Physics of Condensed Matter I - Home - Faculty of Physics...

Post on 25-Aug-2020

0 views 0 download

Transcript of Physics of Condensed Matter I - Home - Faculty of Physics...

Physics of Condensed Matter I

Faculty of Physics UW

Jacek.Szczytko@fuw.edu.pl

1100-4INZ`PC

Molecules 3

H2+ ion

Trial functions of the hydrogen atom (variational method)

1s 1s

1su+

1sg+

EatEat

e+

e-P. Atkins

2015-11-27 2

Molecules

Ξ¨+ = 𝑁+ 1𝑠𝐴 + 1𝑠𝐡

Ξ¨βˆ’ = π‘βˆ’ 1𝑠𝐴 βˆ’ 1𝑠𝐡

Atk

ins,

Fri

dm

anM

ole

cula

rQ

M

H2+ ion

Trial functions of the hydrogen atom (variational method)

1s 1s

1su+

1sg+

EatEat

e+

e-

2015-11-27 3

Molecules

Ξ¨+ = 𝑁+ 1𝑠𝐴 + 1𝑠𝐡

Ξ¨βˆ’ = π‘βˆ’ 1𝑠𝐴 βˆ’ 1𝑠𝐡

P. Atkins

Atkins, Fridman Molecular QM

H2+ ion

Trial functions of the hydrogen atom (variational method)

1s 1s

1su+

1sg+

EatEat

e+

e-

2015-11-27 4

Molecules

Ξ¨+ = 𝑁+ 1𝑠𝐴 + 1𝑠𝐡

Ξ¨βˆ’ = π‘βˆ’ 1𝑠𝐴 βˆ’ 1𝑠𝐡

P. Atkins

Atkins, Fridman Molecular QM

Electrons energy strongly depends on the distance between nuclei.

P. Kowalczyk

𝐸(𝑅) - usually in numerical form.

Approximations: Morse potentialeg. Lithium

𝑉 π‘Ÿ = 𝐷𝑒 1 βˆ’ π‘’βˆ’π›Ό π‘Ÿβˆ’π‘Ÿ0 + 𝑉 π‘Ÿ0

Approximations: Lenard-Jones potential

2015-11-27 5

Electronic states

𝑉 π‘Ÿ = 4πœ€πœŽ

π‘Ÿ

12

βˆ’πœŽ

π‘Ÿ

6

+ 𝑉 π‘Ÿ0

Electrons energy strongly depends on the distance between nuclei.

𝐸(𝑅) - usually in numerical form.

Approximations: Morse potentialeg. Lithium

𝑉 π‘Ÿ = 𝐷𝑒 1 βˆ’ π‘’βˆ’π›Ό π‘Ÿβˆ’π‘Ÿ0 + 𝑉 π‘Ÿ0

Approximations: Lenard-Jones potential

2015-11-27 6

Electronic states

𝑉 π‘Ÿ = 4πœ€πœŽ

π‘Ÿ

12

βˆ’πœŽ

π‘Ÿ

6

+ 𝑉 π‘Ÿ0

Wik

iped

ia

Electrons energy strongly depends on the distance between nuclei.

𝐸(𝑅) - usually in numerical form.

Approximations: Morse potentialeg. Lithium

𝑉 π‘Ÿ = 𝐷𝑒 1 βˆ’ π‘’βˆ’π›Ό π‘Ÿβˆ’π‘Ÿ0 + 𝑉 π‘Ÿ0

Approximations: Lenard-Jones potential

2015-11-27 7

Electronic states

𝑉 π‘Ÿ = 4πœ€πœŽ

π‘Ÿ

12

βˆ’πœŽ

π‘Ÿ

6

+ 𝑉 π‘Ÿ0

Wik

iped

ia

Homonuclear diatomic molecules, eg. H2, Li2, N2, O2

The molecule is diatomic so we are looking for a combination of two orbitals πœ‘π΄ and πœ‘π΅.

