νββ 0 Neutrino Physics and - Aarhus Universitet0.0001 0.001 0.01 0.1 1 m @eVD 0.0001 0.001 0.01...

57
Neutrino Physics and 0νββ Werner Rodejohann (MPI Heidelberg) Aarhus, 05/09/07 Neutrino Mixing and 0νββ •|m ee | and NH vs. IH What’s more to 0νββ (Majorana phases, mass scale, |U e3 |) If we don’t observe 0νββ : vanishing effective mass If we observe MiniBooNE and 0νββ

Transcript of νββ 0 Neutrino Physics and - Aarhus Universitet0.0001 0.001 0.01 0.1 1 m @eVD 0.0001 0.001 0.01...

  • Neutrino Physics and 0νββ

    Werner Rodejohann

    (MPI Heidelberg)

    Aarhus, 05/09/07

    • Neutrino Mixing and 0νββ

    • |mee| and NH vs. IH

    • What’s more to 0νββ (Majorana phases, mass scale, |Ue3|)

    • If we don’t observe 0νββ: vanishing effective mass

    • If we observe

    • MiniBooNE and 0νββ

  • Status and goal of neutrino physicsunderstand form and origin of

    fundamental object in low energy Lagrangian:

    L = 12

    νcα (mν)αβ νβ + h.c. with mν = UT diag(m1, m2, m3) U

    P (νe → νµ) = sin2 2θ sin2 ∆m2

    4E L mν = −mTD M−1R mD

    Oscillations! See-saw!

    Masses? Lepton Number Violation?

  • What we know and don’t know9 physical parameters in mν

    • θ12 and m22 − m21 (or θ⊙ and ∆m2⊙)

    • θ23 and |m23 − m22| (or θA and ∆m2A)

    • θ13 (or |Ue3|)

    • m1, m2, m3• sgn(m23 − m22)

    • Dirac phase δ

    • Majorana phases α and β (or α1 and α2, or φ1 and φ2, or. . .)

  • Neutrino masses

    • neutrino masses ↔ scale of their origin• neutrino mass ordering ↔ form of mν

    • m23 ≃ ∆m2A ≫ m22 ≃ ∆m2⊙ ≫ m21: normal hierarchy (NH)• m22 ≃ |∆m2A| ≃ m21 ≫ m23: inverted hierarchy (IH)• m3 ≃ m2 ≃ m1 ≡ m0 ≫

    ∆m2A: quasi-degeneracy (QD)

  • ∆L 6= 0: Neutrinoless Double Beta DecaySM vertex

    Nuclear Process Nucl

    Σi

    νiUei

    e

    W

    νi

    e

    W

    Uei

    Nucl

    • only works when ν = νc and mν 6= 0 ⇔ See-saw mechanism• spin flip ⇒ Amplitude ∝ mi/(q2 − m2i ) → mi• Nuclear Matrix Elements: Uncertainty ζ = O(1) !?

    Amplitude proportional to coherent sum

    (“Effective mass”):

    |mee| ≡∣

    U2ei mi

  • ∆L 6= 0: Neutrinoless Double Beta DecayIm

    Rem

    mm

    ee

    ee

    ee

    (1)

    (3)

    (2)

    | |

    | || | e

    e.

    .

    eem

    2iβ2iα

    Effective mass |mee| ≡∣

    U2ei mi∣

    ∣:

    =∣

    ∣c212 c213 m1 + s

    212 c

    213 m2 e

    2iα + s213 m3 e2iβ∣

    =∣

    ∣cos2 θ⊙ m1 + sin2 θ⊙ m2 e

    2iα + sin2 θCHOOZ m3 e2iβ∣

    =∣

    ∣|m(1)ee | + |m(2)ee | e2iα + |m(3)ee | e2iβ∣

    = f(

    θ12, mi, |Ue3|, sgn(∆m2A), α, β)

    7 out of 9 parameters of mν . . .

