Origin of the spin-orbit interaction - University of Floridamaslov/phz6426/SO.pdf · Origin of the...

Post on 27-Jul-2018

222 views 0 download

Transcript of Origin of the spin-orbit interaction - University of Floridamaslov/phz6426/SO.pdf · Origin of the...

Origin of the spin-orbit interaction

In a frame associated with the electron: B =1cE × v = 1

mcE × p

Zeeman energy in the SO field: H = µB

mcσ i (E× p) = − i2

2m2c2σ i (∇V ×∇)

Mott 1927

+E

v E

B

s

1/c expansion of the Dirac equation

Smaller by a factor of 2 (“Thomson factor of two”, 1926) Reason: non-inertial frame

H =p2

2m+ eV

non-relativistic

+p4

8m2c2

K.E. correction

+2

8m2c2 ∇2V

Darwin term

+

4m2c2

σ i(∇V × p)

SOI

Landau& Lifshits IV: Berestetskii, Lifshits, Pitaevskii Quantum Electrodynamics, Ch. 33

All three corection terms are of the same order

SO coupling

Si14 Ge32

Ga32

Ga33

Ze2 / c( )2

Ze2 / c( )2 Si14 Ga31 Ge32 As33 Bi830.01 0.051 0.055 0.058 0.38

Bi83

Fine structure of atomic levels Hydrogen

2s1/2 2s

Runge-Lentz (non-relativistic Coulomb) +spin degeneracy

Johnson-Lippman (relativistic Coulomb) degeneracy lifted by radiation corrections (Lamb shift)

Two types of SOI in solids

1)  Symmetry-independent: exists in all types of crystals stem from SOI in atomic orbitals

2) Symmetry-dependent: exists only in crystals without inversion symmetry a) Dresselhaus interaction (bulk): Bulk-Induced-Assymetry (BIA) b) Bychkov-Rashba (surface): Surface-Induced-Asymmetry (SIA)

Example of symmetry-independent SOI: SO-split-off valence bands

Winkler, Ch. 3

I

no I

(ZGa + ZAs ) / 2ZSi

⎣⎢

⎦⎥

2

=ZGeZSi

⎛⎝⎜

⎞⎠⎟

2

=3214

⎛⎝⎜

⎞⎠⎟2

= 5.2

ΔGaAs / ΔSi = .34/0.044 ≈ 7.7ΔGaAs / ΔGe = .34/.029 ≈ 1.2

E: j = 1 / 2; jz = ±1 / 2

Non-centrosymmetric crystals

S. Sque (Exter)

Diamond (C): Si, Ge

Zincblende (ZnS): GaAs, GaP, InAs, InSb, ZnSe, CdTe …

3a

3 / 4a

[111]

3a

3 / 4a

[111]

space group: O7h (non-symmorphic)

factor group Oh = Td × I

space group: T 2d (symmorphic)

point group: Td (methane CH4 )

Additional band splitting in non-centrosymmetric crystals

Kramers theorem: if time-reversal symmetry is not broken, all eigenstates are at least doubly degenerate

if ψ is a solution, ψ * is also solution

Kramers doublets ε s k( ), s = ±1 (not necessary spin projection!)

Time reversal symmetry: k-k,t-t ε s k( ) = ε− s −k( )

ε k( ) = ε −k( ) regardless of the inversion symmetry

i) If a crystal is centrosymmetric

ε s k( ) =

t→− t ε− s −k( ) =

k→−k ε− s k( )⇒ε s k( ) = ε− s k( )

ii) If a crystal is non-centrosymmetric, ε s k( ) ≠ ε− s k( )

No SOI:

With SOI:

B=0 “spin” splitting

Symmetry-dependent SOI: Dresselhaus band splitting in non-centrosymmetric crystals

Surface-induced asymmetry: Rashba interaction

z>0 and z<0 half-spaces are not equivalent: has a specified direction

HR =

k2

2m+αni σ × k( ) = k2

2m+α σ xky − σ

ykx( )t→ −t : k→ −k,σ → −σ

k

n

n

k, n,σThree vectors:

How to form a scalar?