overlap integral

2015-11-27 8

Molecules

Ξ¨ = π‘π΄πœ‘π΄ + π‘π΅πœ‘π΅

𝑆 = ΰΆ±πœ‘π΄πœ‘π΅ π‘‘Τ¦π‘Ÿ > 0πœ€Β± = ࢱΨ±

βˆ— 𝐻0Ξ¨Β±π‘‘Τ¦π‘Ÿ

πœ€+ =πΈπ‘Žπ‘‘ βˆ’ 𝐻𝐴𝐡

1 + 𝑆

πœ€βˆ’ =πΈπ‘Žπ‘‘ + 𝐻𝐴𝐡

1 βˆ’ 𝑆

𝐻𝐴𝐴 = ΰΆ±πœ‘π΄βˆ— 𝐻0πœ‘π΄π‘‘Τ¦π‘Ÿ = 𝐻𝐡𝐡 β‰ˆ πΈπ‘Žπ‘‘

𝐻𝐴𝐡 = ΰΆ±πœ‘π΄βˆ— 𝐻0πœ‘π΅π‘‘Τ¦π‘Ÿ < 0

1s 1s

1su+

1sg+

EatEat

e+

e-

bonding orbital

antibonding orbital

These were

𝑁+ =1

2 1 + π‘†π‘βˆ’ =

1

2 1 βˆ’ 𝑆

𝑐𝐴2 = 𝑐𝐡

2 β‡’ 𝑐𝐴 = ±𝑐𝐡

2015-11-27 9

Molecules

Ξ¨ = π‘π΄πœ‘π΄ + π‘π΅πœ‘π΅

𝑆 = ΰΆ±πœ‘π΄πœ‘π΅ π‘‘Τ¦π‘Ÿ > 0

Eat,B

Eat,A

overlap integral

𝑐𝐴2 = 𝑐𝐡

2 β‡’ 𝑐𝐴 = ±𝑐𝐡

Heteronuclear diatomic molecules, eg. CO, NO, HCl, HF

Heteronuclear diatomic molecules, eg. CO, NO, HCl, HF

2015-11-27 10

Molecules

Ξ¨ = π‘π΄πœ‘π΄ + π‘π΅πœ‘π΅

𝑆 = ΰΆ±πœ‘π΄πœ‘π΅ π‘‘Τ¦π‘Ÿ > 0πœ€ <

Β±Ξ¨βˆ— 𝐻0Ξ¨Β±π‘‘Τ¦π‘Ÿ

Β±Ξ¨βˆ—Ξ¨Β±π‘‘Τ¦π‘Ÿ

𝐻𝐴𝐴 βˆ’ πœ€ 𝐻𝐴𝐡 βˆ’ πœ€π‘†π»π΄π΅ βˆ’ πœ€π‘† 𝐻𝐡𝐡 βˆ’ πœ€

𝑐𝐴𝑐𝐡

= 0

𝑐𝐴2 β‰  𝑐𝐡

2

Eat,B

Eat,A

e1

e2

variational method

πœ€ 𝑐𝐴2 + 𝑐𝐡

2 + 2𝑐𝐴𝑐𝐡𝑆 = 𝑐𝐴2𝐻𝐴𝐴 + 𝑐𝐡

2𝐻𝐡𝐡 + 2𝑐𝐴𝑐𝐡 𝐻𝐴𝐡

πœ•πœ€

πœ•π‘π΄=

πœ•πœ€

πœ•π‘π΅= 0

𝐻𝐴𝐴 β‰ˆ πΈπ‘Žπ‘‘,𝐴

𝐻𝐡𝐡 β‰ˆ πΈπ‘Žπ‘‘,𝐡

Let’s assume that πΈπ‘Žπ‘‘,𝐴 < πΈπ‘Žπ‘‘,𝐡

The molecule is diatomic so we are looking for a combination of two orbitals πœ‘π΄ and πœ‘π΅.

