13x3 + : : : C^. A^ B^ . .

    32. ( )

    eA^B^eA^ = B^ + [A^; B^] +1

    2![A^; [A^; B^]] +

    1

    3![A^; [A^; [A^; B^]]] + : : : :

    . esA^B^esA^ Taylor s = 0. s = 1. Taylor B^. [A^; ]. .

    x^ p^ - (3.6), [X^; P^ ] = i. , o L2(R; dx x^ (x) = x (x) p^ = i@ (x)/@x, 2 L2(R; dx).

    [x^n; p^] = inX^n1: (5.10)

    f(x) Taylor

    [f(x^); P^ ] = if 0(x^): (5.11)

    [x^; f(p^)] = if 0(p^).

    5.5

    . - , - . - .

    86

  • 5.

    , (). . , , .

    5.5.1 -

    . - .

    A^ CN . - an, n = 1; 2; : : : ; N . jni, jni ! eijni.

    N jni CN , 1^ =PNn=1 jnihnj. ,

    A^ =NXn=1

    anjnihnj: (5.12)

    Aij = hijA^jji, jni (un)i = hijni, (5.12)

    Aij =NXn=1

    an(un)i(un)j ; (5.13)

    . A^ CN

    . K , K < N . 5.1.2, an,n = 1; 2; : : : ; K Vn, an. Dn Vn - ,

    PKn=1Dn = K.

    P^n Vn - A^.

    33. ( .) P^n A^,

    1.PK

    n=1 P^n = 1 ( )

    2. P^nP^m = P^nnm ( ).

    . n, Dn jn; ini, in = 1; 2; : : : ; Dn Vn, hn; injn; jni = injn . Vn X

    in

    jn; inihn; inj = P^n: (5.14)

    19, hn; injm; jmi = 0 n 6= m. P^nP^n = 0 n 6= m, .

    87

  • . ,

    jn; ini CN : PKn=1Dn = N .

    KXn=1

    DnXin=1

    jn; inihn; inj = 1^; (5.15)

    . (5.14) .

    - (. . 1.4.6), . 5.7. ( ) .

    , (5.13)

    A^ =KXn=1

    DnXin=1

    anjn; inihn; inj =KXn=1

    anP^n: (5.16)

    28 f ,

    f(A^) =KXn=1

    f(an)P^n: (5.17)

    . 34. ( ) - A^ an - P^n,

    1. O .

    2. . (5.16).

    3. f : R! R . (5.17).

    1. C3, . . 5.8.1.

    2. C3 /

    A^ =

    0@ 2 0 00 1 3i0 3i 1

    1A : det(A^ 1^) = 0,

    (+ 2)(2 2 8) = 0; = 2 = 4. = 4

    j4i = 1p2

    0@ 0i1

    1A88

  • 5.

    = 2 0@ c1c2ic2

    1A ; c1; c2 2 C, V2. V2

    j 2; ai =0@ 10

    0

    1A j 2; bi = 1p2

    0@ 01i

    1A : = 4

    P^4 = j4ih4j = 12

    0@ 0i1

    1A 0 i 1 = 12

    0@ 0 0 00 1 i0 i 1

    1A : = 2

    P^2 = j 2; aih2; aj+ j 2; bih2; bj

    =

    0@ 100

    1A 1 0 0 + 12

    0@ 01i

    1A 0 1 i

    =

    0@ 1 0 00 12 i20 i2

    12

    1A : A^

    A^ = (2)0@ 1 0 00 12 i2

    0 i212

    1A+ (4)12

    0@ 0 0 00 1 i0 i 1

    1A : eiA^x . (5.17)

    eiA^x = e2ix

    0@ 1 0 00 12 i20 i2

    12

    1A+ e4ix 12

    0@ 0 0 00 1 i0 i 1

    1A :5.5.2

    . , , .

    p^ = i@/@x L2(R; dx). k(x) = eikx p^k = kk, - , . - . , . ket jki p^jki = kjki, .

    89

  • . ,

    ket jki. , -, ket jki .

    1. , (A^) A^. (A^) A^ ( ) ( ). ket jki , - . 5.2.

    2. , ket . 5.3.

    -, , - , p^ = i@/@x L2(R; dx) .

    5.2.

    35. (A^) A^ H A^ 1^ .

    .1. A^ (A^). , A^ 1^

    , .2. x^ L2(R; dx). x^ 1^ -

    (x). (x) (x )1. , x = . , = R + iI ,

    k(x^ )1 k2 =Zdx

    j (x)j2(x R)2 + 2I

    1jI j2Zdxj (x)j2 (5.18)

    (x) x = R. jj(x^ )1jj = jI j1, (x^ )1 I = 0. (x^) = R.

