Physical meaning of natural orbitals and natural ...

Post on 28-Oct-2021

10 views 0 download

Transcript of Physical meaning of natural orbitals and natural ...

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Physical meaning of naturalorbitals and naturaloccupation numbers

13.04.2016 N. Helbig Forschungszentrum Jülich

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Outline

1 Introduction

2 General properties

Non-interacting electrons

Interacting electrons

Correlation entropy

3 A toy model

Natural orbitals and occupation numbers

Description of excitations

4 Conclusions and Outlook

13.04.2016 N. Helbig 2 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Reduced density-matrix functional theory

One-body reduced density matrix

γgs(r, r′) = N

d3r2...d3rNΨ

gs(r′...rN)Ψgs(r...rN)

=∞∑

j=1

njϕ∗

j (r′)ϕj(r)

Ground-state energy

E [γ] = Ekin[γ]+Eext[γ]+EH [γ]+Exc[γ] = E [{nj}, {ϕj(r)}]

13.04.2016 N. Helbig 3 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Reduced density-matrix functional theory

Minimize total energy with respect to occupation numbers and

natural orbitals

N-representability conditions

0 ≤ nj ≤ 1,∞∑

j=1

nj = N,

d3rϕ∗

j (r)ϕk(r) = δjk

Ensemble N-representability

j

wj |Ψj〉〈Ψj |

instead of a pure state |Ψ〉 (see talks tomorrow)

13.04.2016 N. Helbig 4 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Reduced density-matrix functional theory

Problem

The exact Exc[γ] is unknown

From energy minimization one obtains approximate natural

orbitals and occupation numbers

For exact natural orbitals and occupation numbers one needs

to calculate Ψ(r1, · · · rN)

→ Introduce a one-dimensional model system

13.04.2016 N. Helbig 5 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Non-interacting electrons

Slater determinant

Ψ(r1...rN) =1√N!

∣∣∣∣∣∣∣

ϕ1(r1) · · · ϕ1(rN)...

...

ϕN(r1) · · · ϕN(rN)

∣∣∣∣∣∣∣

Density matrix

γ(r, r′) =N∑

j=1

ϕ∗

j (r′)ϕj(r)

Natural orbitals are single-particle orbitals

Occupation numbers are either zero or one

13.04.2016 N. Helbig 6 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Non-interacting electrons

Single-particle orbitals satisfy

[

−∇2

2+ vext(r)

]

ϕj(r) = ǫjϕj(r)

Lowest energy states are occupied

ǫ1 ≤ ǫ2 ≤ ... ⇒ nj = 1 for 1 ≤ j ≤ N

nj = 0 for j > N

The same holds for Hartree-Fock theory

(except that vext is replaced by the HF potential)

13.04.2016 N. Helbig 7 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Interacting electrons

Many-body wave function

Ψ(r1...rN) =∑

j

cjΦj(r1...rN)

with Slater determinants Φj(r1...rN) and∑

j |cj |2 = 1.

Density matrix

γ(r, r′) =∞∑

j=1

njϕ∗

j (r′)ϕj(r)

No single-particle equation associated to the natural orbitals

13.04.2016 N. Helbig 8 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Interacting electrons

Use M natural orbitals to set up the Slater determinants

Minimizes∫

d3r1 · · · d3rN |Ψ(r1 · · · rN)−ΨM(r1 · · · rN)|2

compared to any other set of M orbitals.

Relation between coefficients and occupation numbers

nj =∑

k ,ϕj∈Φk

|ck |2

If nj = 1(0) the corresponding natural orbital appears in all

(none) of the Slater determinants.

13.04.2016 N. Helbig 9 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Correlation entropy

Measure for correlation s = −∑∞

j=1 nj log nj

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

-x*log(x)

For non-interacting electrons s = 0.

13.04.2016 N. Helbig 10 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Small toy model

One-dimensional system with two electrons

vext(x) = − v

cosh2(x)

For non-interacting electrons

ǫj = −1

8

[√1 + 8v − 1 − 2(j − 1)

]

︸ ︷︷ ︸

>0

2

For v = 0.9: only one bound state

For v = 2.0: two bound states

Interaction

vint(x1, x2) =b

cosh2(x1 − x2)

13.04.2016 N. Helbig 11 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Natural orbitals

0

0,2

0,4

0,61s

t nat

. orb

. b=0.0b=0.5b=0.9b=1.0

-0,6-0,4-0,2

00,20,40,6

2nd

nat.

orb.

b=0.01b=1.3

-10 0 10x (a.u.)

