Κ ΚΟΛΟΒΟΣ - ΣΗΜΕΙΩΣΕΙΣ ΓΕΝΙΚΗΣ ΧΗΜΕΙΑΣ ΣΧΟΛΗΣ ΙΚΑΡΩΝ,...

of 113/113
Δρ. ΚΩΝΣΤΑΝΤΙΝΟΥ Γ. ΚΟΛΟΒΟΥ ΧΗΜΙΚΟΥ ΜΗΧΑΝΙΚΟΥ Ε.Μ.Π. ΔΙΔΑΚΤΟΡΟΣ ΜΗΧΑΝΙΚΟΥ Ε.Μ.Π. ΣΧΟΛΗ ΙΚΑΡΩΝ ΣΜΗΝΑΡΧΙΑ ΑΚΑΔΗΜΑΪΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ ΓΙΑ ΤΟΥΣ ΠΡΩΤΟΕΤΕΙΣ ΙΚΑΡΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΔΕΚΕΛΕΙΑ 2008
  • date post

    28-Jul-2015
  • Category

    Documents

  • view

    4.655
  • download

    1

Embed Size (px)

Transcript of Κ ΚΟΛΟΒΟΣ - ΣΗΜΕΙΩΣΕΙΣ ΓΕΝΙΚΗΣ ΧΗΜΕΙΑΣ ΣΧΟΛΗΣ ΙΚΑΡΩΝ,...

. . ... ...

2008

1 1.1. 1.2. 1.3. 1.3.1. 1.3.2. 1.3.3. 1.4. 1.4.1. 1.5. RUTHERFORD OHR SENBERG 1 1 1 3 3 3 4 6 7 8 10 10 11 12 12 13 13 14 16 16 16 17 17 18 19 21 22 24 25 26 27 30 31 31 31 33 33 33 34 34

2 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.8.1. 2.8.2. 2.9. 2.10. 2.10.1. 2.10.2. 2.11. 2.12. 2.13. 2.13.1. 2.13.2. 2.13.3. 2.14. BORN HABER () - - sp3 sp2 sp

3 - 3.1. 3.2. 3.3. 3.3.1. 3.3.2. 3.4. 3.5. 3.6. 1 LAVOISER LAPLACE HESS I

3.7. 3.8. 3.9. 3.10. 3.11.

2 3

35 36 37 37 37 38 39 39 39 40 40 41 41 41 42 42 43 43 44 44 44 45 45 46 46 47 48 48 48 48 48 49 50 51 53 59 59 59 60

4 4.1. 4.2. 4.3. 4.4. 4.5. 4.5.1. 4.5.1.1. 4.5.1.2. 4.5.1.3. 4.5.1.4. 4.5.1.5. 4.5.2. 4.5.3. 4.5.4. 4.5.5. 4.6. 4.7. 4.8. 4.9. VANT HOFF 1 2

5 5.1. 5.2. 5.3. 5.3.1. 5.3.2. 5.3.3. 5.4. 5.5. LE CHATELIER VANT HOFF (GULDBERG WAAGE)

6 6.1. 6.2. 6.3.

II

6.4. 6.5. 6.6. 6.7. 6.8. 6.9. 6.10. 6.11. 6.12. 6.13. 6.14. 6.15. 6.16.

& BRNSTED LOWRY LEWIS OSTWALD pH HENDERSON HASSELBACH

61 62 63 63 64 64 65 66 67 68 69 73 74 77 77 77 79 84 86 87 89 89 91 91 91 91 92 92 92 92 93 93 93 93 93 95

7 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. NERNST

8 8.1. 8.2. 8.2.1. 8.2.2. 8.2.3. 8.3. 8.3.1. 8.3.2. 8.3.3. 8.3.4. 8.3.5. 8.3.6. 8.3.7. 8.4. 8.4.1. ( ) WAGNER

III

8.4.2. 8.4.3. 8.5. 8.6. 8.6.1. 8.6.2. 8.6.3. 8.6.4. 8.6.5. 8.6.6. 8.6.7. 8.6.8.

95 95 95 97 97 p 97 98 99 99 100 101 102 105 105 107

IV

. . . , 1

1

1.1. RUTHERFORD (1911) , e- , . , : 10-13 cm, 10-8 cm. Rutherford: , ( RaC) 20000.

1.2. OHR (1914) Rutherford. Niels Bohr 2 ( ). Bohr =hv . Bohr: 1. e- :

FCoulomb

me ue2 k e2 1 e2 2 = 2 = F = = me ue = r r 2 2r

(1.1.)

e: eme : e

ue : r: k:

e .

2. e- , mue r = n h: r: h 2 (1.2.)

h : 2

Plank h=6,62510-23 ergs = 6,62610-34 Js

1

. . . , 1 h2 n2 2 2 4 me

r=

(1.3.)

n=1 r1=0,529 . 3. e-

= +

e2 e2 e2 = + = 2r r 2r

=

2 2 me 4 1 2 h2 n

(1.4.)

n ( ) . : 2 2 me 4 = = 2,18 1018 Js 2 h

4. :

= 2 1 = h = c:

hc

=

1

=

2 2 me 4 c h3

1 1 2 2 n 1 n2

(1.5.)

.

2 .

1.1: .

2

. . . , 1 2 L K:1 = 2 2 me 4 1 1 = 1,21 105 cm c h3 12 22

Bohr: ( 1 e- ) . , , Sommerfield, , , .

1.3.

, , , Schrdinger, Heisenberg, Sommerfield Dirac . . : h (Plank De Broglie): = m

1.3.1. SENBERG (1927)

Heisenberg . h : ( ) ( ) (1.6.) 4

1.3.2.

e- (). : = (x, y, z, t) = (x, y, z)sin(2t)

, .

3

. . . , 1

1.2: .

1.3.3.

Laplace (1.7.):

1 2 = 2 2 t2

(1.7.)