  • Kim, 1996; Minakata & Yasuda, 1996; Hirsch & Klapdor-Kleingrothaus, 1997;

    Bilenky, Giunti & Monteno, 1997; Fukuyama, Matsuda & Nishiura, 1997; Bilenky,

    Giunti, Kim & Monteno, 1998; Fukuyama, Matsuda & Nishiura, 1998; Vissani, 1999;

    Giunti, 1999; Bilenky, Giunti, Grimus, Kayser & Petcov, 1999; Ma, 1999; Wodecki &

    Kaminsky, 2000; Kalliomaki & Maalampi, 2000; Rodejohann, 2000; Matsuda,

    Takeda, Fukuyama & Nishiura, 2000; Klapdor-Kleingrothaus, Päs & Smirnov, 2001;

    Falcone & Tramontano, 2001; Bilenky, Pascoli & Petcov, 2001; Xing, 2001; Osland

    & Vigdel, 2001; Pascoli & Petcov, 2001; Barger, Glashow, Marfatia & Whisnant,

    2002; Hambye, 2002; Minakata & Sugiyama, 2002; Klapdor-Kleingrothaus &

    Sarkar, 2002; Xing, 2002; Haba & Suzuki, 2002; Pakvasa & Roy, 2002; Rodejohann,

    2002; Haba, Nakamura & Suzuki, 2002; Päs & Weiler, 2002; Barger, Glashow ,

    Langacker, Marfatia, 2002; Civitarese & Suhonen, 2002; Pascoli, Petcov &

    Rodejohann, 2002; Sugiyama, 2002; Avignone & King, 2002; Minakata &

    Sugiyama, 2002; Cheung, 2003; Abada & Bhattacharyya, 2003; Giunti, 2003;

    Pascoli & Petcov, 2003; Elliott, 2003; Stoica, 2004; Brahmachari, 2004; Bilenky,

    Fäßler & Simkovic, 2004; Pascoli & Petcov; 2004; Deppisch, Päs & Suhonen, 2004;

    Joniec & Zralek, 2004; Pascoli & Petcov, 2005; Pascoli, Petcov & Schwetz, 2005;

    Goswami & Rodejohann, 2005; Choubey & Rodejohann, 2005; Bilenky, Fäßler,

    Gutsche, & Simkovic, 2005; Lindner, Merle & Rodejohann, 2005;

    ,Neutrino 2006, Santa Fe, 14/06/2006 – p.21/34

  • 0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0

    Dis

    favo

    red

    byC

    osm

    olog

    y

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.03

    Dis

    favo

    red

    byC

    osm

    olog

    y

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.10

    Dis

    favo

    red

    byC

    osm

    olog

    y

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.20

    Dis

    favo

    red

    byC

    osm

    olog

    y

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    Our plots are blue and yellow!

  • Experiment Isotope

    Enriched

    isotope mass

    (kg)

    T1/2

    (yr) (eV) Start Status

    CUORE 130Te 203 2.1 1026 0.03 - 0.07* 2011 Funded

    GERDA phase I

    phase II76Ge

    17.9

    40

    3. 1025

    2. 1026

    0.2 – 0.5*

    0.07 – 0.2*

    2009

    2011

    Funded

    Funded

    Majorana 76Ge 30 - 60 1.1026 0.1 – 0.3* 2011 Funded

    EXO-200 136Xe 200 6.4 1025 0.2 - 0.7* 2008 Funded

    SuperNEMO82Se

    150Nd

    100

    100

    2. 1026

    1026

    0.05- 0.09*

    0.072011 R&D

    CANDLES 48Ca 0.5 ~0.5 2008 Funded

    MOON II 100Mo 120 0.09 – 0.13 ? R&D

    DCBA 150Nd 20 ? R&D

    SNO++ 150Nd 500 R&D

    COBRA116Cd,

    130Te

    420R&D

    SummarySummary

    * Calcu

    lation w

    ith N

    ME

    from R

    odim

    et al., Su

    hon

    enet al., C

    aurier et al. P

    MN

    07

    Piquemal, talk at Lepton/Photon

  • Lindner, Merle, W.R., Phys. Rev. D 73, 053005 (2006)

    Distinguish NH from IH?!