-0,4-0,2

00,20,4

3rd

nat.

orb. b=1.5

b=3.0

13.04.2016 N. Helbig 12 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Occupation numbers

0 0.5 1 1.5 2 2.5 3Interaction strength (a.u.)

0

0.5

1

1.5

2O

cc. n

umbe

r/en

trop

y

n1

n2

n3

s

13.04.2016 N. Helbig 13 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Excited state

-15 -10 -5 0 5 10 15x (a.u.)

-0.4

-0.2

0

0.2

0.4

0.6

1st n

at. o

rb.

b=0.01b=0.5b=0.9

-15 -10 -5 0 5 10 15x (a.u.)

-0.4

-0.2

0

0.2

0.4

0.6

2nd

nat.

orb.

b=1.0b=1.3b=1.5

One natural orbital always unbound.

13.04.2016 N. Helbig 14 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Excitations

For b < 1.0 the natural orbitals of the ground state are

localized.

Excited state always has one unbound natural orbital.

First excited state of this system is ionized.

Excitations cannot be described by just changing the

occupation of the ground-state natural orbitals.

This is however what we always do for non-interacting

electrons, even for ionization.

13.04.2016 N. Helbig 15 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

More bound states, v = 2.0

0

0.2

0.4

0.6

0.8

1st n

at. o

rb.

b=0.0

0

0.2

0.4

0.6

0.8

-15 -10 -5 0 5 10 15x (a.u.)

-0.6

-0.3

0

0.3

0.6

2nd

nat.

orb.

b=0.01b=0.5b=0.9

-15 -10 -5 0 5 10 15x (a.u.)

-0.6

-0.3

0

0.3

0.6b=1.0b=1.3b=1.5

13.04.2016 N. Helbig 16 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Excitations

For b < 1.0 the first two natural orbitals of the ground state

and the excited state are localized.

Excitation can be approximately described by just changing

the occupations of the ground-state natural orbitals.

13.04.2016 N. Helbig 17 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Excitations

For b < 1.0 the first two natural orbitals of the ground state

and the excited state are localized.

Excitation can be approximately described by just changing

the occupations of the ground-state natural orbitals.

Can excitations be described from ground-state natural orbitals?

It depends, sometimes yes, sometimes no.

13.04.2016 N. Helbig 17 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Molecular dissociation

Two potential wells at distance d

vext(x) == − v

cosh2(x − d/2)− v

cosh2(x + d/2)

Interaction

vint(x1, x2) =1

cosh2(x1 − x2)

Interaction decays exponentially with distance.

13.04.2016 N. Helbig 18 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Molecular dissociation

-20 -15 -10 -5 0 5 10 15 20x

0

0.2

0.4

0.6

0.8

KS

orb. d=7.0

d=11.0d=13.0d=15.0

0

0.2

0.4

0.6

0.8

1st n

at. o

rb.

d=1.0d=3.0d=5.0

-0.6-0.4-0.2

00.20.40.6

2nd

nat.

orb.

13.04.2016 N. Helbig 19 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Molecular dissociation

0 2 4 6 8 10 12 14Distance (a.u.)

0

0.5

1

1.5

2

Cor

rela

tion

entr

opy

n1

n2

s

13.04.2016 N. Helbig 20 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Conclusions

Natural orbitals change dramatically from non-interacting to

interacting particles.

Excitations can be described by a change in the occupation

numbers if the two states are similar in their localization.

Occupation numbers provide a measure for correlation.

nj = 0 and nj = 1 give more information on wave function.

13.04.2016 N. Helbig 21 22

Me

mb

er

of

the

He

lmh

oltz-A

sso

cia

tio

n

Work done together with...

I.V. Tokatly UPV/EHU, San Sebastián (Spain)

A. Rubio UPV/EHU, San Sebastián (Spain), MPI, Hamburg

(Germany)

References:

Phys. Rev. A 81, 022504 (2010)

13.04.2016 N. Helbig 22 22