2 2 2 2 + + 2 x y 2 z

1 sin (2t ) = 2 4 2 2 sin (2t )

(

)

2 2 + 4 = 0 + 4 = 0 2 2

2

(1.8.)

2 me2 u e2 2me 2m = = 2 E = 2e ( V ) h2 h h

(1.9.)

(1.7.) (1.8.) Schrdinger 2:

+2

8 2 me h2

(E V ) = 0

(1.10.)

4

. . . , 1 : : me e- V = f (r) ,

Schrdinger e- V = f (r). H 2 e- ( ). Schrdinger (1.10.) . , . : (r, , ) = R (r) () () 3 Schrdinger: R n: 1, 2, 3, . , : 0, 1, 2, ., n-1 m: -l, ., 0, ., l (2+1 )

3 Schrdinger :i) n:

.ii) :

.iii) m:

.

5

. . . , 1iv) spin ms ():

e-. (n, , m, ms) Schrdinger.

1.3: () 2 () Li.

1.4.

(atomic orbital) e- . 1.1: . n 1 0 0 1 0 1 2 0 1 2 3 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f m 0 0 -1, 0, 1 0 -1, 0, 1 -2, -1, 0, 1, 2 0 -1, 0, 1 -2, -1, 0, 1, 2 -3, -2, -1, 0, 1, 2, 3 ms 2 K (2) 2 L (8) 6 2 M (18) 6 10 2 6 N (32) 10 14

2 3

4

6

. . . , 11.4.1.

s, p d 1.5. . n ( ). L K

1.4: e- Rb.

1.5: () s, () p () d .

7

. . . , 11.5.

e- 3 : 1. , . , ( ) (.. 1s, 2s 2p, 3s, 3p 4s ( 3d ): n=7 n =6 n =5 n =4 n =3 n =2 n =1 Q P O N M L K 7s 6s 5s 4s 3s 2s 1s 7p 6p 5p 4p 3p 2p 7d 6d 5d 4d 3d 7f 6f 5f 4f 7g 6g 5g

2. A Pauli 2 e- (n, , m, ms) . A Pauli: e- n max e- = 2n2

(1.11.)

-

8 e-.

3. spin ( Hund) e- , spin.

8

. . . , 1 2p 2 : spin : S = + + = 3/2 2 spin S = - + = 1/2

: e- . :19

:

1s2 2s2 2p6 K L

3s2 3p6 M 3s2 3p6 M

4s1 N

: [Ar] 4s1

18Ar

: 1s2 2s2 2p6 K L

: [Ne] 3s2 3p6

10Ne

: 1s2 2s2 2p6 K L 3s2 3p6 M 4s1 3d10 : [Ar] 4s1 3d10 ( ) N

29Cu

: 1s2 2s2 2p6 K L

9

. . . , 2

2 , .

2.1. e- . : - - ( ) - . 2 , .. 2 1 e- , 1 e- 2 e- + + : 1 .

+ e A B + e B

e-. 2.

+ +

e

+

+ -. 3.

+ +

2 e :

e- () . 4.

+ +

2 e :

10

. . . , 2 , () . Linus Pauling . Pauling 2 1,7, . (. Sanderson, Allred Rochow, Allen, Mulliken Jaff ..).

2.2. (KOSSEL) . Na+ Cl- 11Na 17Cl

: [Ne] 3s1 1e

11Na 17Cl -

+

: [Ne]

: [Ne] 3s2 3p5 +1e

: [Ne] 3s2 3p6

2. , . Ionic Potential (): ( 1 ) ( 2, 3, .. ) . (+) eV/ kJ/mol. Electron affinity (): . ( = f (Z)). , . : (+) : (-) : .

11

. . . , 2 2.3. :

(+g ) + X (g ) (s) : Coulomb ( ) ( ) van der Waals ( , 0 ).

2.4. BORN HABER (1919) Hess . . NaCl(s) : Na(s) + Cl2(g) NaCl(s) f = -411 kJ/mol

: 1. : 2. : 3. : 4. : 5. : Na(s) Na(g) Cl2(g) Cl(g) Na(g) Na+(g) + eCl(g) + e- Cl-(g) Na+(g) + Cl-(g) NaCl(s) = +108 kJ/mol = +242/2 kJ/mol = +496 kJ/mol . . = -349 kJ/mol U=?

Hess: f = + + + . . + U U = -787 kJ/mol. Born Haber .

12

. . . , 2 f, , , . .. f Na(s) + Cl2(g) NaCl(s) U

Na(g)

Cl(g) . . Cl-(g) + Na+(g)

2.1: Born Haber NaCl.

2.5. , ( ). (.. [Fe(H2O)6]3+), (.. [Ni(NH3)4]2+), .

2.6. (VAN DER WAALS) , : - - - ( London).

2.2: () - () .

13

. . . , 2 2.7. . : ( ) : - - .

2.3: () , () , () (.. ) () . (H2O), (1 atm, 25C) , (H2S) ( ).

14

. . . , 2 ( ) DNA ( 2.5).

2.4: --.

()

()

2.5: () DNA () .

15

. . . , 2 2.8. () e- ( ) e- ( ). . e- e- e spin , . .

2.8.1. e- e-, e-. NH4+: + + [ ]+ [ ]+

2.8.2. e-. ( ) 7 e- 2 1 e-: 3 e-, .. He2+ NO N O 4 e-, .. LiCH3, BeC2H6 BF3:

16

. . . , 2 H Li C H H Li eH H H C Be C H H H Be 2 e-

F B F F B 3 e-

2.9. : . e- . e- e- . , 2 ( 2.6), Li2.

()

()

2.6: () 2 () Li2.

2.10. e- . 17

. . . , 2 . .

2.10.1. . *.

()

()

2.7: 2 () () . , , . ( 2.8). e . .

2.8: 2.

18

. . . , 2 , ( ). ( ). e- 2 r 2 ( 2.9). , ro, .