  • Normal vs. Inverted Hierarchy vs. NuclearPhysics

    ∆|mee| ≡ |mee|IHMIN − ζ |mee|NHMAX

    !> 0

    upper limit on experimental uncertainty

    0.01 0.02 0.03 0.04 0.05sin2Θ13

    0.005

    0.01

    0.015

    0.02

    0.025

    HDÈm

    eeÈHΖLL@e

    VD

    sin2 Θ12=0.28

    0.01 0.02 0.03 0.04 0.05sin2Θ13

    0.005

    0.01

    0.015

    0.02

    0.025

    HDÈm

    eeÈHΖLL@e

    VD

    sin2Θ12=0.40

    Ζ=3

    Ζ=2

    Ζ=1.5

    Ζ=1

    Lindner, Merle, W.R., PRD 73, 053005 (2006);

    S. Choubey, W.R.; Pascoli, Petcov, Schwetz; de Gouvea, Jenkins

    • likes ζ

  • Other (non-oscillation) probes of NH vs. IH1) Cosmology: Σ =

    mi

    ΣNH ≃√

    ∆m2A < ΣIH ≃ 2

    ∆m2A

    • independent on mixing angles

    • systematics?

  • Cosmology and 0νββ

    σΣ mee

    = 0.01 eVm

    ee

    eV

    0.05 0.1 0.2 0.410

    −2

    10−1

    InvertedBothNormal

    σΣ mee

    = 0.05 eV

    Σ eV0.05 0.1 0.2 0.4

    σΣ mee

    = 0.1 eV

    0.05 0.1 0.2 0.4

    Jenkins, de Gouvea, hep-ph/0507021

  • 2) β-decay: mνe =√∑ |Uei|2 m2i

    mNHνe ≃√

    s212 c213 ∆m

    2⊙ + s

    213 ∆m

    2A ≪ mIHνe ≃

    c213 ∆m2A

    • almost independent on mixing angles• difference of normal and inverted shows up well below KATRIN limit• different for sterile (LSND/MiniBooNE!!) neutrinos

  • KATRIN and 0νββ

    0νββ ∆m2A KATRIN Conclusion

    yes > 0 yes QD, Majorana

    yes > 0 no QD, Majorana or

    NH, Majorana + heavy particles

    yes < 0 no IH, Majorana

    yes < 0 yes QD, Majorana

    no > 0 no NH, Dirac or Majorana

    no < 0 no Dirac

    no < 0 yes Dirac

    no > 0 yes Dirac

    APS study, Mohapatra et al., hep-ph/0510213

  • Σ mβ |mee|

    NHp

    ∆m2A

    q

    sin2 θ⊙∆m2⊙ + |Ue3|2∆m

    2

    A

    ˛

    ˛

    ˛

    ˛

    sin2 θ⊙

    q

    ∆m2⊙ + |Ue3|2p

    ∆m2Aeiφ

    ˛

    ˛

    ˛

    ˛

    IH 2p

    ∆m2Ap

    ∆m2Ap

    ∆m2Ap

    1 − sin2 2θ⊙ sin2α

    QD 3m0 m0 m0p

    1 − sin2 2θ⊙ sin2α

  • Other (non-oscillation) probes of NH vs. IH3) Other elements of mν : “the lobster”

    Recall: (A, Z) → (A, Z + 2) +2 e− is proportional to

    mee =∑

    i

    U2ei mi

    is ee element of mass matrix (unique!!)

    Therefore, K+ → π− e+ µ+ is proportional to∑

    i

    Uei Uµi mi

    eµ element of mass matrix

  • Other (non-oscillation) probes of NH vs. IH3) Other elements of mν : “the lobster”

    BR(K+ → π− e+ µ+) ∝ |meµ|2 =∣

    Uei Uµi mi

    2

    ∼ 10−30( |meµ|

    eV

    )2

    Merle, W.R., Phys. Rev. D 74, 017701 (2006)

  • (mν)αβ =

    Merle, W.R., Phys. Rev. D 74, 017701 (2006)

  • 3) Other elements of mν : “the lobster”

    1e-9

    1e-7

    1e-5

    1e-3

    0.1

    1

    1e3

    1e5

    1e7

    1e9

    1e-6 1e-4 0.01 1 100 1e4 1e6

    σ [

    10

    -33 b

    ]

    mi [GeV]

    µµµτττ

    Eµ = 50 GeV

    νµ N → µ− α+β+XW.R., K. Zuber, Phys. Rev. D 63, 054031 (2001)

    (νN scattering, ν-fac, HERA,. . .)