2015-11-27 11

Molecules

Ξ¨ = π‘π΄πœ‘π΄ + π‘π΅πœ‘π΅

𝑆 = ΰΆ±πœ‘π΄πœ‘π΅ π‘‘Τ¦π‘Ÿ > 0πœ€ <

Β±Ξ¨βˆ— 𝐻0Ξ¨Β±π‘‘Τ¦π‘Ÿ

Β±Ξ¨βˆ—Ξ¨Β±π‘‘Τ¦π‘Ÿ

𝐻𝐴𝐴 βˆ’ πœ€ 𝐻𝐴𝐡 βˆ’ πœ€π‘†π»π΄π΅ βˆ’ πœ€π‘† 𝐻𝐡𝐡 βˆ’ πœ€

𝑐𝐴𝑐𝐡

= 0

𝑐𝐴2 β‰  𝑐𝐡

2

Eat,B

Eat,A

e1

e2

variational method

πœ€ 𝑐𝐴2 + 𝑐𝐡

2 + 2𝑐𝐴𝑐𝐡𝑆 = 𝑐𝐴2𝐻𝐴𝐴 + 𝑐𝐡

2𝐻𝐡𝐡 + 2𝑐𝐴𝑐𝐡 𝐻𝐴𝐡

πœ•πœ€

πœ•π‘π΄=

πœ•πœ€

πœ•π‘π΅= 0

πœ€1 β‰ˆ πΈπ‘Žπ‘‘,𝐴 βˆ’π»π΄π΅ βˆ’ πΈπ‘Žπ‘‘,𝐴𝑆

2

πΈπ‘Žπ‘‘,𝐡 βˆ’ πΈπ‘Žπ‘‘,𝐴

πœ€2 β‰ˆ πΈπ‘Žπ‘‘,𝐡 +𝐻𝐴𝐡 βˆ’ πΈπ‘Žπ‘‘,𝐡𝑆

2

πΈπ‘Žπ‘‘,𝐡 βˆ’ πΈπ‘Žπ‘‘,𝐴

The molecule is diatomic so we are looking for a combination of two orbitals πœ‘π΄ and πœ‘π΅.

Heteronuclear diatomic molecules, eg. CO, NO, HCl, HF

The bonding is strong when:

The large value of the overlap integral 𝑆 and proportional to it integral 𝐻𝐴𝐡.The small difference of the energy of atomic orbitals πΈπ‘Žπ‘‘,𝐴, πΈπ‘Žπ‘‘,𝐡.Molecular orbitals do not have to be constructed with atomic orbitals of the same type (𝑠 βˆ’ 𝑠or 𝑝 βˆ’ 𝑝).

2015-11-27 12

Molecules

𝐻𝐴𝐴 βˆ’ πœ€ 𝐻𝐴𝐡 βˆ’ πœ€π‘†π»π΄π΅ βˆ’ πœ€π‘† 𝐻𝐡𝐡 βˆ’ πœ€

𝑐𝐴𝑐𝐡

= 0Eat,B

Eat,A

e1

e2

πœ€ 𝑐𝐴2 + 𝑐𝐡

2 + 2𝑐𝐴𝑐𝐡𝑆 = 𝑐𝐴2𝐻𝐴𝐴 + 𝑐𝐡

2𝐻𝐡𝐡 + 2𝑐𝐴𝑐𝐡 𝐻𝐴𝐡

πœ•πœ€

πœ•π‘π΄=

πœ•πœ€

πœ•π‘π΅= 0

πœ€1 β‰ˆ πΈπ‘Žπ‘‘,𝐴 βˆ’π»π΄π΅ βˆ’ πΈπ‘Žπ‘‘,𝐴𝑆

2

πΈπ‘Žπ‘‘,𝐡 βˆ’ πΈπ‘Žπ‘‘,𝐴

πœ€2 β‰ˆ πΈπ‘Žπ‘‘,𝐡 +𝐻𝐴𝐡 βˆ’ πΈπ‘Žπ‘‘,𝐡𝑆

2

πΈπ‘Žπ‘‘,𝐡 βˆ’ πΈπ‘Žπ‘‘,𝐴

Example: HF molecule

F: (1s)2(2s)2(2p)5 H: (1s)1

1. Similar energy values have 2p of F and 1s of H.2. Only 2pz orbital gives non-zero overlap integral

with 1s (bonding orbital Οƒ).3. 2 Fluorine electrons 2px i 2 electrons 2py are not

involved in the HF molecular bonding and are called lone pair (wolna para elektronowa)

4. Similarly fluorine 1s and 2s atomic orbitals do not form a bond with the 1s hydrogen electron because of the large energy difference

5. Ground state: 1Ξ£+

2015-11-27 13

Molecules

Eat,B

Eat,Ae1

e2

P. K

ow

alcz

yk

Hybridization and overlap integrals

2015-11-27 14

Molecules

htt

p:/

/sp

arkc

har

ts.s

par

kno

tes.

com

/ch

emis

try/

org

anic

chem

istr

y1/s

ecti

on

2.p

hp

P. K

ow

alcz

yk

Hybridization sp, eg. BeH2

2015-11-27 15

Molecules

The angle between the bonds is 180˚.

β„Ž1 =1

2𝑠 βˆ’

1

2𝑝π‘₯

β„Ž2 =1

2𝑠 +

1

2𝑝π‘₯

Hybridization sp2, eg. C2H4

2015-11-27 16

Molecules

The angle between the bonds is 120˚.

β„Ž1 =1

3𝑠 βˆ’

1

2𝑝π‘₯ βˆ’

1

6𝑝𝑧

β„Ž3 =1

3𝑠 +

1

2𝑝𝑧

β„Ž2 =1

3𝑠 +

1

2𝑝π‘₯ βˆ’

1

6𝑝𝑧

P. K

ow

alcz

yk

Ethylene C2H4

Hybridization sp3, eg. CH4

2015-11-27 17

Molecules

The angle between the bonds is 109,5˚.