    3. H^ = @2x L2(R; dx). (k) Fourier (x). H^ (x) =

    Rdkeikxk2 (k), (H^ 1)1 (x) =R

    dkeikx(k2 )1 (k). 0 k . , (H^ 1^)1 - 0, (H^) = R+.

    1. A^ p(A^) (A^), -

    (point spectrum) . 2 p(A^), (A^ 1^)1 2 V, V o A^.

    2. (absolutely connuous spectrum) c(A^) A^ (A^) (A^

    90

  • 5.

    1^) . 2 c(A^) (A^ 1^)1 . V H (A^1^)1 2 V . . 2 , (x )1 (x) 2 R () 6= 0. , (x) 0(x) 0() = 0 (x) = 0(x) (x) [ /2; + /2] . kk2 = R dxj(x)j2 < c2, c j(x)j. 0 k 0k2 < , (x)1 0(x) . (x )1 0(x) . x^ .

    3. (singular spectrum) s(A^) . , -.

    4. (A^) = p(A^) [ c(A^) [ s(A^). . , A^

    H, HpHcHs A^p, A^c A^s , .

    5.5.3

    . p^ = i@x H = L2(R; dx).

    fk;(x) =1p2

    eikx12x2 ; (5.19)

    > 0. , ketjk; i. ket jki

    hkj i = lim!0hk; j i = lim

    !0

    Zdxp2

    eikx12x2 (x) (5.20)

    j i 2 H. , braket hkj i - (x): (k) = 1p

    2

    Rdxeikx (x).

    (5.20) . lim!0(i@xfk; kfk;) = 0.

    lim!0

    (p^ k1^)jk; i = 0; (5.21)

    p^jki = kjki: (5.22) . (5.22)

    , . (5.21).

    91

  • . ,

    , hk; jk0; i = (k k0),

    () =

    r1

    4e

    2

    4 : (5.23)

    ()

    1. () = () 0.2. lim!0 () = 0 6= 0. lim!0 (0) =1.3.Rd() = 1. lim!0

    Rdn() = 0, n.

    4. f(),

    lim!0

    Zdf()() = f(0): (5.24)

    To () ! 0, () . i , - , .

    36. (x), Zdxf(x)(x) = f(0) (5.25)

    f 0. (5.25) .

    (5.23). (5.23) , . , .

    lim

    !0

    (2 + x2)= (x): (5.26)

    , (5.24)

    35. ( .)

    1. (x) = (x)..

    Rdx(x)f(x) = R dy(y)f(y) = (0) = R dx(x)f(x).

    f , .

    2. (g(x)) =P

    i(xxi)jg0(xi)j , xi g(xi) = 0.

    . RU1dx[g(x)]f(x) U1 x1

    y = g(x) 1-1 . y, dy = g0(x)dx = g0(g1(y))dx. Z

    U1

    dy(y)f(g1(y))jg0(g1(y))j =

    f(g1(0))jg0(g1(0))j =

    f(x1)

    jg0(x1)j =1

    jg0(x1)jZUdx(x x1)f(x):

    92

  • 5.

    x = xi Zdx[g(x)]f(x) =

    Xi

    jg0(xi)j1Zdx(x xi)f(x)

    f , .

    3. (ax) = 1jaj(x).. 2 f(x) = ax.

    4.R11 dke

    ikx = 2(x)..

    R11 dke

    ikx 12k2 =

    pe

    k2

    4 = 2(x), - . (5.23). ! 0.

    , o hk; jk0; i ! 0,

    hkjk0i = (k k0): (5.27)

    5.3.

    . 4.3.6 H - H C. Riesz 1-1 .

    , . .4.1.3 1-1 . . H H , H . Riesz H = H

    H : (5.28)

    jki . , H = L2(R) , jxja a > 0. (x) ,

    f 2 !Zdx(x)f(x) = f(0); (5.29)

    C. .

    (;H;) (rigged Hilbert space).

    .

    36. ( .) j i; ji 2 L2(R), Zdkknhjkihkj i = hjp^nj i; (5.30)

    93

  • . ,

    n = 0; 1; 2; : : :, jki (5.20).. . (5.20) hkj i = (2)1/2 R dxeikx (x).