    BR, Γ, σ ∝ m2

    (q2 − m2)2 ≃

    m2i q2 ≫ m2i

    1m2i

    q2 ≪ m2i

  • What’s more to 0νββ?∗ Mass scale: consider QD spectrum

    m0 ≤1 + tan2 θ12

    1 − tan2 θ12 − 2 |Ue3|2|mee|exp

  • Majorana phasesPascoli, Petcov, Schwetz, Nucl. Phys. B 734, 24 (2006)

    10-2

    10-1

    100

    1 2 3 410

    -2

    10-1ob

    serv

    ed Σ

    [eV

    ]

    1 2 3 4uncertainty in || from NME

    1 2 3 4

    σββ = 0.004 eV, σΣ = 0.04 eV

    ||obs

    = 0.018 eV

    || and Σ inconsistent at 2σ

    sin2θ

    12 = 0.31 +− 3%sin

    2θ12 = 0.38 +− 3%

    sin2θ

    13 = 0 +− 0.002, ∆m

    2

    21 = 8x10

    -5 +− 2%, ∆m2

    31 = −2.2x10-3 +− 3%,

    ||obs

    = 0.032 eV

    data consistent with α21

    = π data consistent with α21

    = 0

    CP violation established at 2σ

    ||obs

    = 0.047 eV

  • |Ue3| and 0νββ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0

    Dis

    favo

    red

    byC

    osm

    olog

    y

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.03

    Dis

    favo

    red

    byC

    osm

    olog

    y

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.10

    Dis

    favo

    red

    byC

    osm

    olog

    yDisfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.20

    Dis

    favo

    red

    byC

    osm

    olog

    y

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@e

    VD

    ⇒ Value of Ue3 influences |mee|, in particular NH vs. IH

  • Cosmology and |Ue3|2

    Merle, W.R., hep-ph/0703135

  • Measuring |Ue3|2 with Neutrino-less Double BetaDecay?

    Example inverted hierarchy:

    |Ue3|2 = 1 −|mee|

    ∆m2A√

    1 − sin2 2θ12 sin2 α

    Merle, W.R., hep-ph/0703135

  • if we don’t observe 0νββ: vanishing |mee|

    The “chimney”

  • if we don’t observe 0νββ: vanishing |mee|• a triangle can be formed!

    ∣|m(1)ee | + |m(2)ee | e2iα + |m(3)ee | e2iβ

    ∣= 0

    Im

    Rem

    mm

    ee

    ee

    ee

    (1)

    (3)

    (2)

    | |

    | || | e

    e.

    .

    eem

    2iβ2iα

    • texture zero in charged lepton basis! (only meµ or meτ can inaddition be zero)

    cos 2α =|m(1)ee |2 + |m(2)ee |2 − |m(3)ee |2

    2|m(1)ee | |m(2)ee |=

    m21(

    c413(

    s412 + c412

    )

    − s413)

    + ∆m2⊙ s412 c

    413 − ∆m2A s413

    2m1

    m21 + ∆m2⊙ s

    212 c

    212 c

    413

  • • only possible for normal ordering

    • if θ13 = 0: m1 = sin2 θ12√

    ∆m2⊙cos 2θ12

    ≃ 4.5 (2.8 ÷ 8.4) meV

    • if m1 = 0: sin2 2θ13 ≃ 4 sin2 θ12

    ∆m2⊙∆m2A

    ≃ 0.24 (0.14 ÷ 0.40)

    60 70 80 90 100 110 120alpha

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    m 1

    0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2sin22Θ13

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    m1+

    m2+

    m3

    ineV

    mee=0.0001 eV

    0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2sin22Θ13

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    m1+

    m2+

    m3

    ineV

    3 Σ

    1 Σ

    best-fit

    Dev, Kumar, hep-ph/0607048 Lindner, Merle, W.R., PRD 73, 053005 (2006)

  • d

    d

    e

    u

    u

    e

    u

    u~

    ~

    R L

    R

    L

    L

    L

    L

    L

    χ, g~

    dR

    L

    e

    u

    ~L

    u

    e

    L

    ~dR

    R

    , g

    L

    d

    ~

    u

    2n → 2p + 2e− ⇒ 2d → 2u + 2e− ⇒ 0 → ud̄ + ud̄ + 2e−

    • SUSY• Higgs triplets• Right-handed interactions• Majorons

    ⇒ limits on masses and couplingscomplementary to collider or DM

  • Leptogenesis and Majorana NeutrinosDecay asymmetry of heavy Majorana neutrinos (see-saw!)