β„Ž1 =1

2𝑠 + 𝑝π‘₯ + 𝑝𝑦 + 𝑝𝑧

P. K

ow

alcz

yk

Methane CH4

β„Ž2 =1

2𝑠 + 𝑝π‘₯ βˆ’ 𝑝𝑦 βˆ’ 𝑝𝑧

β„Ž3 =1

2𝑠 βˆ’ 𝑝π‘₯ + 𝑝𝑦 βˆ’ 𝑝𝑧

β„Ž4 =1

2𝑠 βˆ’ 𝑝π‘₯ βˆ’ 𝑝𝑦 + 𝑝𝑧

Hybridization sp3, eg. CH4

2015-11-27 18

Molecules

The angle between the bonds is 109,5˚.

β„Ž1 =1

2𝑠 + 𝑝π‘₯ + 𝑝𝑦 + 𝑝𝑧

β„Ž2 =1

2𝑠 + 𝑝π‘₯ βˆ’ 𝑝𝑦 βˆ’ 𝑝𝑧

β„Ž3 =1

2𝑠 βˆ’ 𝑝π‘₯ + 𝑝𝑦 βˆ’ 𝑝𝑧

β„Ž4 =1

2𝑠 βˆ’ 𝑝π‘₯ βˆ’ 𝑝𝑦 + 𝑝𝑧

Methane CH4 Ammonia NH3 Water H2O

http://oen.dydaktyka.agh.edu.pl/dydaktyka/chemia/a_e_chemia/1_3_budowa_materii/01_04_03_2b.htm

Hybridization sp3, eg. CH4

2015-11-27 19

Molecules

The angle between the bonds is 109,5˚.

β„Ž1 =1

2𝑠 + 𝑝π‘₯ + 𝑝𝑦 + 𝑝𝑧

β„Ž2 =1

2𝑠 + 𝑝π‘₯ βˆ’ 𝑝𝑦 βˆ’ 𝑝𝑧

β„Ž3 =1

2𝑠 βˆ’ 𝑝π‘₯ + 𝑝𝑦 βˆ’ 𝑝𝑧

β„Ž4 =1

2𝑠 βˆ’ 𝑝π‘₯ βˆ’ 𝑝𝑦 + 𝑝𝑧

Hybridization

2015-11-27 20

Molecules

htt

p:/

/sp

arkc

har

ts.s

par

kno

tes.

com

/ch

emis

try/

org

anic

chem

istr

y1/s

ecti

on

2.p

hp

htt

p:/

/ww

w.s

cien

ce.u

wat

erlo

o.c

a/~c

chie

h/c

act/

c12

0/h

ybri

d.h

tml

Hybridization

2015-11-27 21

Molecules

Uranium, a member of the actinide group of elements, can form molecules with five covalent bonds.Each uranium atom has a total of 16 atomic orbitals that are available for bond formation. Gagliardi and Roos used an approach called CASSCF/CASPT2 to model how all the valence orbitals in one atom merge with those in the other atom to form the most stable chemical bond -- that is, the one with minimum energy.

Gagliardi and Roos found that the uranium-uranium bond is more complex than any other known diatomic bond: it contains three normal electron-pair bonds and four weaker one-electron bonds. They also find evidence for ferromagnetic coupling between two electrons, each localized on one of the atoms. This means that all the known forms of covalent bonding are found in the molecule.

Hybridization

2015-11-27 22

Molecules

htt

p:/

/sp

arkc

har

ts.s

par

kno

tes.

com

/ch

emis

try/

org

anic

chem

istr

y1/s

ecti

on

2.p

hp

http://oen.dydaktyka.agh.edu.pl/dydaktyka/chemia

Carbon

Benzene molecule

2015-11-27 23

Molecules

Οƒ-bonds (sp2) are "localized" and form a rigid skeleton, while Ο€-electrons forming a bond are delocalized.

Benzene

π‘˜ = 0,Β±1,Β±2, 3

Six of atomic orbitals 2pz gives an equal contribution to all of the molecular orbitals.