2.9: 2 .

2.10.2. 2 e- spin . . 2 ( 2.10) 2 s (s-s ).

2.10: - s-s 2.

19

. . . , 2 HF ( 2.11) 1s 2pz F (s-p ).

2.11: - s-p F. H2O ( 2.12) s 2py, 2pz (8: [e] 2s2 2px2 2py1 2pz1) 2 s-p ( 90).

2.12: - s-p H2O. ( 2.13).

20

. . . , 2

2.13: H2O.

F2 ( 2.14) 2p e- - p-p.

2.14: - p-p F2.

2.11. - - ( s p) ( 2.15 2.16) ( s-s, s-p, p-p). .

21

. . . , 2

2.15: - : () s-s, () s-p () p-p.

2.16: - . () s-s, () s-p () p-p.

2.12. - , . - - () . - ( 2.17 2.18).

22

. . . , 2

2.17: - .

2.18: () - () .

- 2 ( 2.19) 7: [e] 2s2 2px1 2py1 2pz1 2px, 2py 2pz . 2px . 2py 2pz ( ). - . 2.20 -, - - .

23

. . . , 2

2.19: 2 - 2 - .

2.20: -, - - .

2.13. C. e- . C 6C: 1s2 2s2 2px1 2py1 2pz0 e- 2s 2pz,

24

. . . , 2 ( 2.21) 6C: 1s2 2s1 2px1 2py1 2pz1 4 sp3 .

2.21: sp3 C.

2.13.1. sp3 ( sp3) . CH4 ( 2.22) 4 s-sp3 1s sp3 C.

2.22: CH4. CCl4 - psp3. - - . 2.13.2. sp2 25

. . . , 2

5: 1s2 2s2 2px1 2py0 2pz0. 3 e- 2s 2p ( 2.23). 5: 1s2 2s1 2px1 2py1 2pz0. sp2 120 .

3s 2p 2s 1s

2.23: sp2 . BF3 3 - p-sp2 2p F sp2 . CH2=CH2 ( 2.24) C 2s e- 2 3 e- 2p, e- (.. 2pz). xy 3 sp2 pz z. : - sp2sp2 C - s-sp2 C - p-p C .

26

. . . , 2

2.24: CH2=CH2.

2.13.3. sp Be 4Be: 1s2 2s2 2px0 2py0 2pz0. Be sp e- s 2p ( 2.25 2.26) 180 ( ).

2.25: sp Be.

27

. . . , 2

2.26: sp. sp BeH2 - s-sp, BeCl2 - p-sp. CHCH ( 2.27) C sp 2s 2p . C sp x- p . : - - sp-sp C - - s-sp C - - p-p C.

2.27: CHCH.

28

. . . , 2 , CO2 ( 2.28) : - - p-sp C O - - p-p C O, .

2.28: CO2. 2.29 sp, sp2 sp3.

2.29: sp, sp2 sp3.

29

. . . , 2 2.14. - . -1,3 CH2=CH-CH=CH2 ( 2.30) C6H6 ( 2.31).

-

-

2.30: -1,3 CH2=CH-CH=CH2.

2.31: C6H6. 30

. . . , 3

3

3.1. : . : . : . : . : (.. P, V, T). Q W. : . (): , , . , . . E .

3.2. 1 ( ) Q W .

= Q + W

(3.1.)

1

dE = dQ + dW

(3.2.)

1

31

. . . , 3

Q =

(3.3.)

1 W =

(3.4.)

. P V,

W = P dVV1

V2

(3.5.)

( ) dV=0 1

= QV

(3.6.)

QV (QV < 0), . ( ), W = P (V2 V1 ) = P V

(3.7.)

Q P = ( E 2 + P V2 ) ( E1 + P V1 )

(3.8.)

(H): .H = E + P V

(3.9.)

: () (QP).

= 2 1 = + ( P V ) = QP

(3.10.)

P V 0 .

32

. . . , 3 ( ),

( P V ) = n R T

(3.11.)

= + n R T

(3.12.)

n (moles) .

3.3.

, .

3.3.1. LAVOISER LAPLACE

H 1 mole ( ) 1 mole ( ).

3.3.2.

+ + moles A moles B moles moles =1 atm =25C. ,

C + O2 CO2 - 94 kcal (= -94 kcal) 2C + H2 C2H2 + 54 kcal (= +54 kcal).H T 25C 25C.

33

. . . , 33.4. HESS (1840)

H . , 34 , , Hess :

34 + 3 34 + 32 (= -34,03 kcal) : II: III: 34 + 24 + 2 NaH2PO4 + NaOH Na2HPO4 + H2O Na2HPO4 + NaOH Na3PO4 + H2O = -18,829 kcal =-12,251 kcal =-6,950 kcal

= + + = (-18,829 - 12,251 - 6,95) kcal = -34,03 kcal.

3.5.

. :

+ + + + (3.13):

= ( + + ) ( + + )

(3.13.)

, , .

Hess: f . , f CH4 :o C(s) + 2H2(g) CH4(g) + CH 4

34

. . . , 3 : II: III:4

C(s) + O2(g) CO2(g) 2H2(g) + O2(g) 2H2O(l) 2H2O(l) + CO2(g) CH4(g) + 2O2(g)

=-94,05 kcal =-268,32 kcal= =-136,64 kcal =+212,8 kcal4

o o CH = + + = (-94,05-136,64 +212,8) kcal CH =-17,89 kcal

3.6.

(C): H 1 mole 1 1C. V :

CV =Av P :

dQV dEV = dT dT

(3.14.).

CP = n moles

dQP dH P = dT dT

(3.15.).

QV = n CV dTT1

T2

(3.16.)

QP = n C P dTT1

T2

(3.17.).

QV QP:

QV = n CV Q P = n C P .H = E + P V

d (P V ) dH dE d ( P V ) = + C P = CV + dT dT dT dT

(3.18.).