    εα1 =Γ(N1 → φ l̄α) − Γ(N1 → φ† lα)Γ(N1 → φ l̄α) + Γ(N1 → φ† lα)

    ∝ ∑j 6=i

    Im

    {

    (mD)iα (m†D)αj

    (

    mD m†D

    )

    ij

    }

    Parameterize mD a la Casas-Ibarra:

    mD = i√

    MR R√

    mdiagν U with complex R RT = 1

    leads to

    εα1 = f(mD, m†D) = f(R, U)

    ε1 =∑

    α εα1 = f(mD m

    †D) = f(R)

    ⇒ if flavor effects are important (M1

  • Caveat:Leptogenesis works with |mee| = 0 and with no phases in U

  • If we observe 0νββ. . .

    • Neutrinos are Majorana (Schechter-Valle)

    BLACK

    BOX

    W

    W

    ν

    ν

    −e

    e

    u

    d

    u

    d−e

    e

    • we still need to identify the mechanism of 0νββ: SUSY, RHcurrents, heavy Majorana neutrinos,. . .

    solution: EC/EC, EC/β, excited states, angular distribution,

    measure 0νββ in many different nuclei,. . .

    • reduce/check NME uncertainty: same solution

    • |mee| can rule out models

    • we tested a prediction of the see-saw mechanism!

    • we will believe much more firmly in leptogenesis!

    • if non-zero, Majorana phases DO CONTRIBUTE to leptogenesis

  • Sterile Neutrinos?!

    • Solar (∆m221 ≃ 8 · 10−5 eV2) and atmospheric (∆m232 ≃ 2.5 · 10−3eV2) neutrinos oscillate

    ∆m221 + ∆m232 = ∆m

    213

    • LSND ν̄µ ↔ ν̄e flavor transition:∆m2s1 ≃ (0.1 ÷ 1) eV2 ⇒ add sterile neutrino!! (3 + 1)

    • confronted with KARMEN, Bugey, CDHS, Chooz, Palo VerdeMaltoni, Schwetz, Tortola, Valle, Phys. Rev. D 67, 013011 (2003):

    10-3

    10-2

    10-1

    100

    sin22θ

    LSND

    10-1

    100

    101

    ∆m2 LS

    ND

    [eV

    2 ]

    (3+1) NEV+atm

    LSND DAR

    LSND global

    95% C

    L

    99% C

    L

  • MiniBooNE Results

    )θ(22sin

    -310 -210 -110 1

    )4

    /c2|

    (eV

    2m

    ∆|

    -210

    -110

    1

    10

    210

    LSND 90% C.L.

    LSND 99% C.L.

    ) upper limitθ(22sin

    yMiniBooNE 90% C.L.MiniBooNE 90% C.L. sensitivityBDT analysis 90% C.L.

    10-4

    10-3

    10-2

    10-1

    100

    sin22θ

    SBL

    10-1

    100

    101

    ∆m

    2 41 [

    eV2 ]

    NEV(incl. MB475)

    LSND

    90%, 99% CL

    LSND (2-flavor oscillation!) ruled out at 98 % C.L.

    Aguilar-Arevalo et al., arXiv:0704.1500 [hep-ex]

    Maltoni, Schwetz, arXiv:0705.0107 [hep-ph]

  • Add two sterile Neutrinos!

    • LSND more compatible with other experimentsSorel, Conrad, Shaevitz, Phys. Rev. D 70, 073004 (2004)

    • CP violation studies with LSND and MiniBooNEKaragiorgi, Aguilar-Arevalo, Conrad, Shaevitz, Whisnant, Sorel,

    Barger, Phys. Rev. D 75, 013011 (2007)

    • LSND compatible with MiniBooNEMaltoni, Schwetz, arXiv:0705.0107 [hep-ph]

    – good fit to LSND and MiniBooNE

    – can explain low energy excess

    – requires non-trivial CP phase

    – tension with disappearance experiments CDHS and Bugey

    – 3 sterile neutrinos don’t provide much better fit

  • Add two sterile Neutrinos!