    I =

    Zdkknhjkihkj i =

    Zdkdxdx0kn(x0)eik(x

    0x) (x)

    =

    Zdk

    2dxdx0kneik(x

    0x)(x0) (x):

    35.4, Zdk

    2kneikx = (i@x)n

    Zdk

    2eikx = (i@x)n(x):

    I =Rdxdx0(i@x0)n(x0 x)(x0) (x). ,

    I =

    Zdxdx0(x x0)(i@x0)n(x0) (x) =

    Zdx(i@x)n(x) (x)

    =

    Zdx(x)(i@x)n (x) = hjp^nj i:

    (5.30) j i; ji 2 L2(R), Zdkknjkihkj = p^n; n = 0; 1; 2; : : : : (5.31)

    (5.31) 1. n = 0, :

    Rdkjkihkj = 1^.

    2. n = 1 p^:Rdkkjkihkj = p^.

    3. hn(k),Rdkhn(k)jkihkj = hn(p^)

    4. f

    Rdkf(k)jkihkj = f(p^)

    34, - . jpihpj , 36.

    f U U R, -

    P^U = U(p^) =

    ZU

    dkjkihkj; (5.32)

    ( ) U . P^U 1. P^U1P^U2 = P^U1\U2 .

    2. U1 \ U2 = 0, P^U1 + P^U2 = P^U1[U2 .3. P^R = 1^. P^U U R -

    (Projector-Valued-Measure, PVM).

    94

  • 5.

    5.5.4 .

    A^ . -: H Hc Hd , Hc Hd .

    A^ 36 .

    -, . , .

    c(A^) R, A^. - U c(A^) P^U = U(A^), .

    1. P^U1P^U2 = P^U1\U2 .

    2. U1 \ U2 = 0, P^U1 + P^U2 = P^U1[U2 .3. P^R = 1^.

    P^U . (5.32).

    P^, ,

    P^ = P^[;+] (5.33)

    ! 0. P^ , jkihkj , .

    1^ =

    ZdP^ (5.34)

    A^ =

    ZP^d (5.35)

    f(A^) =

    Zf()P^d: (5.36)

    1. x^ L2(R; dx)

    x^ =

    Zdxxjxihxj; (5.37)

    ket jxi hxjx0i = (x x0): (5.38)

    x ket jxi x = (x x). (x)

    (x) = hxj i: (5.39)

    95

  • . ,

    jki

    hxjki = 1p2

    eikx: (5.40)

    2. ket j i - (x) = hxj i, - (k) = hkj i. , p^ (x): p^ (x) =i@ @x ,

    p^j i =Zdkkhkj ijki; (5.41)

    p^ (k) : p^ (k) = k (k). - . - . , .

    3. h^ = p^2 L2(R; dx) h^ =R10 dP^,

    P^ =1

    2p(jkihkj+ j kihkj) ; (5.42)

    k =p jki ket .

    4. L2(R3; dx1dx2dx3) jx1; x2; x3i,

    (x1; x2; x3) = hx1; x2; x3j i: (5.43) hx1; x2; x3jx01; x02; x03i = (x1 x01)(x2 x02)(x3 x03).

    x^i =

    Zd3xxijx1; x2; x3ihx1; x2; x3j: (5.44)

    P^x1 x^1

    P^x1 =

    Zdx2dx3jx1; x2; x3ihx1; x2; x3j: (5.45)

    P^x2 P^x3 . o . - r^ , r^jri = rjri, hrjr0i = 3(r r0).

    5.6 37. A^ H

    TrA^ =Xn

    hnjA^jni; (5.46)

    n H.

    96

  • 5.

    37. .. jn0i Tr0 .

    Tr0A^ =Xn0hn0jA^jn0i =

    Xn0

    Xm;n

    hn0jnihnjA^jmihmjn0i

    =Xm;n

    hmjnihnjA^jmi =Xn

    Xn

    hnjA^jni = TrA^:

    38. 1. Tr(A^+ B^) = TrA^+ B^, 2 C.

    . .

    2. Tr(A^B^) = Tr(B^A^)..

    Tr(A^B^) =Xn

    hnjA^B^jni =Xn

    Xm

    hnjA^jmihmjB^jni

    =Xm

    hmjB^A^jmi = Tr(B^A^):

    3. Tr(j ihj) = hj i.. Tr(j ihj) =Pnhnj ihjni = hj1^j i = hj i:

    4. P^ N - TrP^ = N .. P^ PNi=1 jiihij, jii . TrP^ =

    PNi=1hijii = N .

    5. A^ =P

    n anP^n, TrA^ =P

    n anDn, Dn =TrP^n.. .

    . . , - P^U =

    RUdkjkihkj. ,

    TrP^U =

    ZU

    dkhkjki =ZU

    dk(0) =1:

    5.4. Hilbert-Schmidt

    HHS - H. , .