1 mole d (P V ) d (R T ) d (T ) = = R =R dT dT dT

(3.19.)

35

. . . , 3 (3.20.) Cp CV: C P + CV = R (3.20.). A ,

H 2 = H1 + CP dTT1

T2

(3.21.)

+ + + +

CP CP = (CPA + CPB + ) (CPA + CPB + )

(3.22.).

3.7.

(S) :dS = dQ . T

(3.23.)

Q. . P

S = n CP T1

T2

dT T

(3.24.)

V

S = n CV T1

T2

dT T

(3.25.)

Cp Cv 1 2

S = n CP ln

T2 T1

(3.26.)

36

. . . , 3

S = n CV ln

T2 T1

(3.27.)

3.8. 2

, .

, .

3.9. 3

(0 -273,15C).

: + + + +

S = ( S A + S B ) ( S A + S B ) S = S Si =1 j =1

n

m

(3.28.)

3.10.

():

= S Gibbs (G):G = H S

(3.29.)

(3.30.)

H A G Gibbs . :dA = dE T dS S dT = P dV S dT

(3.31.)

37

. . . , 3

dG = dH T dS S dT = V dP S dT

(3.32.)

G Gibbs ( ) . : A : = 0, G = 0 < 0 G < 0

3.11.

Gibbs ( ). G Gibbs moles i, P, moles i .

i =

G ni P ,T , n =

(3.33.)

P T, , . P T, , ( ).

38

. . . , 4

4

4.1. , . : - : - : .

4.2. . + + . , : t1 [A1] t1 + t [1] + [] (4.1.)

=

([ 1] + [ ]) [ 1] [ ] = (t1 + t ) t1 t

(4.1.)

t 0, t

=

d [ A] dt

(4.2.)

=

d [ A] dt39

(4.3.)

. . . , 44.3.

i) : (.. , , ...) . . ii) : . . .

4.4.

4.1. t1

=

dC A dt

= tan t = t1

(4.4.)

t1 .

4.1: ( ).

40

. . . , 4 (to=0), , 4.1. , .

4.5.

: 1. 2. 3. 4. 5.

4.5.1.

: + + + +

=

d [ A] = k [ A] p [ B]q dt

(4.5.)

[], []: , t k: , (k = f (T)). (4.5.) .

4.5.1.1.

p q (p + q) ( (4.5.)).

41

. . . , 4 ( ) . , . 0, (.. ). + + + + .

4.5.1.2. VANT HOFF

( + ). (AsH3) () 1 2 : AsH3 As + 3/2H2 2 + 2 2

= k [ AsH 3 ] = k [H 2 ] [I2 ]

(1 ) (2 )

: (.. AsH3 As + 3/2H2) : (.. 2 + 2 2).

4.5.1.3.

. ( ) . , , 1, 2 (.. 3/2). , . , ,

42

. . . , 4 , .

22 3 2, 2 : 2 + 22 2 + 22 : : + 22 + 2 + 2 + 2 ( )

4.5.1.4. 1

+ t=0 CA= mol/l, t x moles , t ( - x).

=

x dx t dx = k ( x) dx = k (a x) dt = k dt x 0 dt

x = (1 e k t )

(4.6.)

4.5.1.5. 2

+ + ( mol/l) , x y moles t ,

=

dx = k ( x) ( y ) dt

(4.7.)

= x=y, k 2 t dx 2 = = k ( x) x = 1 + k t dt 43 (4.8.)

. . . , 4 >> -y ,

=

dx = k ( x) dt

(4.9.)

1 .

4.5.2.

, ( ). , . Arrhenius

k = Ae

E R T

(4.10.)

ln k = ln A

E R T

(4.11.)

: :

.

(4.11.) , lnk 1/T ( k ). 10C 2 3 .

4.5.3.

, . ( ) ( ).

4.5.4.

. 44

. . . , 4 , , .

4.5.5.

, . : (.. Pt 22 + 2 22). : (.. 22 CHCl3). : (.. HCN, As, H2S, HgCl2 ..). : (.. 3+, Fe2O3 Fe). O : , .. CO(g) 2(g)2 (g) 2CO(g) + O2(g) 2CO2(g) .

: , .. Pt(s)(s 22 + 2 ) 22.

Pt

4.6.

1. . 2. . 3. ( ) . 45

. . . , 44. , . 5. (1 ). 6. . , .

4.7.

. . + -. . .

4.8.

I) , .

+ () :

+ + + .

II) . 46

. . . , 4 III) ( , ). . .

4.9.

. . , (.. CO 2 CH3OH, CH4 ).

47

. . . , 5

5

5.1. , . , , . . moles/l , moles/l , , . , .

5.2. LE CHATELIER VANT HOFF Le Chatelier Vant Hoff, : , .

5.3. 3 :

5.3.1. Le Chatelier Vant Hoff,

48

. . . , 5 ( Q). ++-Q , ,

++

, ,

+++Q

(Q0), . : . , , ( ) ( , , ).

5.3.2. : - - . Le Chatelier Vant Hoff, . 3 2 2,

49

. . . , 5 2(g) + 32(g) 23(g) ( 3 = 11kcal )

moles . , ( ). , 3 , V.=1+3=4 V.=2. , , 3 ( , , ). 2 + 2 2 .

5.3.3. Le Chatelier Vant Hoff , . ++ + + , + + . , Guldberg Waage.

50

. . . , 5 5.4. (GULDBERG WAAGE) : + + (5.1.) (5.2.)

= k [ A] [ ] (5.1.)

= k [ A] [ ] (5.2.) , P , , k/k , .

= k [ A] [ ] = k [ A] [ ] [ A] [ ] [ A] [ ]

[ A] [ ] k = = KC k [ A] [ ] (5.3.)