    0.1 1 10

    ∆m241

    [eV2]

    0.1

    1

    10

    ∆m2 51

    [eV

    2 ]

    0.1 1 10

    0.1

    1

    10

    90 100 110 120 130

    χ290 100 110 120 130

    (3+2) (3+1)

    (3+2) fit to global data (MB475)

    Maltoni, Schwetz, arXiv:0705.0107 [hep-ph]

    ∆m2s1 = 6.49+1.0−1.0 eV

    2 or 1.90+0.60−0.90 eV2 with |Ue5| = 0.12+0.06−0.06

    ∆m2s2 = 0.89+0.1−0.1 eV

    2 or 0.90+0.05−0.20 eV2 with |Ue4| = 0.11+0.05−0.05

    Mass scales of 1 ÷ 3 eV ⇒ will have effect on mass-related observables

  • ∆L 6= 0: Neutrinoless Double Beta DecaySM vertex

    Nuclear Process Nucl

    Σi

    νiUei

    e

    W

    νi

    e

    W

    Uei

    Nucl

    Effective mass:

    |mee| ≡∣

    5∑

    i=1

    U2ei mi

    =∣

    ∣m3ee + mstee

    where m3ee ≡ cos2 θ⊙ m1 + sin2 θ⊙ m2 eiα2 + sin2 θCHOOZ m3 eiα3

    and mstee ≡ |Ue4|2 m4 eiα4 + |Ue5|2 m5 eiα5

    Sterile term can dominate, active term can dominate, cancellation

    possible

  • 0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1Èm

    eeÈ@e

    VD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.03

    Dis

    fav

    ore

    db

    yC

    osm

    olo

    gy

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1Èm

    eeÈ@e

    VD

    3 active neutrinos: 2 mass orderings

  • How many massorderings?

  • 8 possible Orderings

    • two 2 + 3 scenarios

    • active neutrinos normally (SSN) or inversely (SSI) ordered

    • active neutrinos as in NH or in IH, m4 ≃√

    ∆m2s2, m5 ≃√

    ∆m2s1

  • 8 possible Orderings

    • Σ ≃√

    ∆m2s1 +√

    ∆m2s2 >∼ 1.5 eV best-fit: 3.5 eV

    • mβ ≃√

    |Ue4|2 ∆m2s2 + |Ue5|2 ∆m2s1 >∼ 0.1 eV best-fit: 0.32 eV

  • • 〈m〉st ≃∣

    ∣|Ue4|2

    ∆m2s2 + |Ue5|2√

    ∆m2s1ei(α5−α4)

    ∣≃ (0.02 ÷ 0.05) eV

    • SSN: 〈m〉3 ≃ sin2 θ⊙√

    ∆m2⊙

  • 8 possible Orderings

    • two 3 + 2 scenarios• active neutrinos QD with m0 =

    ∆m2s1, m4 ≃√

    ∆m2s1 − ∆m2s2• normal or inverted ordering not distinguishable with mass-related

    observables

  • 8 possible Orderings

    • Σ ≃ 3√

    ∆m2s1 +√

    ∆m2s1 − ∆m2s2 >∼ 3 eV best-fit: 10 eV• mβ ≃

    ∆m2s1 best-fit: 2.55 eV > 2.3 eV (!)

    – constrains allowed region of ∆m2s1

    – KATRIN will find something!

  • 8 possible Orderings

    • |mee| ≃√

    ∆m2s1

    1 − sin2 2θ⊙ sin2 α2/2 ≃ (1.02 ÷ 2.55) eV• larger than SSN, SSI• |mee| 6= 0 due to θ⊙ 6= π/4• future 0νββ will find something!• constraints on ∆m2s1, θ⊙ and α2

  • 0.2 0.25 0.3 0.35 0.4 0.2 0.25 0.3 0.35 0.4

    sin2θο. sin

    2θο

    α 2 α2

    .