HR =k2 / 2m α ky + ikx( )

α ky − ikx( ) k2 / 2m

⎜⎜

⎟⎟ ⇒ ε± =

k2

2m±αk

E. I. Rashba and V. I. Sheka: Fiz. Tverd. Tela 3 (1961) 1735; ibid. 1863; Sov. Phys. Solid State 3 (1961) 1257; ibid. 1357.

Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984); Yu. A. Bychkov and E. I. Rashba, J. Phys. C: Solid State Phys. 17 (1984) 6039.

Rashba states

ΔR

k

ε

εF

ε± =k2

2m±αk

ψ ± =

12

1ieiφk

⎝⎜

⎠⎟

Sz,± =12ψ ±σ

zψ ± = 0

Sx,± =

12ψ ±σ

xψ ± = ±12

sinφk ; Sy,± =12ψ ±σ

yψ ± = 12

cosφk

kiS± = 0

Conductance of Rashba wires

2D : HR =k2

2m+α σ xky − σ

ykx( )1D : HR =

kx2

2m−ασ ykx

BSO

Quay et al. Nature Physics 6, 336 - 339 (2010)

Hole wire

Dresselhaus+Rashba

Dresselhaus Hamiltonian G. Dresselhaus: Phys. Rev. 100(2), 580–586 (1955)

HD = DΩ k( )i σ

Ω = kx ky

2 − kz2( ),ky kz2 − kx2( ),kz kx2 − ky2( )( )

zincblende (AIIIBV) lattice

(001) surface (interface) of a AIIIBV semiconductor kz = 0, k2

z ~ 1 / d 2

Ω = kxk

2y

cubic→0

− kx k2z ,ky kz2 − kyk

2x

cubic→0

,0⎛

⎝⎜

⎠⎟ = kz

2 −kx ,ky ,0( ) HDS = β σ yky − σ

xkx( )in general: Rashba+Dresselhaus

H =k2

2m+α σ xky − σ

ykx( ) + β σ yky − σxkx( ) = k2

2m+σ x αky − βkx( ) +σ y αkx + βky( )

Datta-Das Spin Transistor

H = k 2

2m+

gµB

2σ iBR (k); BR k( ) = 2α

gµB

k × n ≡ Rashba field

even number of π rotations: ONodd number of π rotations: OFF

Loss-DiVincenzo Quantum Computer Phys. Rev. A 57, 120 (1998)

GaAs: strong spin-orbit coupling; strong hyperfine interaction

(Extrinsic) Spin-Hall Effect

Spin Hall Effect: the regular current (J) drives a spin current (Js) across the bar resulting in a spin accumulation at the edges.

FSO

FSO Js J

More spin up electrons are deflected to the right than to the left (and viceversa for spin down)

For a given deflection, spin up and spin down electrons make a side-jump in opposite directions.

e

impurity

e

Skew scattering

Side Jump

Intrinsic Spin-Hall Effect No observations as of yet

unbounded 2D: magnetoelectric effect [V. M. Edelstein, Solid State Comm. 73, 233 (1990). "

I

Can an electric field produce magnetization? Drift momentum kx = eEτ

H = k 2

2m+

gµB

2σ iBR (k); BR k( ) = 2α

gµB

k × n ≡ Rashba field

k BR

n

Current induces steady Rashba field My = µB By

R =2αg

kx =2αeEτg

Impurities are only necessary to maintain steady state

M

(but forgetting about them leads to incorrect results--”universal spin-Hall conductivity” Murakami et al. Science 301, 1348 (2003) Sinova et al. Phys. Rev. Lett. 92, 126603 (2004)

References

1.  M. I. Dyakonov, ed. Spin Physics in Semiiconductors, Spinger 2008 http://www.springerlink.com.lp.hscl.ufl.edu/content/g7x071/#section=215878&page=1

available through UF Library

Ch. 1 M.I. Dyakonov, Basics of Semiconductor and Spin Physics. Ch. 8 M. I. Dyakonov and A. V. Khaetskii, Spin Hall Effect

2. R. Winkler, Spin-Orbit Coupling Effects in 2D Electron and Hole System, Springer 2003. 3. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer 1999 4. J. Fabian et al. Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) arXiv:0711.1461 5. I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and Applications, Rev. Mod. Phys. 76, 323 (2004) 6. M. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Applications to the Physics of Condensed Matter, Springer 2008.