KC =

[], [], [] []: , . 2 + 2 2 2 2 moles , x moles 2x moles HI, (-x) moles 2, (-x) moles 2 2x moles HI V : 2 x V = . x x V V2

C

51

. . . , 5 (g) + (g) (g) + (g) , P ( (5.4.)) , , ( Dalton)

P = PA + PB + PA + PB

(5.4.)

Pi i (5.5.)

Pi =

ni R T =C i R T V

(5.5.)

ni, Ci moles ( moles/l) i , R (R=0,082 latm/moleK), V . KC

KP =

PA PB PA PB

(5.6.)

KP , KC KP

K P = K C (R T )

(5.7.)

=( + ) ( + ). , , KP KC. 3Fe(s) + 4H2O(g) Fe3O4(s) + 4H2(g) KP

P =

4 PH 2 4 PH 2O

CaCO3

52

. . . , 5 CaCO3(s) CaO(s) + CO2(g)

KC

C = [CO2 ] .

5.5. 1

2 2 . mole 2 7/9 C.:

moles H2 moles 2 () V l.

(moles) 2

2 + 2 22

-

7 9-

7 9-

2

79

79

7 9 14 9

V l : [ 2 ] = 2 mole 9 V l

[I 2 ] = [ I ] =

2 mole 9 V l 14 mole 9 V l

53

. . . , 5 C 14 2 [ ] 9 V KC = K C = 49 KC = [ 2 ] [ 2 ] 2 2 9 V 9 V : C ( ) .2

2

PCl5 PCl3 Cl2. 250C 1 atm. d=2,69 g/l PCl5 KC 250C. PCl5=208,5.:

moles PCl5 .

(moles) PCl5

PCl5 PCl3 + Cl2PCl3 Cl2

-

moles n = ( ) + + n = (1 + )

54

. . . , 5 P V =n R T

m d

V =

m d

.

Lavoisier ( ) m PCl5PCI 5 m = m = 208,5 g

P 208,5 = (1 + ) R T d

P = 1 atm, d = 2,69 g/l, R = 0,082 latm/molK T = (273 + 250) K PCl5 = 0,806 = 80,6 %. V l : (1 0,806) mol/l V 0,806 mol/l [ PCl3 ] = [Cl 2 ] = V [ PCl5 ] =

V =V =

m d

m = 208,5 g

208,5 208,5 (1 0,806) V = l V = 77,5 l [ PCl5 ] = mol/l d 2,69 77,5

55

. . . , 5 [ PCl5 ] = 2,5 103 [ PCl3 ] = [Cl2 ] =

mole l

mole 0,806 mole [ PCl3 ] = [Cl 2 ] = 10 2 . 77,5 l l

C 250C [ PCl3 ] [Cl2 ] 102 102 KC = mol/l KC = [ PCl5 ] 2,5 10 3

K C = 4 102 mol/l.

3

4 moles SO2, 2 moles NO2, 6 moles SO3, 5 moles NO. 2 moles SO2, 8 moles NO2, 5 moles SO3, 4 moles NO . .:

C 6 [ SO3 ] [ NO ] KC = KC = V 4 [ SO2 ] [ NO2 ] V mol 5 l V mol 2 l V mol l K = 3,75 C mol l

K C = 3,75 4 : SO2: (4 + 2) = 6 moles NO2: (2 + 8) = 10 moles SO3: (6 + 5) = 11 moles NO: (5 + 4) = 9 moles

56

. . . , 5 mole l l mole [NO2] = 10/V l mole [SO3] = 11/V l mole [NO] = 9/V . l[SO2] = 6/V Le Chatelier Vant Hoff , Guldberg Waage. , KC, , .11 9 [ SO3 ] [ NO ] V V = 1,65 = = [ SO2 ] [ NO2 ] 6 10 V V

< KC, ( = KC). = KC = 3,75, SO3 N SO2 NO2 ( ).

(

mole ) l

SO2 + NO2 SO3 + NOSO2 NO2 SO3 NO

6 V x V

10 V x V

11 V

9 V

x V 11 + x V

x V 9+ x V

6 x V V

10 x V

57

. . . , 511 + x 9 + x 11 + x 9 + x [ SO3 ] [ NO ] V V V V = 3,75 KC = KC = 6 x 10 x 6 x 10 x [ SO2 ] [ NO2 ] V V V V

2,75 x 2 80 x + 126 = 0 x = 1,67( x ) : SO2 = 4,33 moles, NO2 = 8,33 moles, SO3 = 12,67 moles NO = 10,67 moles.

58

. . . , 6

6

6.1. . ( ) , . :

:

( ).

6.2. (solubility) , P T, . ( P T) 3 : : . : . : .

59

. . . , 6 6.3. 1. :x= ni

ni =1

m

(6.1.)i

ni moles i. 2. Molarity (M):

olarity =

moles 1l

(6.2.)

3. Molality (m):

molality =

moles 1000 g

(6.3.)

4. % / (% w/w):

(% w/w) =

g 100 g

(6.4.)

5. % / (% w/v):

(% w/v) =

g 100ml

(6.5.)

6. / (% v/v): (% v/v) =

ml 100ml

(6.6.)

7. Normality ():

Normality = :

gr eqs 1l

(6.7.)

(mole): (.B.) , (, ), Avogadro =6.0231023, (.. 1 mole 2SO4 = 98 g = 6.0231023 2SO4)

60

. . . , 6 (gr-eq): mole .. 1gr eq = 1mole . . (6.8.)

(.. 1 gr-eq HCl = 1 mole HCl/1 = 36,5 g, 1 gr-eq H2SO4 = 1 mole H2SO4/2 = 49 g).

=

n V

(6.9.)

N=

gr eqs (6.10.) V

V l, () () (6.11.):

=

(6.11.)

(..) .

6.4.

, i Vi V, V = Vi , moles i =1 n

1 V1 + N 2 V2 + ... + N i Vi = N V .

(6.12.)

V2 (N2=0), (6.12.) (6.13)

1 V1 = N (V1 + V2 )

(6.13.)