    π/2

    3π/4

    π

    5π/4

    3π/2

    π/2

    3π/4

    π

    5π/4

    3π/2

    |mee| ≤ 1 eV |mee| ≤ 0.5 eV

  • • four 1 + 3 + 1 scenarios• heaviest ν separated either by ∆m̃2s1 (“a”) or ∆m̃2s2 (“b”)• SNSb and SISb: active neutrinos QD with m0 =

    ∆m̃2s1 < m5⇒ indistinguishable from NSS and ISS

    • SNSa and SISa: active neutrinos QD with m0 =√

    ∆m̃2s2 < m5

    • normal/inverted ordering not distinguishable with mass-relatedobservables

  • On 1 + 3 + 1 ScenariosAnalyzes of Maltoni, Schwetz and Sorel et al. use

    P (νµ → νe) = 4 |Ue4|2 |Uµ4|2 sin2∆m2s2 L

    4E+ 4 |Ue5|2 |Uµ5|2 sin2

    ∆m2s1 L

    4E

    +8 |U∗e4 Uµ4 Ue5 U∗µ5| sin∆m2s2 L

    4Esin

    ∆m2s1 L

    4Ecos

    (

    ∆m2ss L

    4E− δ)

    with ∆m2ss = ∆m2s1 − ∆m2s2

    But: 1 + 3 + 1 scenarios have ∆m2ss = ∆m2s1 + ∆m

    2s2

    No fit available ⇒ ∆m̃2s1 ≃ ∆m2s1 and ∆m̃2s2 ≃ ∆m2s2

  • • Σ ≃ 3√

    ∆m̃2s2 +√

    ∆m̃2s1 + ∆m̃2s2

    >∼ 2 eV best-fit: 5.55 eV

    • mβ ≃√

    ∆m̃2s2 ≃ 1 eV

    • KATRIN will find something!

  • • |mee| ≃√

    ∆m̃2s2

    1 − sin2 2θ⊙ sin2 α2/2 ≃ (0.38 ÷ 0.9) eV• active neutrinos dominate• |mee| 6= 0 due to θ⊙ 6= π/4• future 0νββ will find something!

  • NSS, ISS, (SNSb, SISb) SNSa, SISa

    ∆m2s1

    1 − sin2 2θ⊙ sin2 α2/2√

    ∆m̃2s2

    1 − sin2 2θ⊙ sin2 α2/2

    distinguish from each other if√

    ∆m2s1 cos 2θ⊙ ≥ ζ√

    ∆m̃2s2

  • Scenarios with 3 Sterile Neutrinos∆m2s1, ∆m

    2s2, ∆m

    2s3: 16 possible orderings, 5 phenomenologies

    ∆m2s1 = 1.84 eV , ∆m2s2 = 0.83 eV , ∆m

    2s3 = 0.46 eV

    |Uei| = 0.1 (assumption)

    • SSSN: NH plus 3 heavy sterile, KATRIN and 0νββ maybe

    • SSSI: IH plus 3 heavy sterile, KATRIN and 0νββ maybemβ ≃ 0.2 eV , |mee|

  • Distinguish QD scenarios via 0νββ for

    ∆m2s1 cos 2θ⊙ ≥ ζ√

    ∆m2s2√

    ∆m2s1 cos 2θ⊙ ≥ ζ√

    ∆m2s3√

    ∆m2s2 cos 2θ⊙ ≥ ζ√

    ∆m2s3

  • Summary• – Oscillations ⇒ mν 6= 0

    – almost all models/scenarios explain mν 6= 0 in connection withLepton Number Violation ⇒ 0νββ

    • 0νββ can– distinguish NH from IH

    – Mass scale (consistency with KATRIN and cosmology)

    – consistency with Ue3

    – Majorana phases (Leptogenesis?)

    • identify structure of mass matrix

  • Summary Sterile Neutrinos

    8 Orderings → 4 phenomenologiesscheme feature KATRIN 0νββ

    SSN NH plus νs1 , νs2 maybe maybe

    SSI IH plus νs1 , νs2 maybe maybe

    NSS, ISS QD with√

    ∆m2s1 yes yes

    SNSb, SISb QD with√

    ∆m̃2s1 yes yes

    SNSa, SISa QD with√

    ∆m̃2s2 yes yes