    38. ( Hilbert-Schmidt) A^; B^

    hA^; B^yi = Tr(A^B^y): (5.47)

    jjA^jjHS =qTr(A^yA^): (5.48)

    jjA^jjHS

  • . ,

    Schwarz Hilbert-Schmidt

    jTr(A^B^y)j2 Tr(A^yA^)Tr(B^yB^): (5.49)

    A^ B^ Hilbert-Schmidt, .

    A^ A^ =P

    n anP^n,

    kA^kHS =sX

    n

    Dnjanj2; (5.50)

    Dn = TrP^n . 17 Hilbert-Schmidt

    (. 21) kA^kHS kA^k. , ,

    kA^ktr = TrjA^j; (5.51)

    jA^j A^. kA^ktr 1 .

    A^,

    kA^ktr =Xn

    Dnjanj: (5.52)

    xi x21 + x22 + : : : x2n (jx1j+jx2j+ : : : jxnj)2,

    kA^ktr kA^kHS kA^k (5.53)

    5.7 , -

    , . 1.4.6.

    C, - . := C C X

    = 1: (5.54)

    f : ! R,

    f(x) =X

    (x): x 2 : (5.55)

    (5.54) (5.55) .

    1. A^ H$ f : ! R.2. A^$ f .

    98

  • 5.

    3. A^$ C .4. H$ . .

    2. A^ H - . , - A^, o A^.

    , - (ne-grained). , . - (coarse-grained).

    A^1 -. , A^2; A^3 , ([A^a; A^b] =0, a; b = 0; 1; 2; : : : ; N ), jni

    A^ajni = a;njni: (5.56) jni N - (1;n; 2;n; : : : ; N;n). .

    , . - . , -.

    , . , x^ L2(R; dx), (x^) = R, n ,

    n = [(n 12); (n+

    1

    2)]; (5.57)

    n 2 Z. n xn = n. .

    P^n =

    Zn

    dxjxihxj (5.58)

    Xn

    P^n =

    Zn

    dxjxihxj =Z[nn

    dxjxihxj =ZRdxjxihxj = 1^; (5.59)

    P^nP^m = mnP^n: (5.60)

    99

  • . ,

    2 . . , , .

    , , . A^ A^ = Pn anP^n, P^n . , - Q^, jqi. P^n jqi + jq0i q 6= q0. [Q^; P^n] = 0 [Q^; A^] = 0. Q^ - .

    . ; ; , -. , - : . .

    . - . - , , , -. . , - , - .

    5.8 5.8.1 qubit

    o C2 - . C2 . , .

    .

    1. - j0i j1i. j0i; j1i .

    100

  • 5.

    2. C2 ( ).

    3. . - , R L. jLi, jRi , .

    qubit, , . qubit .

    Pauli

    C2

    A^ = a01 +Xi

    ai^i; (5.61)

    i Pauli,

    ^1 =

    0 11 0

    ; ^2 =

    0 ii 0

    ; ^3 =

    1 00 1

    : (5.62)

    Pauli

    1. (^i)2 = 1^.

    2. ^1^2 = i3, ^2^1 = i3.

    3. ^2^3 = i1, ^3^2 = i1.

    4. ^3^1 = i2, ^1^3 = i2.

    ^i^j = 1^ij + i3X

    k=1

    ijk^k; (5.63)

    ijk

    ijk =

    8

  • . ,

    A^ = a01 +P

    i ai^i a+ = a0 + jaj a = a0 jaj, jaj = pa a.

    ja+i = 1p2jaj(jaj a3)

    a1 ia2jaj a3

    ;

    jai = 1p2jaj(jaj a3)

    jaj+ a3a1 ia2

    : (5.65)

    P^ = jaihaj = 12

    1

    Xi

    aijaj ^i

    !: (5.66)

    B qubit

    n = ajaj : (5.67)

    R3, S2. a0 - , jaj . qubit -

    Pni=1 ni^i, n

    Pauli = (^1; ^2; ^3), (5.61)

    A^ = a01^ + a ; (5.68)

    (5.66)

    P^ =1

    2(1 n ) : (5.69)

    , (5.63)

    (a )(b ) = a b+ i(a b) ; (5.70)

    a b =3Xi=1

    aibi (5.71)

    (a b)k =3Xi=1

    3Xi=1

    ijkaibj

    = (a2b3 a3b2; a3b1 a1b3; a1b2 a2b1): (5.72)

    102

  • 5.

    qubit, 01

    ;

    10