61

. . . , 66.5. &

T ( ). , ( 6.1).

6.1: .

. 2 ( 9 mg/l 25C) , ( 6 mg/l 25C) , . , .

62

. . . , 66.6.

, Svante Arrhenius, . + + . Arrhenious: + ( 3+). Arrhenious: -.

.

6.7. BRNSTED LOWRY

() () + + Brnsted Lowry: . Brnsted Lowry: .

: Cl + H2O H3O+ + Cl

63

. . . , 6 NaOH + H2O [Na(H2O)]+ + OH

: (.. HCl, H2SO4). : (CH3COOH, NH4OH). : moles

moles = moles (6.14.)

6.8. LEWIS Lewis: e-. Lewis: e-.

6.9.

, + 2 3+ + + 2 + + Guldberg Waage , a b Ka =

[ H 3O + ] [ A ] [ HA]

(6.15.)

64

. . . , 6 [ BH + ] [OH ] Kb = [ B]

(6.16.).

6.10. OSTWALD

C . mole ( ) l

+ 2 3+ + C C (1 a)C C C C C

2

3+

-

2 = C 1 mole ( ) l

(6.17.)

+ 2 + + C C (1 a)C C C C C

2

+

-

2 C b = 1

(6.18.)

65

. . . , 6 Ostwald: . K < 10 2 K < 103 C 1 a 1 Ostwald

=

C

(6.19.)

=

bC

(6.20.)

[ H 3O + ] = a C [OH ] = a C

Ka C Kb C

(6.21.) (6.22.)

: : : : > 60 % 10 % < < 60 % < 10%

6.11.

2 2 + 22 23+ + 2-, = [ 3 + ]2 [ 2 ] [ 2 ]

, 2 + 2 3+ + - 1 = [ 3 + ] [ ] [ 2 ]

66

. . . , 6 [ 3 + ] [ 2 ] + 2 3 + , 2 = [ ]+ 2-

1 2 : = 1 2 (6.23.).

6.12.

. , C1 , , C2. :(

mole ) l

+ 2 3+ + C1 C1 2 3+ -

HX + H2O H3O+ + HX C2 C2 H2O H3O+ -

C1

C1

C2 C2+C1

C2 C2

(1a)C1

C1+C2 C1

-

a =

[ H 3O + ] [{ A ] (a C1 + C2 ) a C1 a = [ HA] (1 a ) C1 a = a 2 C1 + a C2 (1 a ) (6.24.)

1 a 1 2 0 ,

=

C2 67

(6.25.)

. . . , 6 . .

6.13. pH

, . H2O + H2O H3O+ + OH (6.26.)

=

[ 3 + ] [ ] [ 2 ]2

(6.26.)

=

[ 3 + ] [ ] [ 2 ]2 = = [ 3 + ] [ ] [ 2 ]2

w = [ 3 + ] [ ]

(6.27.)

=25C P=1 atm S. Srensen Kw=10-14, [3+] = [-] =

w = 107 gr-ions/l

(6.28.).

3+ (=10-7 gr-ions/l), Srensen , pH (pontius Hydrogenii) pOH :pH = log[ H 3O + ]

(6.29.)

pH = log[OH ] (6.30.)

Kw pK w = log K w pKw=14 25C. (6.28.), (6.29.) (6.30.), 25C :

68

. . . , 6 pK w = pH + pOH

(6.31.)

pH, , : 0 7 14

: pH pOH Srensen , pH pOH (< 0 > 14).

pH pH < 0 pH > 14 . pH , ( conductivity . S (Siemens) 1 S=1 -1). pH , 3+ - (6.32.) (6.33.) [ H 3O + ] = 10 pH [OH ] = 10 pOH = 1014 pH (6.32.) (6.33.)

6.14. HENDERSON - HASSELBACH

pH .

: .. / (CH3COOH / CH3COONa) .. / (NH3 / NH4Cl)

69

. . . , 6

.. CH3COOH NaOH, CH3COOH + NaOH CH3COONa + H2O.

3+ CH3COO-, H3O+ + CH3COO- CH3COOH

, . pH . HA/MA ( ), :HA + H2O H3O+ + A-

+ + -

=

[H 3 O + ] [ ] [ ] [] [H 3 O + ] = = [ ] [ ] [ ] pH = pK a + log [ ] (6.34.). []

. B/BA ( + ), : + 2 + + -

+ + -

(6.35.) pOH b pH = pK b + log

[ ] [ ]

(6.35.)

70

. . . , 6

(6.34.) (6.35.) Henderson [ ] [ ] Hasselbach . [] [ ] . 1: pH HCl 1,810-5 ;

:

( ) 1,810-8 HCl 1,810-8 H3O+Cl + H2O H3O+ + Cl-

pH = log(1,8 105 ) = 4,75

2: pH / (CH3COOH / CH3COONa) 0,1 ; = 1,810-5.

:

( ) CH3COOH + H2O CH3COO- + H3O+

CH3COONa CH3COO- + Na+

Henderson Hasselbach , pH = log(1,8 10 5 ) + log

0,1 = 4,75 0,1

3: HCl 1,810-5 1,810-5 moles a, . pH ;

:

71

. . . , 6 HCl + a aCl + H2O

1,810-5 HCI 1,810-5 NaOH. , H2O [H3O+] = 10-7 , pH 7 (pH = 7). 4: 0,1M CH3COOH / 0,1M CH3COONa 1,810-5 mol Na, . pH ;

:

Na CH3COOH + Na CH3COOa + H2O

1,810-5 mol CH3COOH 1,810-5 mol OH 1,810-5 mol CH3COONa. (

mole ) l

CH3COOH + H2O CH3COO- + H3O+CH3COOH 0,1 -1,810-5 x 0,1 -1,810-5-x 2 CH3COOx x+0,1+1,810-5 H3O+ x x

CH3COONa CH3COO- + Na+CH3COONa 0,1+1,810-5 0,1+1,810-5 CH3COO0,1+1,810-5 x+0,1+1,810-5 Na+ 0,1+1,810-5 0,1+1,810-5

=

x (x + 0,1 + 1,8 10-5 ) x 2 + (0,1 + 1,8 10-5 ) 1,8 10 5 = 0,1 x - 1,8 10-5 0,1 x - 1,8 10- 5

x = 1,8 10-5 pH = 4,75 Henderson HasselbachpH = pK a + log 0,1 + 1,8 10 5 [CH 3COO ] pH = log(1,8 10 5 ) + log 0,1 1,8 10 5 [CH 3COOH ]

pH = 4,75 + 1,2 105 pH 4,75

72

. . . , 6

, ( 3) pH 4,75 7 , ( Na) pH .