These functions correspond to the waves running around the carbon atoms ring in opposite directions for positive and negative values of π‘˜

Ξ¨k =1

6

𝑛=1

6

𝑒2πœ‹π‘–6 π‘˜π‘› 𝑝𝑧,𝑛

𝐸k = 𝛼 + 2𝛽 cos2πœ‹π‘–

6π‘˜

Benzene molecule

2015-11-27 24

Molecules

π‘˜ = 0,Β±1,Β±2, 3

Ξ¨k =1

6

𝑛=1

6

𝑒2πœ‹π‘–6 π‘˜π‘› 𝑝𝑧,𝑛

𝐸k = 𝛼 + 2𝛽 cos2πœ‹π‘–

6π‘˜

Friedrich August Kekule 1829 - 1896

dr hab. Andrzej WysmoΕ‚ek

dr inΕΌ. WΕ‚odzimierz StrupiΕ„ski,

dr hab. Andrzej WysmoΕ‚ek

dr inΕΌ. WΕ‚odzimierz StrupiΕ„ski,

dr Jacek SzczytkoMichaΕ‚ KluzIzabela Rytarowska

dr Jacek SzczytkoMichaΕ‚ KluzIzabela Rytarowska

dr Jacek SzczytkoMichaΕ‚ KluzIzabela Rytarowska

Orientation is defined by the chiral vector 𝒏,π’Ž : 𝒄𝒉 = 𝒏 𝒂 + π’Ž 𝒃

Different orientations:

β€’ Armchair

β€’ Zig-zag

β€’ Chiral

J.Basak, D.Mitra, S.Sinha β€žCarbon nanotube: the next generation sensors” presentation PaweΕ‚ Tomasz PΔ™czkowski

2015-11-27 31

Nanotubes

2015-11-27 32

Nanotubes

Single Wall Nanotube(Zig-Zag Type)

Single Wall Nanotube(Arm-Chair Type)

Uprolling a Graphene(Arm-Chair Type)

Uprolling a Graphene(Zig-Zag Type)

Single Wall Nanotube(Chiral Type)

www.surf.nuqe.nagoya-u.ac.jp/nanotubes/omake/nanotubes/nanotubes.html

f = 0.246 (n2+nm+m2)1/2 / Ο€ (nm)

Single – twist http://www.ipt.arc.nasa.gov

2015-11-27 33

Nanomachines

Single – bend http://www.ipt.arc.nasa.gov

2015-11-27 34

Nanomachines

Single – compress http://www.ipt.arc.nasa.gov

2015-11-27 35

Nanomachines

Multi – twist http://www.ipt.arc.nasa.gov

2015-11-27 36

Nanomachines

Multi – bend http://www.ipt.arc.nasa.gov

2015-11-27 37

Nanomachines

Multi – compress http://www.ipt.arc.nasa.gov

2015-11-27 38

Nanomachines

Space elevator

2015-11-27 39

Space elevatorhttp://www.spaceelevator.com/

2015-11-27 40

http://www.uc.edu/news/NR.asp?id=5700

Space elevator

2015-11-27 41

Buckminster Fuller pour un exposition en 1967 Γ  MontrΓ©al

Fullerenes

2015-11-27 42

Solutions in toluene

Fullerenes

2015-11-27 44

Fullerenes

2015-11-27 46

fcc C60 crystals

Fullerenes

2015-11-27 47

Superconductivity K3C60X.D. Xiang, J.G. Hou, et al. Nature 361, 54, 1993

ZaleΕΌnoΕ›Δ‡ oporu wΕ‚aΕ›ciwego K3C60 od temperatury ZaleΕΌnoΕ›Δ‡ Tc od staΕ‚ej sieci

PaweΕ‚ Tomasz PΔ™czkowski

Fullerenes

2015-11-27 48

Too slow Too fast

Accurately

Benzene + C60

http://www.ipt.arc.nasa.gov

2015-11-27 49

Nanomachines

Benzen + CN

Gear Rotation in a Vacuum 200 rot/ns

Powered Sharfhttp://www.ipt.arc.nasa.gov

2015-11-27 50

Nanomachines

Too slow

Accurately

Gear Rotation at RT 50/70/100 rot/ns

Gear Rotation at RT 50 rot/ns

Too fast > 100 rot/ns

http://www.ipt.arc.nasa.gov

2015-11-27 51

Nanomachines

htt

p:/

/ww

w.ip

t.ar

c.n

asa.

gov

Gear and Shaft Operation

Powered GearPowered Sharf

Large Gear Drives Small Gear

2015-11-27 52

Nanomachines

Long Gear Rotation at Room Temperature

htt

p:/

/ww

w.ip

t.ar

c.n

asa.

gov

Startup Rotating

Rotation of Gears with Two Off-line Rows of Teeth

Zbyt szybko

2015-11-27 53

Nanomachines

β€žplumber’s nightmare”

Schwartzite