6.15.

. AgCl(s) Ag+ + Cl-

Ag+ Cl- AgCl(s) , Ag+ Cl .

=

[Ag + ] [Cl- ] [ Ag + ] [Cl ] = K [AgCl(s) ] = K sp = [AgCl(s) ]

, sp (solubility product), . sp . Ag+ Cl- sp, : [ Ag + ] [Cl ] < K sp [ Ag + ] [Cl ] = K sp [ Ag + ] [Cl ] > K sp AgCl [ Ag + ] [Cl ] = K sp . Ag3PO4

73

. . . , 6 Ag3PO4(s) 3Ag+ + PO433 sp = [ Ag + ]3 [ PO4 ] .

5: Ca3(PO4)2 25C sp=1,310-32;

:

Ca3(PO4)2 Ca3(PO4)2(s) 3Ca2+ + 2PO43-

x mol/lt Ca3(PO4)2(s) 3x gr-ions Ca2+/l 2x gr-ions PO43-/l. sp Ca Ca 3 sp ( PO ) = [Ca 2+ ]3 [ PO4 ] 2 sp ( PO ) = (3 x) 3 (2 x) 2 3 4 2 3 4 2

x=

5

Ca sp ( PO )3

4 2

108

x=5

mol 1,3 10 32 . x = 1,64 10 7 l 108

6.16. (DEBYE HUCKEL)

. . , . , r = 0,281

2 J

(6.36.)

: : J:

,

74

. . . , 6

1 n J = Ci Z i 2 i =1 Ci: Zi:

(6.37.)

.

CuSO4 0,01M NaCl 0,01M CuSO4 Cu2+ + SO42-

NaCl Na+ + Cl-

J CuSO4 = J NaCl =

1 (0,01 22 + 0,01 22 ) = 0,04 2 1 (0,01 12 + 0,01 12 ) = 0,01 2

. , . () 9,0 p 8,4 p < 8,4

8.6.7.

. , , . : 1. . . 2. . / . 3. . % w/w . (ACI) : ( ) 0,08 % w/w. 0,10 % w/w 0,20 % w/w. 0,4 % w/w 0,6 % w/w .

4. (.. ). , , . 5. . 6. . 7. .

101

. . . , 8 8. . 9. (corrosion inhibitors) . , . . , , .

8.6.8.

(. .). . . 1973 , , , . . . . . . , , , , . . . :

, , .

. (). . , , , , (>15 mm)

102

. . . , 8 . , . , (-0,85 V Cu/CuSO4) : . .

, , . , . , , . , . , 1,10 V 0,90 V . ( ) , , .

103

. . . , 8

104

. . . ,

1. D. D. Ebbing, S. D. Gammon, , 6 , . , 2002 2. J. N. Murell, S. F. A. Kettle, J. N. Tedder, , 2 , , 2006 3. . . , 1. , , 1999 4. . . , 2. , 1 , , 1986 5. . . , , 2 , , 2006 6. . , . , , 1 , , 1995 7. . , , , 1994 8. . , & & , , 2007 9. . , . , , , 2003 10. . . , , 2 , , 2003 11. . , , , 2005 12. . , . , . , , . , 2006 13. . . , , 3 , . , 1999 14. . . , 441 , 2 , . , 2004 15. I. S. Butler, J. F. Harrod, , , , 1995 16. . , , , 1995 17. . , , ..., 1990 18. . , , ..., 1990 19. . , . , , 1983 20. . , , ...., 1972 21. . , , 1980 22. . , , , 1976 23. . . , , 3 , , 1954 24. . , , , 1996

105

. . . , 25. . , , ..., 1990 26. . , , ..., 1997 27. . . , , 5 , . , 1991 28. . . , , 11 , . , 1992 29. . . , , 5 , . , 1992 30. . . , , . , 1999 31. . . , , . , 1990 32. R. L. Pecsok, L. D. Shields, T. Cairns, I. G. Mc William, , 2 , . . , 1980 33. J. Mc Murry, , 6 , , 2007 34. J. Mc Murry, , 5 , , 2006 35. . . , , 2 , , 1989 36. . . , , 2 , , 1989 37. . . , . . , , , 1996 38. . , , , 1995 39. . , , , 1991 40. P. W. Atkins, , 3 , , 2005 41. P. W. Atkins, , 3 , , 2005 42. . , , . , 1999 43. . . , , , , 1994 44. . , , 2: , , 1994 45. . , . , , 2 , , 1992 46. . , . , , , 1994 47. . . , , , 2000 48. . . , , , , 1994.

106

. . . , 1. P. Atkins, L. Jones, Chemical Principles The Quest for Insight, 3rd Ed., W. H. Freeman, New York, U.S.A. 2005 2. M. S. Silberberg, Chemistry The Molecular Nature of Matter and Change, 3rd Ed., Mc Graw Hill, New York, U.S.A. 2003 3. T. R. Gilbert, R. V. Kirss, G. Davies, Chemistry The Science in Context, W. W. Norton & Company, New York, U.S.A. 2004 4. S. S. Zumdahl, S. A. Zumdahl, Chemistry, 6th Ed., Houghton Mifflin Company, Boston, U.S.A. 2003 5. M. Munowitz, Principles of Chemistry, W. W. Norton & Company, New York, U.S.A. 2000 6. R. Chang, General Chemistry The Essential Concepts, 3rd Ed., Mc Graw Hill, New York, U.S.A. 2003 7. D. D. Ebbing, S. D. Gammon, General Chemistry, 7th Ed., Houghton Mifflin Company, Boston, U.S.A. 2002 8. D. Clark, General Chemistry Pearls of Wisdom, Boston Medical Publishing Corporation, U.S.A. 1999 9. W. R. Robinson, J. D. Odom, H. H. Holtzclaw Jr., General Chemistry, 10th Ed., Houghton Mifflin Company, Boston, U.S.A. 1997 10. P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Shriver & Atkins Inorganic Chemistry, 4th Ed., Oxford University Press, New York, U.S.A. 2006 11. C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 2nd Ed., Pearson Education Limited, Essex, England 2005 12. G. L. Miessler, D. A. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education Limited, New Jersey, U.S.A. 2004 13. M. T. Weller, Inorganic Materials Chemistry, Oxford University Press, New York, U.S.A. 2004 14. J. D. Lee, Concise Inorganic Chemistry, 5th Ed., Blackwell Science, London, U.K. 1996 15. J. E. Huheey, E. A. Keiter, R. L Keiter, Inorganic Chemistry Principles of structure and reactivity, 4th Edition, HarperCollins College Publishers, New York, U.S.A. 1993 16. J. A. Cotton, G. Willkinson, Advanced Inorganic Chemistry, Springer Verlag, New York, U.S.A. 1990 17. J. Huheey, Inorganic Chemistry, Harper & Row, London, U.K. 1975 18. J. A. Cotton, G. Willkinson, Basic Inorganic Chemistry, Verlag Chemie, New York, U.S.A. 1972 19. H. S. Stoker, General, Organic and Biological Chemistry, 3rd Ed., Houghton Mifflin Company, Boston, U.S.A. 2004 20. H. S. Stoker, Organic and Biological Chemistry, 3rd Ed., Houghton Mifflin Company, Boston, U.S.A. 2004 21. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, New York, U.S.A. 2006 22. M. Jones Jr., Organic Chemistry, 3rd Ed., W. W. Norton & Company, New York, U.S.A. 2005 23. M. A. Fox, J. K. Whitesell, Organic Chemistry, 3rd Ed., Jones and Bartlett Publishers, Boston, U.S.A. 2004 24. H. Hart, L. E. Craine, D. J. Hart, Organic Chemistry A Short Course, 11th Ed., Houghton Mifflin Company, Boston, U.S.A. 2003

107

. . . , 25. A. W. Johnson, Invitation to Organic Chemistry, Jones and Bartlett Publishers, Boston, U.S.A. 1999 26. K. L. Williamson, Macroscale and Microscale Organic Experiments, 4th Ed., Houghton Mifflin Company, Boston, U.S.A. 2003 27. F. W. Fifield, D. Kealey, Principles and Practice of Analytical Chemistry, 5th Ed., Blackwell Science, London, U.K. 2000 28. G. D. Christian, Analytical Chemistry, J. Wiley, New York, U.S.A. 1997 29. D. A. Skoog, D. West, J. Holler, Analytical Chemistry, 6th Ed., Saunders, New York, U.S.A. 1992 30. D. A. Skoog, D. West, J. Holler, Fundamentals of Analytical Chemistry, 6th Ed., Saunders, New York, U.S.A. 1991 31. W. H. Mc Clennen, N. S. Arnold, H. L. C. Menzelaav, Trends in Analytical Chemistry, 1994 32. R. V. Dilts, Analytical Chemistry, D. Van Nostrand, New York, U.S.A. 1974 33. F. W. Fifield, P. J. Haines, Environmental Analytical Chemistry, 2nd Ed., Blackwell Science, London, U.K. 2000 34. D. C. Harris, Quantitative Chemical Analysis, 6th Ed., W. H. Freeman, New York, U.S.A. 2003 35. L. W. Potts, Quantitative Analysis Theory and Practice, Harper Collins Publications, 1987 36. A. Vogel, A Textbook of Macro and Semimacro Qualitative Inorganic Analysis, 4th Ed., Longman 1980 37. A. Vogel, Textbook of Quantitative Inorganic Analysis, J. Wiley, New York 1978 38. H. Laitinen, W. E. Harris, Chemical Analysis, Mc Graw Hill, New York, U.S.A. 1975 39. D. Livingstone, Data Analysis for Chemists, Oxford, U.K. 1995 40. R. W. Ramette, Chemical Equilibrium and Analysis, Addison Wesley, Massachusetts, U.S.A. 1981 41. H. Rossoti, The Study of Ionic Equilibria, Longman, New York, U.S.A. 1978 42. K. J. Laidler, J. H. Meiser, B. C. Sanctuary, Physical Chemistry, Houghton Mifflin Company, Boston, U.S.A. 2003 43. P. Atkins, J. de Paula, Atkins Physical Chemistry, 7th Ed., Oxford University Press, New York, U.S.A. 2002 44. L. M. Raff, Principles of Physical Chemistry, Prentice Hall, New Jersey, U.S.A. 2001 45. H. E. Avery, D. J. Shaw, Basic Physical Chemistry Calculations, Butterworth & Company, London, England 1971 46. B. C. Reed, Quantum Mechanics, Jones and Bartlett Publishers, Boston, U.S.A. 2008 47. D. Lide, C.R.C. Handbook of Chemistry and Physics, 72th Ed., C.R.C. Press, U.S.A. 1992 48. R. Perry, C. Chilton, Chemical Engineers Handbook, 6th Ed., Mc Graw Hill, New York, U.S.A. 1997

108